Columbian College of Arts & Sciences

THE GEORGE WASHINGTON UNIVERSITY

MUSE: muon proton scattering at PSI

E. J. Downie

on behalf of the **MUSE Collaboration**

Award DE-SC0012485

Awards PHY-1614850,1714833

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Why MUSE?

- Simultaneous measurement of $e^+/\mu^+ e^-/\mu^-$ at beam momenta of 115, 153, 210 MeV/c in π M1 channel at PSI allows:
 - Determination of two photon effects
 - Test of lepton universality

 \clubsuit Simultaneous determination of proton radius in both eP and μP scattering

MUSE Timeline

- 2011: Ron Gilman, Michael Kohl & Gerry Miller come up with idea
- 2012: MUSE presented to PSI BVR 43, and every BVR thereafter
- 2014: Conditional physics approval from PSI
- 2014: First R & D funding from NSF & DOE
- 2016: Full construction funding from NSF (award Sep. 15th)
- In between, many BVRs; reviews; test beams etc.
- Funded by NSF, NSF/BSF & DOE grants to: GW, Hampton, HUJI, Rutgers, TAU, Temple, U. Michigan, USC
- In-kind support from PSI (manpower, power supplies, equipment)
- Now: MUSE under construction @PSI
- Data taking: 6 months / year in 2019 & 2020

How many people do you need? - MUSE membership

Technical Design Report

for the

Paul Scherrer Institute Experiment R-12-01.1: Studying the Proton "Radius" Puzzle with µp Elastic Scattering June 1, 2017

The MUon Scattering Experiment collaboration (MUSE):

R. Gilman (Contact person),¹ E.J. Downie (Spokesperson),² G. Ron (Spokesperson),³ S. Strauch (Spokesperson),⁴ A. Afanasev,² A. Akmal,⁵ J. Arrington,⁶ H. Atac,⁷ C. Ayerbe-Gayoso,⁸ F. Benmokhtar,⁹ N. Benmouna,⁵ J. Bernauer,¹⁰ A. Blomberg,⁷ W. J. Briscoe,² D. Cioffi,² E. Cline,¹ D. Cohen,³ E. O. Cohen,¹¹ C. Collicott,¹² K. Deiters,¹³ J. Diefenbach,¹² B. Dongwi,¹⁴ D. Ghosal,¹⁵ A. Golossanov,² R. Gothe,⁴ D. Higinbotham,¹⁶ D. Hornidge,¹⁷ Y. Ilieva,⁴ N. Kalantarians,¹⁴ M. Kohl,¹⁴ B. Krusche,¹⁵ G. Kumbartzki,¹ I. Lavrukhin,² L. Li,⁴ J. Lichtenstadt,¹¹ W. Lin,¹ A. Livanage,¹⁴ W. Lorenzon,¹⁸ K. E. Mesick,¹⁹ Z.-E. Meziani,⁷ P. Mohanmurthy,¹⁰ P. Moran,⁷ J. Nazeer,¹⁴ E. Piasetzsky,¹¹ R. Ransome,¹ R. Raymond,¹⁸ D. Reggiani,¹³ P.E. Reimer,⁶ A. Richter,²⁰ T. Rostomyan,¹ P. Roy,¹⁸ A. Sarty,²¹ Y. Shamai,²² N. Sparveris,⁷ N. Steinberg,¹⁸ I. Strakovsky,² V. Sulkosky,²³ A.S. Tadepalli,¹ and M. Taragin²⁴ ¹Rutgers University, New Brunswick, New Jersey, USA ²George Washington University, Washington, DC, USA ³Hebrew University of Jerusalem, Jerusalem, Israel ⁴University of South Carolina, Columbia, South Carolina, USA ⁵Montgomery College, Rockville, MD, USA ⁶Argonne National Lab, Argonne, IL, USA ⁷Temple University, Philadelphia, Pennsylvania, USA ⁸College of William & Mary, Williamsburg, Virginia, USA ⁹Duquesne University, Pittsburgh, PA, USA ¹⁰Massachusetts Institute of Technology, Cambridge, Massachusetts, USA ¹¹Tel Aviv University, Tel Aviv, Israel ¹²Johannes Gutenberg-Universität, Mainz, Germany

- ~60 MUSE collaborators from 24 institutions in 5 countries
- Funded by 5 agencies
- Technical Design Report: arXiv:1709.09753 [physics.ins-det]

¹³Paul Scherrer Institut, CH-5232 Villigen, Switzerland
 ¹⁴Hampton University, Hampton, Virginia, USA
 ¹⁵University of Basel, Switzerland
 ¹⁶Jefferson Lab, Newport News, Viginia, USA
 ¹⁷Mount Alison University, New Brunswick, Canada
 ¹⁸University of Michigan, Ann Arbor, Michigan, USA
 ¹⁹Los Alamos National Laboratory, Los Alamos, NM, USA
 ²⁰Technical University of Darmstadt, Darmstadt, Germany
 ²¹St. Mary's University, Halifax, Nova Scotia, Canada
 ²²Soreq Nuclear Research Center, Israel
 ²³University of Virginia, Charlottesville, Virginia, USA

How many people do you need? - MUSE membership

Paul Scherrer Institute πM1 Beam

- 590 MeV proton beam, 2.2mA, 1.3 MW beam, 50.6 MHz RF frequency
- World's most powerful proton beam
 - → Secondary e^{\pm} , μ^{\pm} , π^{\pm} in piM1 beamline
- Separate out particle species by timing relative to beam RF
- Cut as many pions as possible, trigger on e^{\pm} , μ^{\pm}

MUSE Experiment

- Low beam flux
 - Large angle, non-magnetic detectors
- Secondary beam
 - Tracking of beam particles to target
- Mixed beam
 - Identification of beam particle in trigger

SiPM Detector (TAU, Rutgers, PSI)

Parameter	Performance Requirement	Achieved
Time Resolution	${<}100~{\rm ps}\;/$ plane	✓ 80 ps
Efficiency	99%	√ 99.8%
Positioning	$\approx\!\!1~\mathrm{mm},\approx\!\!1~\mathrm{mr}$	not attempted; easy – calibrated by data
Rate Capability	$3.3~\mathrm{MHz}$ / plane	\checkmark >10 MHz / plane

- Provides timing vs. beam RF for trigger PID, precise offline analysis
- Distinguishes muon scattering and decay using Δt with SPS
- Thin (2mm) BC-404 read out by Hamamatsu S13360-3075PE SiPMs
- 16 per plane, double ended readout, 2-4 planes depending on beam
- Extensively prototyped, exceeds requirements
- Completely built at PSI

GEM Chambers (Hampton)

	Parameter	Performance Requirement	Achieved
Nov. 2017	Resolution	100 $\mu{\rm m}$ / element	\checkmark 70 $\mu { m m}$
	Efficiency	98%	√ 98%
	Positioning	$\approx 0.1 \text{ mm}, \approx 0.2 \text{ mr}$	not attempted; easy
	Rate Capability	$3.3~\mathrm{MHz}$ / plane	✓ 5 MHz
	Readout Speed	$2~{\rm kHz}$ / 20% deadtime	$1~{\rm kHz}$ / 100% deadtime

- Set of 3 10cm x 10cm GEM detectors built for & run in OLYMPUS
- Incident track angle to ~0.5 mr intrinsic; <5 mr multiple scattering
- Third GEM to reject ghost tracks
- Fourth element added for test beams to determine efficiencies etc.

Parameter	Performance Requirement	Achieved
Resolution	100 $\mu{\rm m}$ / element	$\checkmark~70~\mu{\rm m}$
Efficiency	98%	√ 98%
Positioning	${\approx}0.1~{\rm mm},{\approx}0.2~{\rm mr}$	not attempted; easy
Rate Capability	$3.3~\mathrm{MHz}$ / plane	✓ 5 MHz
Readout Speed	$2~\mathrm{kHz}$ / 20% deadtime	$1~\mathrm{kHz}$ / 100% deadtime

De-focused beam (quadrupoles off)

GEM Chambers (Hampton)

- Events with 1 cluster in each of 3 GEMs for candidate track
- Project track onto fourth GEM element evaluate whether there was a cluster within +-10mm in X and Y
- Obtain efficiency map for each GEM element

GEM Chambers (Hampton)

Veto Detector (USC)

- Annular 8-element veto detector surrounding target entrance window
- Eliminate upstream scattering & beam decays
- Completed and arrived at PSI on July 2

Parameter	Performance Requirement	Achieved
Time Resolution	1 ns / plane	not attempted; easy
Efficiency	99%	not attempted; easy
Positioning	$\approx 1 \text{ mm}, \approx 1 \text{ mr}$	not attempted; easy
Rate Capability	1 MHz / plane	not attempted; easy

Liquid Hydrogen Target (U.Mich.)

- Construction by U.Mich., PSI, CREARE
- Assembled at PSI
- Multiple successful cool-downs with Ne
- Hydrogen exhaust system constructed
- Safety review scheduled for Wed 22nd Aug.

FIG. 21. A schematic view of the target ladder.

Liquid Hydrogen Target (U.Mich.)

Straw Tube Tracker (HUJI, Temple)

Parameter	Performance Requirement	Achieved
Position Resolution	$150~\mu{ m m}$	\checkmark <120 $\mu{\rm m}$
Efficiency	99.8% tracking	\approx 99% in prototype; moderate
Positioning	$\approx\!\!0.1$ mm, 0.2 mr in θ	not attempted; moderate
Positioning	$\approx\!\!0.5~\mathrm{mr}$ pitch, yaw, roll	not attempted; moderate
Positioning	50 μm wire spacing	not attempted; moderate
Rate Capability	$0.5 \mathrm{~MHz}$	not attempted; easy

- Based on PANDA straw tube tracker design
- 2 chambers with 5 planes each in x and y, 2850 straws

Chamber	Distance	Active Area	Number of Straws
	(cm)	(cm^2)	per Chamber
Front	30	60×55	575
Back	45	90×80	850

Straw Tube Tracker (HUJI, Temple)

- Switched to PASTTREC readout
- Allows operation to design parameters
- 3 chambers / 4 completed
- Final chamber under construction
- STT electronics "critical path"

Scattered Particle Scintilators & Beam Monitor (USC)

- Two planes on each side of beam, all four planes complete
- 92 bars, double-ended readout

55 ps achieved

Parameter	Performance Requirement	Achieved
Time Resolution	${\approx}60~{\rm ps}$ / plane	✓ 55 ps
Efficiency	99%, << 1% paddle to paddle	\checkmark 99%, paddle to paddle not
	uncertainty	attempted, moderate
Positioning	$\approx\!\!1~\mathrm{mm},\approx\!\!1~\mathrm{mr}$	not attempted; easy
Rate Capability	0.5 MHz / paddle	\checkmark 1 MHz

Scattered Particle Scintilators & Beam Monitor (USC)

Time Resolution (ps)

Parameter	Performance Requirement	Achieved
Time Resolution	${\approx}60~{\rm ps}$ / plane	✓ 55 ps
Efficiency	99%, << 1% paddle to paddle	\checkmark 99%, paddle to paddle not
	uncertainty	attempted, moderate
Positioning	pprox 1 mm, pprox 1 mr	not attempted; easy
Rate Capability	0.5 MHz / paddle	\checkmark 1 MHz

- 3000 TDC, 500 ADC channels
- TRB3-based read-out
- Mesytec MQDC-32 ADCs mostly for timing correction

Trigger (Rutgers)

- TRB3 FPGA-based, accept e^{\pm} , μ^{\pm} , reject π^{\pm}
- SiPM PID && Scattered Particle (LUT) && NOT(veto)
- PID determined by time between RF pulse and SiPM

Mechanical Assembly (ANL & PSI)

Mechanical Assembly (ANL & PSI)

- Detectors mostly assembled
- Installation underway
- Alignment is critical

Mechanical Assembly (ANL & PSI)

First Beam Tests

Time of flight relative to RF time (Fall 2012)

Beam spot with GEM – May 23, 2013

Composition of the π M1 secondary beam

3D Beam Tomography

25

Simulations (USC & U. Mich)

TOF Beam Momentum Measurement

TOF Beam Momentum Measurement

Consistent beam momenta were extracted from muon and pion spectra

Good agreement between simulation and data, no evidence of beam tail from collimation $p(\pi) \approx p(\mu)$ with $\Delta p / p < 0.3\%$ Preliminary results meet specifications

Simulations (USC)

 Muon decays in flight can be removed with time-of-flight measurements

 Moeller/Bhabba events can be effectively suppressed with veto from the beamline monitor detector

Top:

 Geant 4 sims tuned to match measured beam parameters

Left:

 Neural net separates muon scattering from muon decay reactions

MUSE uncertainty budget

Scintillator efficiency	0.1%
Solid angle	0.1%
Beam momentum offset	0.1%
Theta offset	0.2%
Multiple scattering	0.15%
Muon decay in flight	0.1%
Radiative corrections	0.1% μ 0.5% e
Target wall subtraction	0.3%
Beam PID mis-ID	0.1%

- MUSE measuring relative cross sections
- Point-to-point uncertainties, most important
- Uncertainties mostly well controlled: largest from angle and radiative corrections.
- Have six settings and two independent detectors, consistency check
- Multiple calibration measurements / simulations planned

Projected sensitivity for MUSE

- Cross sections to < 1% stat. for backward μ, <<1% for forward e and μ, absolute 2%, point-to-point relative uncertainties to a few x 10⁻³
- Individual radius extractions from e[±], μ[±] each to 0.01 fm

Projected sensitivity for MUSE

- Compare e± xsecs and µ± xsecs for TPE. Charge average to eliminate TPE to 0.01 fm
- From e/µ xsec ratios: extract e-µ radius difference with minimal truncation error to 0.005 fm
- If no difference, extract radius to 0.007 fm (2nd-order fit)

*Note: MUSE point arbitrarily put at $r_p = 0.875$ fm

Projected sensitivity for MUSE

- Charge radius extraction limited by systematics, fit uncertainties
- Many uncertainties are common to all extractions in the experiments, cancel in e+/e-, μ+/μ-, and μ/e comparisons
- MUSE suited to verify 5.6σ effect (CODATA 2014) with even higher significance

*Note: Difference in MUSE determined entirely by MUSE. Other differences are taken with respect to Antognini muonic hydrogen radius. 34

Conclusion

- Many efforts underway to explain the Proton Radius Puzzle!
- Since 1st MUSE proposal in February 2012, very many test beam times
- R & D from NSF, DOE, BSF; NSF construction funding (May '16) enables:
 - Funding & construction 2016–2018
 - Production running 2019–2020 (2 x 6 months)
- MUSE will be the first muon scattering measurement with the required precision to address the Proton Radius Puzzle!

Thank you!