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At present there exists an apparent discrepancy of approximately 40420 ppm (parts per million) between
experiment and theory for the ground-state hyperfine splitting in hydrogen. The purpose of this paper is to
examine critically the proton-structure corrections which go into the theoretical hfs value and to try to assess
and improve the accuracy to which they are known. We review the theoretical expression for the hyperfine
splitting (hfs) and the corrections toit. The origin of the proton-structure corrections is discussed along with
the various physical effects: form factors, polarization, Bohr effect, etc., which have at various times been
mentioned in regard to the hfs. We write down and solve the hfs for two nonrelativistic models of proton struc-
ture. The aim of these models is to provide insight into the less transparent and much less complete relativ-
istic calculation of the structure correction. We also discuss their relation to the recent quark-model
calculation of Fenster and Nambu. We discuss the relativistic calculation of the proton-structure correction,
building on the recent work of Iddings. Calculation of the 7V and #N* intermediate states are presented. The
problems of subtraction constants and contributions from high energy are taken up and our conclusions

are presented.

I. INTRODUCTION

HE hyperfine splitting in hydrogen presents an
important and historic confrontation between
theory and experiment. Along with positronium the
hydrogen atom is the simplest bound-state system that
is readily available and for which refined and detailed
theoretical calculations have been and can be made.
It thus affords an important test of relativistic bound-
state methods. The hyperfine splitting (hfs) in hydrogen
is further unique in that it is sensitive to details of
proton structure which are usually seen only in high-
energy electron-scattering experiments. The hfs is
therefore an important link between the usually disjoint
fields of high-energy and precision atomic physics.

At present there exists a discrepancy of approximately
40-:20 ppm (parts per million) between experiment and
theory for the ground-state hyperfine splitting in
hydrogen.'—2 There is also an apparent discrepancy with
theory in the recent electron-positron—pair photoproduc-
tion experiments done at the Cambridge* and Cornell®
electron synchrotrons and the remeasurement of the
Lamb shift by Robiscoe.b” The apparent discrepancy
with theory in all of these observations has refocused
attention on the limits of validity of quantum elec-
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trodynamics (QED) and places increased importance
on understanding the nature of the present discrepancy
in the hfs.

The purpose of this paper is to critically examine the
proton-structure corrections which go into the theoreti-
cal hfs value and to try to assess and improve the
accuracy to which they are known. The conclusion of
this paper is that hitherto uncalculated parts of the
proton-structure corrections may very well be of the
order of 10 ppm but that they do not seem to be
amenable to calculation with the presently available
techniques in the theory of strong interactions. The
program of the paper is as follows.

In Sec. IT we review the theoretical expression for
the hfs and the corrections to it. A large class of cor-
rections which comprise the work of many authors may
be loosely described as purely radiative QED correc-
tions. These corrections were recently reviewed and ex-
tended by Brodsky and Erickson® and are only briefly
mentioned here. The origin of the proton-structure cor-
rections, which are the subject of this paper, is dis-
cussed along with the various physical effects: form
factors, polarization, A. Bohr effect, etc. which have
at various times been mentioned in regard to the hfs.

In Sec. IIT we write down and solve the hfs for two
nonrelativistic models of proton structure. Although
these models probably bear little resemblance to
reality we feel that they do contain all the physical
effects which are relevant to the hfs problem and that
they provide valuable insight into the less transparent
and much less complete relativistic calculation of the
structure correction. We also discuss their relation to
the recent quark-model calculation of Fenster and
Nambu.?

In Sec. IV we discuss the relativistic calculation of
the proton-structure correction. Our work here builds
on the recent work of Iddings® which itself builds on

8S. Fenster and Y. Nambu, Progr. Theoret. Phys. (Kyoto),
Suppl. 1965, 250 (1965).

¢ C. K. Iddings, Phys. Rev. 138, B446 (1965).
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the work of Newcomb and Salpeter!® and Arnowitt,!!
and of Cottingham.!? Calculation of the 7V and =N *
intermediate states are presented. We show how, in
the static limit M —, the relativistic calculation of
the structure correction goes over to the nonrelativistic
Zemach!?® result.

In Sec. V the problems of subtraction constants and
contributions from high energy are taken up. Our con-
clusions are presented.

1I. CORRECTIONS TO THE HYPERFINE
SPLITTING

The hyperfine splitting in the ground state of hydro-
gen has been measured to the incredible precision of 2
parts in 10! by Crampton, Kleppner, and Ramsey?:

v=(1420.4057518004-28 X 10~°) Mc/sec. (2.1)

The limit of precision to which this result can be com-
pared with theory is set by two factors: the uncertainties
in measurements of the natural constants and the un-
certainties in the calculation of the corrections to the
hfs calculations due to proton structure. The purely
electrodynamic parts of the calculation have been
carried to a higher precision than that to which these
factors are known.

The total hyperfine splitting in the H ground state
is given by?

A M ON\?
V=_1_6Rmc(ﬁf>(ﬁ_> ( ) cﬁ{l—l—%(Za)z—a(Za)
3 Me/ Nl m+M

X (§—1n2)+—(Za)?
™

m
X[ae n?*Za+a;1 InZa4- azj—aﬂX} , (2.2)

8 37 8 16
5 a2=18.44+5,

up and u, are the proton and electron magnetic mo-
ments, and uo is the electron Bohr magneton. In Eq.
(2.2) m and M denote the electron and proton masses,
respectively, as they will throughout this paper. The
natural constants appearing in the first factor are
grouped together in the way that they have been most
accurately determined.! All are known to better than
one part per million (ppm) except for o which was
measured to an accuracy of only 9 ppm in the deuterum
fine-structure measurements (i.e., 2P3;2-2P1/2 splitting)
by Triebwasser, Dayhoff, and Lamb.!* In writing the

1o W, Newcomb and E. Salpeter, Phys. Rev. 97, 1146 (1955).

1R, Arnowitt, Phys. Rev. 92, 1002 (1953).

12 W, Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963).

13 A, C. Zemach, Phys. Rev. 104, 1771 (1956).

4§, Triebwasser, E. S. Dayhoff, and W. E. Lamb, Jr., Phys.
Rev. 89, 98 (1953). Their value of the fine-structure constant is
a1=137.0388 and the error £9 ppm is a two-standard-deviation

D. DRELL AND J. D.

SULLIVAN 154
correction terms in the bracket we have distinguished
a and Zo as expansion parameters only so that binding
and radiative corrections can be readily identified. The
first three terms are the Breit binding correction!® to
the electron magnetic moment and the binding cor-
rections (first and second order) to the radiative cor-
rection to the electron electromagnetic interaction as
computed by Kroll and Pollack!® and by Karplus,
Klein, and Schwinger!” to order Za and by Layzer,'®
Zwanziger," and Brodsky and Erickson? to order (Za)2.
These contributions are now known to better than
1 ppm. The last term of order a(m/M) represents the
effects of finite proton mass and structure aside from
the purely kinematic reduced-mass correction and must
be studied if comparisons between Eqgs. (2.1) and (2.2)
are to be pursued to the order of 10 ppm.

In order to focus sharply on its significance we write
theratio of Egs. (2.1) to (2.2) using Cohen and DuMond,!

Vtheory/Vexp= 1— (9:t20)10"6—a('m/M)X , (23)

where the uncertainty 4=20 ppm is based on a two-
standard-deviation limit?* on « in Ref. 1. The question
to which we address ourselves is, does the structure
correction disturb the good agreement in Eq. (2.3)
between experiment and theory for a point-massive
proton? In studying X we must consider both the
ground-state average contributions as well as those
arising dynamically from the polarizability of the pro-
ton. The former have been well studied and can be
evaluated quite accurately in terms of the measured
electromagnetic form factors of the proton. Referring
to the most recent and complete study of Iddings®
we can write

al(m/M)X = 34X 105+ Av® /. (2.4)
In Eq. (2.3) this gives
ih/Vexp=1—(432£20) X 10-5—Ap@® /y,  (2.5)

We see then that it is up to the polarizability correc-
tion A»®)/y to bring the theoretical number back into a
clear agreement with observation.

figure. This figure is arrived at by adding the frequencies for the
2P3,9-251,2 and the 2S51/2-2P;/» transitions in deuterium and com-
paring with the theoretical formula for the fine-structure splitting
2P3/5-2P1 2. If the additional 4-0.3 MHz found by Robiscoe (Ref.
6) in H is finally confirmed in D and if the 2P3/5-2S;/2 transition
does not decrease by a compensating amount, there will be an
increase in the measured value of @ of +13 ppm. The theoretical
hfs in Eq. (2.2) is increased by 26 ppm which would bring it into
agreement with Eq. (2.1) to within 20 ppm. This would remove the
hfs anomaly but a serious disagreement would remain in the Lamb
shift itself between theory and experiment.

15 G. Breit, Phys. Rev. 35, 1447 (1930).
( ;; I\; Kroll and F. Pollack, Phys. Rev. 84, 594 (1951); 86, 876

1952).

17 R, Karplus, A. Klein, and J. Schwinger, Phys. Rev. 84, 597
(1951); R. Karplus and A, Klein, ibid. 85, 073 (1952).

18 A, J. Layzer, Nuovo Cimento 33, 1538 (1964).

1 D. E. Zwanziger, Nuovo Cimento 34, 77, (1964).

% This figure also contains 2 ppm arising from other constants
in Eq. (2.2).
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There have been several studies?21:22 of Ay, all of
which have come up with a negligible polarization con-
tribution less than 1 ppm, and Eq. (2.5) stands at
present as an apparent discrepancy. In analyzing this
problem once more we want to shed light on the question
as to whether this discrepancy should be viewed as a
serious challenge to quantum electrodyanamics or
whether it is more properly to be viewed as a measure
of the inaccuracy in our treatment of the effect of
proton structure.

The specific physical idea motivating this study is the
same one analyzed within the context of a massive
quark model of the proton by Fenster and Nambu.® If
the orbital electron in the hydrogen atom could com-
pletely follow the instantaneous charge and magnetiza-
tion position of the proton then the proton would appear
to it as no more than a point. In this case there would
be a cancellation of the finite-size correction of Eg.
(2.5) that introduced the discrepancy.

There is an analogous effect in deuterium, as first
analyzed by A. Bohr.?® Deuterium is a very weakly
bound system and we may think of the proton and
neutron as moving very slowly. The electron can thus
follow the proton—i.e., by virtue of their Coulomb
attraction the electron wave function at the nuclear
surface can recenter on the instantaneous proton
position.?* In less graphic terms both the deuteron
ground state and the electron 1S orbit are mutually
polarized by mixing in higher excited-state amplitudes.

The proton is less polarizable then the deuteron, its
excited states lying at least m,=140 MeV above the
ground state. However the many resonances contribut-
ing to photoproduction and electroproduction cross sec-
tions are evidence that the proton is nevertheless a
highly polarizable structure and there may very well be
appreciable corrections to the static average ground-
state structure as contained in the elastic form factors.

For a proton (or deuteron) with internal dynamical
degrees of freedom the Coulomb interaction with the
orbital electron has off-diagonal matrix elements to
excited proton states. The size of the proton polariz-
ability correction is determined by the magnitude of
these off-diagonal matrix elements of the Coulomb ex-
citation as well as by the same off-diagonal matrix
elements of the spin-dependent magnetic interaction.
We therefore expect the electric as well as the magnetic
multipole excitations of the proton to play an import-
ant role in determining the size of Av®. Previous
studies? 2122 have concentrated exclusively on the
magnetic dipole excitation of the 33 resonance in com-
puting negligible contributions to Ar®. We extend
these considerations to a more complete study of the
amplitude for electromagnetic excitation of the proton.

21 C, Iddings and P. Platzman, Phys. Rev. 115, 919 (1959).

22 A, Verganelakis and D. Zwanziger, Nuovo Cimento 39,
613 (1965).

23 A. Bohr, Phys. Rev. 73, 1109 (1948).

24 F. Low, Phys. Rev. 77, 361 (1950).

F1G. 1. Model of proton structure with
“quarkette” of charge +e and mass u
with coordinate R moving about a fixed
center of mass at the origin. The electron
in the hydrogen atomis at r.

Sizable polarizability contributions are identified in
the next section on the basis of a Schrodinger model of
the proton structure. When we turn to a relativistic
dispersion analysis in Sec. IV we follow the method of
Cottingham!? as discussed and applied to the hfs
problem by Iddings.® This approach expresses Ay(»
in terms of the forward spin-flip Compton scattering of
virtual photons, integrated over all photon energies and
spacelike masses. We will find that one simply does not
know enough about this virtual process to make any
firm conclusions on the size of A»®. Dispersion theory
is at its best when dealing with the interactions of
“real” particles in a kinematic region where the absorp-
tive amplitude is dominated by one or by at most a
very few resonances. In this problem we do not have
this simple circumstance and we find that many small
and poorly calculable terms contribute, leading to no
firm conclusion with regard to Av¢®. It is our belief,
however, derived both from the Schrédinger-model
considerations of Sec. III and the relativistic approach
of dispersion theory, that one lacks the information
required to infer that the discrepancy in Eq. (2.5) is at
present a serious challenge to quantum electrodynamics.
We know too little about proton dynamics.

III. NONRELATIVISTIC MODEL OF
PROTON STRUCTURE

We compute in this section the finite-size correction
to the hyperfine splitting using a nonrelativistic model
of proton structure. The purpose of this exercise is not
to calculate a quantitatively reliable number but rather
to exhibit in a concrete fashion the various physical
effects which influence the hfs of a system with struc-
ture. Insofar as possible the results are expressed in
terms of quantities which are independent of the
details of the model and which can be fitted to the ob-
served parameters of the physical proton. In particular
we want to gain some insight into the physical parame-
ters governing the size of the polarization correction to
the hyperfine splitting in hydrogen.

Our model proton is composed of a particle (called
hereafter a quarkette) of charge +e and mass u which
satisfies the Schrédinger equation and is bound to a
neutral, infinitely massive center of force by a non-
relativistic potential V(R). The infinite-mass center is
taken as the origin; R denotes the coordinate of the
“quarkette” and r the coordinate of the electron which
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is bound to the physical proton to form a hydrogen
atom (see Fig. 1). Depending on the choice of parity
for the quarkette there are two possible cases. A positive-
parity quarkette is taken to have spin % and a point
magnetic dipole moment. The proton is the lowest
S1/2T bound state of this quarkette. Initially we assume
the quarkette to be a point particle; later we consider
the possibility that the quarkette itself has finite ex-
tension. For negative parity it is most natural to con-
sider the quarkette spinless and take the spin 3 as a
degree of freedom of the mass center. The proton is
realized as a Pyt bound state and the potential V(R)
must have a spin-orbit as well as a central part in order
to remove the degeneracy between the Pyt ground
state and a possible P3/o* state. It must also have some
property (perhaps a hard core) to prevent an Sy
state from being the true ground state of the proton
system.

We treat the two cases of even and odd quarkette
parity in Subsecs. A and B, respectively. In Subsec. C
we discuss the influence of the proton parameters on
the numerical results from these models as well as their
relation to a three-massive-quark model of the proton
as analyzed recently in regard to the hfs by Fenster
and Nambu.®

A. Spinor Model

We consider in this part the positive-parity quarkette
model of the proton. The Hamiltonian for the full
system is

H=HpR)+H/(@®)+H. ¢ R)+Hx(xR), (3.1)

where Hp is the Hamiltonian of the quarkette including
the central potential ¥ (R) which binds it to the origin.

Hp=P*/2u+V(R), 3.2)

p is the quarkette mass, and P is the momentum con-
jugate to R. H/' is the free Dirac Hamiltonian for the
electron which must be treated relativistically as will
become clear later:

H,/ =« p+pm. 3.3)

In Eq. (3.3) e and B are the usual Dirac matrices; we
will work in the standard representation for them; i.e.,

0 o, 1 0
€2 ) )
. O 0 —1
H, contains the static electron-quarkette Coulomb
interaction
e? 1
H cl='—'— ) (3.4)
4 !r—Rl

and Hj, which is responsible for the hfs, describes the
instantaneous interaction of the electron’s moment with
the magnetic field generated by the proton?

Hy=(4e¢/4m)e-AQr). (3.5)
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A refinement of Eq. (3.5) to include retardation cor-
rections to the electromagnetic interaction leads to a
minor modification of our results and will be made
later on. The vector potential A(r) seen by the electron
is the sum of a moment and a convection-current part

€K
AW = ——Va———Xo+e——,
w== I—R| " |r—Rl

(3.6)

where ¢ is a Pauli matrix for the quarkette and «/u
=p,/M=2.79/M in order to fit the total observed
proton magnetic moment. As it stands Eq. (3.6) lacks
a “gauge term”

which should be added to the right-hand side so that
the transversality condition V.-A(r)=0 is satisfied.
However, this “gauge term” makes no contribution to
the hfs and we will drop it. Also, since V and R do not
commute, the convection-current term of Eq. (3.6)
should properly be symmetrized. Symmetrization does
not alter the hfs so we shall neglect it.2*

The Hamiltonian Eq. (3.1) is essentially a Breit
Hamiltonian with one of the particles treated as very
massive and then given nonrelativistic internal struc-
ture. It is necessary to keep in mind that when working
within the framework of the Breit theory the magnetic
term Hj can appear only once in a perturbation cal-
culation. We refer the reader to the discussion of this
point in the book of Bethe and Salpeter.?s

If one could exactly solve the Hamiltonian of Eq.
(3.1), less the magnetic term H y, exactly for the singlet
and triplet ground-state wave functions, ¥,*(t,R) and
¥,4(r,R), respectively, then the hyperfine splitting »
including proton-structure effects to all orders would be

v=p—v= (¥, l H | Wyt)— (‘I’HBIHMI T, (3.7)
In practice it is impossible to construct these exact
eigenstates in closed form because of the r-R correla-
tions and we must start an iteration solution with the
electron centered at the origin R=0 of the quarkette
structure. We rewrite Eq. (3.1) as

H=HP(R)+He(r)+Hc(r)R)+HM(r’R) ) (3‘8)
where .
&
H,(r)=ea p+p —4—;(;) (3.9)
and 2 1
e
Hc(r,R)=Z;<;— {r—Rl) , (3.10)

and treat Ho=Hp+H, exactly and the remainder
HA4-Hpy in perturbation theory. The energies and

% H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Academic Press Inc., New York, 1957).
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eigenfunctions of H, and Hp are labeled according to
H s (1) = Ensns (1), (3.11)
Hp®,(R)=W 424(R),

nye=01,2--
and

A=01.2,---, (3.12)

where ¥, (r) are four-component Dirac spinors for the
positive- and negative-energy Coulomb solutions and
the two-component quarkette wave functions ® can
be further decomposed into a product of radial, orbital,
and spin parts

3R)=(¢(R)/RY(R)X, 3.13)

where ¥ (R) is a spherical harmonic, X a two-component
spinor, and ¢@(R) the radial wave function with
normalization

/ dR| o(R)|?=1. (3.14)
0
The solutions of H, are thus simple products:
HO‘I’Ani(r;R) = EAnﬂ:\I,An:l:(r)R) )
4 (1,R) = BA(RWns (1), 3.15)

EAn;l;= WA"I'En:I; .

In particular the zeroth-order approximation to the
ground-state wave function for hydrogen is%

V= By(R)Yo(r),
1 ¢3(R)
4m)2 R

(3.16)

)

where ¢,(R) is the S-wave ground-state radial wave
function satisfying Eq. (3.14), and

1 .
r)xegb(O)e“’/“" (3.17)

aice'r/z

¢0(1‘)=(

with X, the two-component electron spinor,
¥(0)=(’m’/m)'",

and ao=1/am the Bohr radius; corrections of order a?
are dropped in Eq. (3.17).

As is well known, in the product spin space of the
electron and the proton the hfs reduces to the difference
of the triplet and singlet spin expectation value of an
operator ~o. 0.

(Oc-0)i— (0. 0):=4(0. 0):. (3.18)

Hereafter, we work with the particular triplet state
with both the electron and proton spins “up” along the
spin axis, and write, suppressing all spin labels and
terms,

v=p—v;=4v,.

(3.19)

26 J. D. Bjorken and S. D. Drell, Relativistic Quantum M echanics
(McGraw-Hill Book Company, Inc., New York, 1964).

In first-order perturbation theory the only contribution
to the hfs comes from the spin part of H:

”1=4<‘I’oIHM[\I’a>

u
=—4a / &R f & ¥, (t, R)—a-
2M

X(VR

e |¥,t,R). (3.
lr—-RlX )\If (r,R). (3.20)

The ground-state expectation value of the convection-
current term in Eq. (3.6) has no spin dependence and
does not contribute to » in this model. Substituting
Egs. (3.16) and (3.17) we integrate over the electron
coordinates with the aid of the first-order identity

« 27
/ % Yol (1) ———o(t) =—aa?(0){o.)
[r—R| 3

><R(1-Z 2) . (3.21)

This gives in Eq. (3.20)

1 3R
V1=Vr<0'e'[(VRXO')XR](I———>> , (3.22)
2 2 Q. 0
where

(. . -)oE/d3R<I>0”(R)- . "Po(R) (3.23)

denotes the proton ground-state expectation value and
we are instructed to evaluate the spin operators for a
triplet-parallel spin-up state according to Egs. (3.18)
and (3.19). In Eq. (3.22), '

8o up 8 m?
RS
3 Mm 3 M

(3.24)

is the point-proton (Fermi) hfs energy. Taking the
spherical average in the proton ground state gives

V1= VF(1—2<R>/(10) s (325)
where

(R)= / dR| oo(R)|R. (3.26)

We next consider second-order perturbation theory.
There are three possibilities: (1) second order in H.,
(2) second order in Hy, and (3) mixed second order in
H, and H . The first involves no spin coordinates and
so does not contribute to the hfs, and the second must
not be computed directly, as noted earlier, when work-
ing with the phenomenological Breit Hamiltonian.

In the fully relativistic discussion in Sec. IV we will
find that this second-order magnetic-dipole interaction
is properly included and is only a small correction to
the first-order result. The mixed second-order term
occurs with H, and H j -appearing in either order and
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gives?
Vo= — 8 Re Z
A5 200
<0:n—l HM [ A10><A:O l HC ! O:’”’—)

- } . (3.27)
4,n— Wa—Wo—E, +E,

<07 oiHM[A;n+><A7n+[H0[O’O>
Wa—WotEn—Eg

We discuss separately the terms in Eq. (3.27) which
involve only the ground state of the quarkette. Denot-
ing this contribution by »2(?) we have

aup d°R
@ = 4" Re{ > / I%(R)[z/
M nk 47 R?
n—+ =0

X|es(R)|? / d f d3r’¢o*(r)(oz-(Vrir_lRI Xo))

Yus¥s @)1 1
>< —_—
Eh;{:— Eo \r' l 1"'—

d*R’
47R’?

R,‘)%(ﬂ)} . (328)

In arriving at the form of Eq. (3.28) we have noted
that the quarkette ground-state expectation value of
«-V/|r—R| is spin-independent and so does not con-
tribute to the hfs and in view of the over-all real-part
instruction we have freely taken the complex conjugate
of the negative-energy sum.

We are interested in contributions to Eq. (3.28) that
are of no higher than the first power in the nuclear
radius and therefore can make a series of approxima-
tions that permit us to carry out the sum over the ex-
cited electron states . First we consider the contribu-
tion of positive-energy electron bound states to the sum
over states and take advantage of the spherical sym-
metry in R to write

1 1 1 1
/ dQR,<—— )=9(R’—f’)(——-———) / P
7 |[f—R| r R

Only bound S states of the electron contribute in
Eq. (3.28) and we find

1 1
/ w,:f<r'>o(R'~r>(——~)¢o<r’>d3r'
Y R

2w R
~———(0 3.29
3(wac®)V2mdI2 ©) ( )
which is of order R2 The first matrix element in Eq.
(3.28) can then be evaluated in the R— 0 limit and we
obtain a contribution to hfs from the bound state with
principal quantum number 7z that is approximately

a?u 1/n3 R?
ug,boundwm——M—”lw(on2(aao>

a?m(1—1/x2) ap®

E[(R/ o) 21 ]vF . (3.30)

n® (1—1/n?)

D. DRELL AND J. D.

SULLIVAN 154

The sum over all #31 converges and we see that the
bound states contribute only in order (R/a,)? and hence
may be dropped. The low-lying continuum states of
momentum pSm suffer the same fate and the re-
maining ones can be treated in plane-wave approxima-
tion up to higher order corrections in a:

Vi (1) = Y & (1) = e 7u ) (p);
@®(p),u®(p)=1. (3.31)

In this approximation we can also replace the ground-
state wave function by its value at r=0,

\00(7')'—”[/(0) ’

and the relevant matrix elements are tabulated:

1 1
asr’ pT(+) N —— 4
[ )

4r
=;;¢(0)(M(+)(P),M(0))[1— R, (3.32)

/d3r lpo*(r)a-(V,Ir_lR

4
N ?(0) (0X Vre®®) - (u(0),eP(p)). (3.33)

o J,®
I>< )¢ ®

The negative-energy matrix elements differ only in
the replacement
u®(p) > ) (p).

pzdpdﬂp

2/

nt (271')3

: +ﬁ +Ezz

Z u<+)(p)(u(+)(p)>f=q_£__7.n___;
spins ZEp

Ep=+(p+m?)',

—a p—Bm+E
¥ 1O (p) @ (p)) =——————
spins ZEp
Eo:m,

Using

b

and retaining only spin-flip terms
ipxﬂ'e
2 (@(0),eu*(p))(ut(p),u(0)) — £ T

spins »

we find

day?, &R &
Re / L eu(B)]? /
M 47 R? 47 R’2

dpp?dQ, f4m\?
X/ <;) (e X V&) (6:X V&)

8mrs

/7

| @s(R")|%*(0)

1/2(”) =

1
X (eip-R_eip~(R—R’))—~<

25, ) . (3.34)

E,—m E,+m
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After carrying out the angular integration over p and
taking the gradients in Eq. (3.34) we have

,,2(0) = —VF'—</
mwao

><{jo<pR>—fo(le-R'i)}> , (3.35)

where j, is the spherical Bessel function of zeroth order
and the notation

<. . '>AoE/d:’Rd3R’<I>of(R)<I>AT(R')
X{- - 124(R)2o(R") (3.36)

has been introduced. It is convenient to split s
into two finite parts:

po (0 = o (D)5, (0) ,

y2<a>—+w~;¢—0< / - JO(PR)}>
and

w):_y%(/ 21— ol R R'[)})

Using the identity

/: x—(l ]0(96))——

720 =4-vp(2(R)/a0)

(3.37)

where

(3.38)

(3.39)

(3.40)

we obtain
(3.41)

4a2u
wO=—23 [@#RaY| T

1
o o (S ) YR80
r_

which cancels the structure term of Eq. (3.25) and
5@ =—yp(2{|R—R'|)/a0), (3.42)

'Qas( )12

where

(IR—R'|)= /dqa
X/dsR’iz( )IZIR R|. (343)

Adding Egs. (3.41) and (3.42) to Eq. (3.25) gives the
structure correction to hfs due to both the distribution
of magnetization in the proton ground state and the
alteration of the electron wave function from a point
Coulomb solution as a result of the proton structure.
The total hfs contribution in this approximation is

V=V1+172(”)+;2(‘7)=VF{1'— (2/00)([ R— R'l >} . (344)

Equation (3.44) does not yet include any contribution
arising from polarization since all excited quarkette
states have been omitted in the second-order perturba-
tion treatment. For a rigid-sphere model of the proton—
i.e., a proton with the excited state spectrum far re-
moved from the ground state to which it is only
negligibly coupled by the perturbation—Eq. (3.44) is
the correct result for the structure effect on hfs.

A general model-independent derivation of this non-
relativistic result was first given in 1956 by Zemach.!?
Specific dependence on a model such as the one in-
troduced in this section is required in order to formulate
the polarizability calculation which is our primary con-
cern and to which we turn now. This involves the terms
with 40 in Eq. (3.27) corresponding to quarkette
excitation. Denoting this contribution by »2) we have

1
S
TR ER)

M 4= n+5£0

\I/Qn—f(l’,R) {d . (Vr

|r—R|

Xo) } W 40(t, R)¥ 40 (t/,R")———

Wa—W o+ Enw—E,g

‘I/On (I‘ R,)
lr—R’|

Since the 1/7 term of H, has no matrix elements to
excited quarkette states it has been dropped. Also
the convection current term in Egs. (3.5) and (3.6)
does not contribute to hfs to this order and can be
omitted since it contributes only a spin-independent
energy when inserted in Eq. (3.45). As we found in
Eq. (3.28) where there was no quarkette excitation the
important contributions to Eq. (3.45) come from
relativistic intermediate electron energies; in this case
Ep~(W 4—W¢o)>>m. For such energies we may again
replace the Dirac-Coulomb states Y.y by free-particle
wave functions Eq. (3.31) with a negligible error 0(x).

(3.45)

Wa—Wo—E.+Es

Furthermore, as is apparent in the form of Eq. (3.34)
when the energy denominators are replaced by

1 1 1

—

WotEp,Fm ?>m W 4— Wotp
(3.46)

the positive- and negative-energy sums in Eq. (3.45)
contribute equally to the order of accuracy to which we
are working. Thus we need only evaluate the positive-

energy sum explicitly and double the result to obtain
Vg(e).

Ep:Fm v2(g) »>va(e) WA__
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Proceeding in complete analogy with the calculation
of 5@ in Egs. (3.28) and (3.34) we reduce Eq. (3.45) to

32a%u (0
2y (@ = _ S2tun*0) > | d®Rd*R'®'(R)®4'(R")

M A0

5 (6XVR) (6:XVR)
X &o(R) 24 (R) f

Wa—Wotp
X @feir (R—R/)
4

mao A#O

X_.____.
(Wa—Wotp)

We may now recognize 729 of Eq. (3.39) as the ground-
state term 4=0 missing from the sum in Eq. (3.47)
and we can combine them:

(1—jo(p| R— R'1>}> (3.47)

(a)+,,2(e)=_,,F_ </ —_—
T alld P(WA* Wotp)

X{1=ipIR-R1}) . (349
A0

Before continuing we can gain some valuable insight
into the magnitude of the polarizability correction by
considering Eq. (3.48). This expression makes it clear
that intermediate electron momenta of

p~(1/R) 2100 MeV>>m

are of primary importance—i.e., the hfs is sensitive to
the amplitude of finding the electron near the proton
as is well known. The criterion determining when the
polarizability contribution will be important or not
can be seen from Eq. (3.48). The important region
of intermediate electron momenta extends up to
Ppmax~1/R. According to the energy denominator in
Eq. (3.48) the contributions from excited states such
that AW 4 X pmax~1/R may be of the same approximate
magnitude as the ground-state term whereas the con-
tributions from highly excited states with AW R>>1
are reduced.

The physical origin of this criterion is understood by
noting that AW 4R is a measure of the quarkette
velocity V, as it moves a distance R in time 1/AW 4.
Thus for

V ~AWR<1 (3.49)

the electron moving near the proton surface with the
velocity of light (¢c=1) can follow the proton and
recenter its wave function around the instantaneous
charge position. In this case the polarizability may be

calculated using the recentering theory of A. Bohr?.

and Low,* as developed for the deuteron which
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satisfies Eq. (3.49), and the correction is sizable. On the
other hand, for .
Vo~AWR>1, (3.50)

the electron cannot follow the charge which is moving
too rapidly. In this case the proton approaches the
hard-sphere limit, the polarizability correction becomes
unimportant, and proton radii or form factors as meas-
ured in the elastic electron-proton scattering completely
characterize the correction to the Fermi term in hfs
as computed originally by Iddings and Platzman??
and by Zemach.®

These remarks and observations take the following
mathematical form. Introducing the integral

»|R—R/’
1= jo(p| R—R'|)= / iz jiz)  (3.51)

into Eq. (3.48) and interchanging orders of integra-

tion one has
dzyl(z)
;2(9)+V2(9)=—-VF~——- </.
Qg alld 0o Wai—Wy

><1n<1+(WA—W:)IR—RII>>AO. (3.52)

The contribution from the proton ground state, i.e.,
A=0, is explicitly evaluated by observing

0

(WAElg}o)»O . az j1(2)(WA_WO)
(WA—WO)IR R’|
Xln( >
b4
— |R— R'|/ dz]—Q_M[R R (353)

which reduces to Eq. (3.44) as already evaluated. The
approximate measure of the excited-state contribution
is given by the factor

1
—-In(1+x), (3.54)
X
where X=AWXR is the product of a mean excitation
energy of the proton, AW, and a mean radial size B. In
the limit of a rigid proton AW — the polarizability
correction (1/X) In(1+4Xx) —0.

In the opposite limit of a very polarizable structure
such that for all 4, (W 4—W,) R— 0 we again make
the approximations of Eq. (3.53) and Eq. (3.52) becomes

(m(g)%(e))wéo__w_ or[oR T @R

X‘I>A(R)<I>AT(R’)<I>0(R’)lR—R’I= » (3.55)

27 C. Iddings and P. Platzman, Phys. Rev. 113, 192 (1959). See
also R. Faustov, Nucl. Phys. 75 669 (1966).
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when we make use of completeness of the intermediate-

state sum
> 24(R)241(R")=6*R—R’)

all4

to apply closure. What is going on in this case is that
the electron and proton wave functions have been
distorted—i.e., polarized—by their mutual Coulomb
attractions so that they follow each other’s instan-
taneous position. There is then no finite-size reduction
of the hfs in contrast to the rigid-proton case in which
the electron sees the ground-state average charge and
magnetization distributions. The recentering theory of
A. Bohr?® applies in the polarizable limit in which case
the Born-Oppenheimer approximation is valid for the
relevant portion of the electron wave function at the
proton (or nuclear) surface. The formal series generated
by the recentering transformation of Low?! is just an
expansion in powers of the parameter X in Eq. (3.54)
and is appropriate for X<1. The present treatment is
less elegant in this case but is a convergent perturba-
tion expansion in powers of the fine-structure constant
a and of R/ay~a(mR)<a and so can be applied to both
the polarizable and the rigid-sphere limit.?® Model-
dependent numerical results can also be obtained for an
intermediate case with X~1 as is appropriate for the
physical proton which has important resonant excita-
tions with AW~300 MeV to several BeV and R~0.7
F~300 MeV—L. We pursue the numerical discussions
in more detail after looking at the negative-parity
quarkette model which leads to a similar form for the
polarizability correction to the hfs.

For arbitrary polarizability the hfs is expressed by
the sum of Eq. (3.44) and Eq. (3.52) with the ground-
state term 4=0 omitted from the intermediate-state
sum (AW =W 4—W):

v=VF[1-—a—20(l R-FR| H‘i /: dz71(z)

mTao

(o D)
XEO(AWA\ z—}-AWAIR— R'| > (3.56)

Before leaving this spinor model we note one trivial
generalization that can be made but which alters no
conclusions. Instead of treating the quarkette as a point
particle we may endow it with an intrinsic structure of
its own. An extreme case would be to assign a large
intrinsic radius to the quarkette, describing its meson
cloud as extending out to the observed proton radius,
but to bind the center of the quarkette tightly to the
origin of the potential V(R) in Eq. (3.2). Such a model
would be a return to a rigid-sphere model of the proton
and would not remove the apparent hfs discrepancy un-
less the quarkette-structure cloud were itself polarizable.

28 We have recalculated the structure corrections to the
deuterium_hfs reproducing the Low results in the polarizable
limit EAW — 0 as is appropriate in this case.

Formally the effect of replacing a point by a dis-
tributed quarkette is summarized by generalizing Egs.
(3.4) and (3.6) to

= —— /d3Sp (S—R) (3.57)

lr—

e 1
A@n)= 2 / d%S pm(S—R)Vs——Xeo, (3.58)
2u |r—S§]

r—

where p. and p. are the charge and magnetic densities
of the quarkette, respectively. As in the point case the
structure correction in »; is cancelled by a part 7@ of
the second-order correction. The full structure correc-
tion is obtained by replacing Eq. (3.48) by

PRONINON. _,,F_ >

< / &S pu(S—R) / &S,
TQo all A

S'—R’ —_
X )/ p(W;a* Wotp)

X(1=lplS=S1}) . (.59
A0

In the limit of a quarkette of large radius but with a
very polarizable wave function we may neglect W 4—W,
in the denominator of Eq. (3.59) and use closure and
Eq. (3.40) to obtain

2
PRC NN O F—— / d3Sd3S'd*RA*R' B, (R)pm(S—R)
ao
X po(S'—R)&o(R)3*(R—R)| S|

2
=—w—(|8=§']), (3.60)
ao

where

(|S—S’])=/d3Sd3S’pm(S)pc(S’)[S-S’l . (3.61)
The total hfs is then

V=up(1—;2-;<|S—s'| >) (3.62)

which is the rigid-sphere model once more, only now it
is the quarkette itself that is the rigid sphere.

B. Orbital Model

In this part we consider the negative-parity quarkette
or orbital model of the proton. The full Hamiltonian is
written as in Eq. (3.8) of Subsec. A except that the
quarkette is now a spin-zero particle and has no intrinsic
magnetic dipole moment; i.e., k=0 in Eq. (3.6). Itis in
a P orbit about the infinite-mass center which is
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assigned spin 3 and the orbital and spin angular mo-
menta couple to form a spin-j proton ground state.
In this case the quarkette Hamiltonain Hp of Eq. (3.2)
must contain, in addition to the central potential, a
spin-orbit term in order to remove the degeneracy in
states of the same orbital but of different total angular
momenta. Therefore Eq. (3.2) is explicitly

HP(R) = P2/2ﬂ+ Vc(R)+ VSL(R)O" L ’ (3'63)

where Vsz(R) has the responsibility of raising the
Ps;e* proton level to its observed excitation of ~300
MeV above the ground state. The quarkette mass is
fixed by the requirement that this model reproduce the
observed proton magnetic moment. As in Subsec. A,
symmetrization and “gauge” terms may be dropped
from Eq. (3.6) when dealing with the hfs. The un-
perturbed energies and eigenfunctions are labeled in
the manner of Egs. (3.11) and (3.15) except that in
place of the simple product form of Eq. (3.13) we must
couple the quarkette orbital angular momentum and
the spin of the core. In particular the spin-up ground-
state wave function is

@(R) = (¢,(R)/(4m)/2R)(cosf X /2 sinf ev X—1/%)

=(¢»(R)/(4m)2R)e- RX+1/2 (3.64)
with
/ | o»(R)|?dR=1. (3.65)
0
In first-order perturbation theory we have
<PpT(R)
V1= 4<‘I’HIHM|‘I’0>=4C¥ d*Rd?r g{/of(r) —o-R
\V4rR?
aV (R
o R ¢p ) o (l‘)
lr—R|  /ZzRe
8ma?
= —?—;1/2(0)(;0%-
X(RXV(1—3R/ao))e. (3.66)

Recognizing that the proton magnetic moment is given
explicitly by

Bp=p0="35e(RX V) (3.67)

in this model we can write Eq. (3.66) in analogy with
Eq. (3.22)
(0'9' RX V(l—%R/ao))o
<0'e' RX V>0

EVF(I“%%) .

In terms of a specific spin-orbit potential Eq. (3.63)
and ground-state Egs. (3.64) and (3.65) we have

V=i[HR]=(—i/u)Va+VsreXR, (3.69)

V1=VF

(3.68)
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and the moment and radius are given by

e 2e [*
(——)up=— 2 R R | [1—uV R, (3.70)

2M 32ulo
(R)=/ dR| <pp(R)|2R(1—uVSLR2)/
/ dR| 0,(R)|*(1—uVsLR?). (3.71)

The factor [1—uVs R*] in Egs. (3.70) and (3.71)
represents the effective-mass correction due to the
spin-orbit interaction.

The second-order contribution to the hfs is again
divided into »o and »,(®, the terms arising from inter-
mediate states without and with excitation of the
quarkette, respectively. The former is

o =—8a2Re . d3RA3R'd3rd®’
ni:;O
o V '//n:h?(r,)
x{q>o*(R)¢o*(r) By (R na ()i
ll'—' RI n:};—Eo
1
X%f(R/)(__ )QO(R’);bo(t’)} . (3.72)
’ Ir/_ R|

By an argument identical to that in Subsec. A it can
be shown that the intermediate Coulomb electron
states may be replaced by plane waves—Eq. (3.31).
The new matrix element that is required in place of
Eq. (3.33) is

o

/ d*rd(r) :; | ¥, (r)

|r—

4
=;¢(0)(u(0),a' u®(p)e®®. (3.73)

Using Egs. (3.32) and (3.73) we find in complete
analogy with Eq. (3.34)

“ dp dQy
1}2(0)= —_— 64(12'#2(0) Re</ - —(O'eX V) .
e ?4 47
% VR[eip-R_eiP'(R—R')J> . (3.719)
00

We further decompose v2?) into two parts each of which
is finite:
9 (0) = o (0) -5, (0) ,

(3.75)

where

64a?
1‘,2(0)5 +.._3,_¢2(0)

><</: Z—f(oex V-R) {3j;fliR)— 1}>“ (3.76)
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and

64a? © dp
Pp0)= -————1,1/2(0)</ —a.XV-(R—-R)
3 o P
[peiR-KD

Y 1}>oo. (3.77)

Noting that {(o.X V-R’)eo=0 we see that Eq. (3.76)
and Eq. (3.77) add back to form Eq. (3.74). The first
term precisely cancels the first-order size correction to
hfs in Eq. (3.68) as we show with the help of the

identity
s dx 3_71(x)
/ —(1— )=37r/16. (3.78)
0o a? x
In Eq. (3.76) this gives
9@ = +-4ma®2(0){(o.- RX V)R), (3.79)

which is just the opposite of the finite-size correction

in Eq. (3.66). The second term may be rewritten using
Eq. (3.78) as

720 = —4waP?(0){(o.- (R—R)X V)| R—R’| )po. (3.80)

Equation (3.80) is the analog of Eq. (3.42) of Subsec.
A, namely, the full proton size correction for a hard-
sphere model of the proton, that is

V1+V2(”)=VF[1—%(1/00)
X <{Ue‘ (R— R')X V} ‘R_ R’l )00] . (3-81)

The excited-state contribution »,® may be manip-
ulated by now familiar techniques to the form

v2(®) = 4 64a24%(0)
© dp(e.X V) Vrjo(p| R—R’
‘s </ p(@X V) Vrjo(p] I)> . G82)
470 \J o (AW 4+ ) 40

This again is conveniently split into two parts after
carrying out the gradient operation:

V2(8) = 172(9)+,72(e) R

(3.83)
where

64a?
pp= +‘—3‘¢2(0)
0 dp
XY < [ (X V—R’)> (3.84)
470 \J o P(AWA+P) 40
and

64o? ©  dp
= =—90) T ([ ———oxV-®-R)
3 4#0 \Jo p(AW 4+p)

X {————Mﬁllli;ﬁ/ D_ 1} >Ao. (3.85)

The first term may be reduced by carrying out the dp

integration. At p — O there is an apparent but not a
real divergence as we see by putting a lower cutoff at
€, 0< e AW 4.

/°° dp 1 ! (AWA+ e)
= n
e p(AW4+p) AW 4 €

:V [ln(RAWA)—ln(Re)-I—O(

A

)l o

where R is an arbitrary length. The third term vanishes
as e— 0 and the second logarithm InRe gives no hfs
contribution as we show by the following argument
using closure and Eq. (3.69). Define

QBA=/d3R 35 (R)Q24(R). (3.87)
Then
> (0 VXR)40=2 G,
A0 AW 4 A0 AW 4

X { f d*R®,'(R) V@A(R)} [ f d*R’ <I>Af(R’)R’<I>o(R’)}

1
=32 —0o VoaXRao=—i ¥ 0 RoaXRao

A0 AW 4 A5£0

=0 RooX Roo=0. (3.88)

Taking now the limit e — 0 we find
4a? In(AW
2

4R)
172(6) — ¢2(0
a0 AW 4

(oo (VXR) )40

(3.89)
—8M _
=yp— — 2 In(AW4R)ie.- (Roa X Ru4o).

Ao thp A0

Finally returning to 7, we see that the 4=0 term
which is missing from the sum in Eq. (3.85) is precisely
the second-order ground-state term 7@ in Eq. (3.77);
combining yields

8 /M °  dp
o047 ) = —vF—<~> = < / —— XV
Tao\up/ 14 \J o p(AW 4+p)

X (R— R/)(%—EFB— 1)>M. (3.90)

In the very polarizable limit AW 4 can be neglected in
the denominator of Eq. (3.90)—i.e., the important
excited states in the sum are all of sufficiently low
energy that AW 4R<1. We can then use closure to
obtain

D@5y =0,
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Fic. 2. Ratio of polarizability to
ground-state contribution to the
hfs for the one quarkette excited
P state in the Gaussian model

[Eq. (3.98)].
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(R=0.8F)

The full proton-structure correction to the hfs is then

=147 OF55 554 5 () = p-75 ()

=VF(1—§M<%>A§O In(AW 4R){ic.- (ROAxRAO}).
(3.91)

This result is analogous to the recentering-theory result
of Low?* for the orbital part of the deuteron’s magnetic
moment. Even in this very polarizable limit there is a
reduction of the point-proton result due to the loga-
rithm term in Eq. (3.91). Physically this corresponds to
the fact that when the electron wave function is able
to closely follow the instantaneous position of the
quarkette it sees no current and hence no magnetic
field.

To handle the region of intermediate polarlzatlon
we introduce

371(p| R—R'])

(3.92)
p|R—R'|

PIR-R'| gy
—1==3[ S
0

b4

and obtain after interchanging orders of integration

24 /M
172(0)+;2(e) =VF—'(_‘> Z <
Ao \up/ 3114

AW 4|R—R|

0

dz
(@.XV)-R-R) | —

0 2

)>A0. (3.93)

The complete expression for the proton hfs is given by
the sum of Egs. (3.91) and (3.93) and can be written
using Egs. (3.81) and (3.92)

1
X ja(2) ln(l +
. AWA 2

3 24 /M
—"VF[I—_—<03 (R—R)X V|R—R|)oot+— ( )
2 T \fhp.
<ae-(R—R’|

4/0 A#o( AW
it ).} o

—7a(z) 2.
XVIn{
Z+AWAIR R,
This is analogous to Eq. (3.56) for the even-parity

3 4
quarkette model.

C. Numerical Results

To conclude this section we present some numerical
results based on the models developed in Subsecs. A
and B. What has been accomplished so far that is of
relevance for the polarizability contribution may be
summarized as follows:

In both the spinor and orbital models of the proton
magnetic structure, we measure the correction to the
rigid-sphere limit by a dimensionless parameter AWR,
i.e., the product of a mean electric excitation energy of
the proton multiplied by its radius. The correction
is appreciable for AWRZ 1 and negligible for AWR —e0.

Since the meson-production threshold gives a lower
limit to the excitation spectrum of 140 MeV and
the observed proton radius is R~0.7F~1/(300 MeV)
neither simple limit of a rigid-sphere proton or of a
very polarizable one with the electron recentered on
the instantaneous charge applies. We may expect then
that the actual numerical value of A»® in Eq. (2.5)
is dependent on details of the proton dynamics. In the
orbital model the form of Eq. (3.94) indicates no domi-
nant role being played by the M1 excitations to a Pss*
resonance which has been a popular state in relativistic
dispersion studies.
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The simplest approximation for estimating the
polarizability contributions from 430 states in Egs.
(3.52) or (3.94) would be to replace the logarithm by
some mean value over the excitation spectrum as is
done with the Bethe logarithm in evaluating the Lamb
shift. Unfortunately in both cases orthogonality and
closure may be used very simply to show that in this
approximation the contributions vanish so that this
approach is inadequate. This shows again that the
results depend on details of the excited-state spectrum
and on no easily estimated simple average parameter
alone.

For purposes of an estimate we return to Eq. (3.56)
of Subsec. A and compute the contribution to hfs from
an excited P-state orbital triplet with the radial dis-
tribution given by the eigensolutions for a spherical
harmonic-oscillator well. The wave functions are taken
as

®o(R) = (20/m)?/ e 7",

®,(R) = (2\/7)%42(\) /2R M2 |
where the mean-square radius is given in terms of X by
(RH=3/4\.

The ground-state contribution in Eq. (3.56) is [see
Eq. (3.42)]

(3.95)

2 20\ 3
Po@) = — ,,F_(__> /d3Rd3R’e“2" (E2+R | R—R’ |

Qo

<R2>1/2.

e (3.96)

=—pp—

The polarizability contribution in Eq. (3.56) due to the
P-state triplet can be expressed in a form which permits
the angular and one of the radial integrals over the wave
functions to be carried out with the aid of the following
identity when 45£0:

i 1
IA=</ dz j1(zg)——
0 Wa—W,
(W a—
XlIn| 1+

di et

</ du [
0 WA—Wn

X/ dz ]l(z)e”ﬂul(WA"WO)IR_R'I>
0

0 1472 1
= / d‘r[% In: —147 tan‘1<—>:|
0 72 T

X{|R—=R/ | RRIFa=W0)1) 4o

.

A0

(3.97)
Inserting into Eq. (3.56) and reducing further we have

for the contribution from state 40

64(R2)2 [ 1472 | 1
—— / d'r[% In —147 tan‘l(—)]
7r\/ (371')(10 0 T2 T

x/ psdp(%_p2)e~p2—pr[(WA~W0)/MJ_ (3.98)
0

V2A=+—'U

In the limit W4a—W,— 0

2
hm VzA = +VF—
(WA—Wo)->0 o (31|.)1/2

(RHU2 (3.99)

which cancels one-half of the finite-size reduction in
Eq. (3.96). In the limit AW 4(R2)1/2— 0 for all 4, the
sum Y_qn 4 vo? precisely cancels the finite-size reduc-
tion, Eq. (3.96), as was shown earlier in Eq. (3.55).

For large values of (W 4—W ){R2)!/2 the polarizability
contribution decreases roughly as

/LW a—Wo)(R?)'*].

Fixing (R*)!/22:0.8 F, we have numerically integrated
Eq. (3.98) for a wide range of excitation energies and
the ratio ve4/v2(@ is plotted in Fig. 2 as a function of
(W 4—W).22 For excitations up to 1 BeV the correction

29 There is a simple modification of Eq. (3.56) and the develop-
ment leading to it if we include retardation corrections in the
interaction Hamiltonian as remarked below Eq. (3.5). This
refinement was suggested by Yennie. Instead of using a static
magnetic potential in Eq. (3.5) we can compute the interaction
between the electron and proton by coupling them directly to the
radiation field. The transverse photon being exchanged between
electron and proton has the same vertices as given by the numera-
tor factors in Eq. (3.5) but the interaction now has an additional
energy denominator from the photon propagator itself. In the
light of our discussions below Egs. (3.45) and (3.46) we can com-
pute the interaction very simply since the electron can be treated
relativistically in Born approximation. According to Eq. (3.5) the
photon exchanges momentum p between the electron and proton
with an amplitude 1/|p|? the Fourier transform of 1/|r—R]|,
and in Eq. (3.45) the combination

(#)rrwm()
) p+Wa—Wo\ p?

represents the two static interactions with the intermediate-energy
denominator sandwiched in between. If we now allow the trans-
verse photon to propagate between the electron and proton there
are six time orderings of its vertices—i.e., the electron or proton
can emit or absorb the photon before or after the instantaneous
Coulomb interaction described by Eq. (3.4). The combination of
energy denominators gives, in place of the above,

11 1 , 1 N 1 ]
20 PN 2p(p+Wa—Wo) ' (p+-Wa—We)2p ' (1>+WA—WO)2

1 1 2 ﬁ+2 (WA WO)
112 P+Wa—W, P2 +Wa—
The additional factor
2p+Wa—
2p+2(W 4—Wo)

is unity in the polarizable proton limit and falls to a minimum of
3in tlhe rigid-sphere hmlt In Eq. (3.56) it changes the logarithm
as follows:

ln(z-l—AWAIR—R’I)

Faraew) ]

N %[m(z—l-AWAJ R—R’| +
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is still significant. At an excitation energy of W,4—W,
=400 MeV, for example, this one level contributes %
as much to the polarizability correction as it does in
the completely polarizable limit (W 4—W,) R— 0 and
cancels ¥ of the finite-size correction to the hfs.3°
Taking into account the fact that 74 in Eq. (3.97) is
positive definite for all states 470 it becomes clear
that the contributions of several excited states in this
model may cancel an appreciable fraction of the finite-
size reduction in Eq. (3.96) of the hfs.

No one state 4 need dominate. Indeed if the density
of highly excited states increases rapidly they will play
a dominant role. For example if we apply Eq. (3.97) to
a model of the proton in which the spinor quarkette
is located radially at a distance R from the force center
we have

(|R=R’| exp[— |R—R/|(W4—Wo)r ) ao— LR

1
% / dua(2— 20) V2 exp[— ROW 4= Wo)r(2— 24)112]

4
=%R/ dz 2% exp[—sTR(W 4— W) ]
0

1
«————— for Wsa—w. (3.100)
(Wa—Wo)?
Thus if the density of levels grows more rapidly than
(W4—W,) the effect of the highly excited levels will
be important.

Evidently the details of the dynamics of the proton
cannot be avoided completely in a quantitative study
of the hfs. A similar conclusion follows from the
massive three-quark model of Fenster and Nambu.?
They have invoked the recentering idea of A. Bohr?
to partially cancel the ground-state average form-
factor effect as expressed in Eq. (3.44) or Eq. (3.81).
Their theory is based on a strict analogy for the proton,
constructed of massive slow-moving quarks, with a
nucleus formed of nucleons. However, there is a
fundamental difficulty in taking this analogy literally as
proposed by Fenster and Nambu. This arises from the
fact that the scale of excitation energies AW for the
proton is much higher than that for a nucleus. In
the deuteron or other weakly bound nuclear systems
(with anomalous thresholds) the relevant parameter is
AWR< 1 and the recentering idea of Bohr is applicable.
This is not true for a proton for which the minimum AW
is the pion-production threshold, =140 MeV, so that
AWRZ 1. The Fenster and Nambu prediction is a
partial cancellation of the finite-size reduction in the
hfs reduction based on the recentering assumption
which requires RAW < 1. Whether the proton radius R
is attributed to the bound-state wave function of a

30 If the retardation effects of Ref. (29) are included, the numeri-
cal values plotted in Fig. 2 are reduced by approximately 109,
for W 4—W =400 MeV and by close to 209, for W 4—W,~1 BeV.
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quarkette or to the intrinsic radius of the quarkette
itself, the simple recentering assumption cannot be
applied to the proton, as we saw below Eq. (3.55) and
in Eq. (3.62).

The numbers we obtained above may have no
quantitative significance whatsoever. However, they
do carry a warning that simplified approximate inputs
in a relativistic dispersion analysis must also be viewed
with great caution. At the same time these numbers
also provide a strong motivation to perform a dispersion-
theoretic calculation of the polarizability beyond the
ones that have been given and which so far have con-
centrated on the 33 resonance alone. We turn to the
relativistic theory now.

IV. RELATIVISTIC CALCULATION

In this section we take up the relativistic calculation
of the proton structure correction to the hfs. The
general formulation has already been given by Iddings®
along with the calculation of the proton ground-state
terms—the analogs of »; and »2 @ of the previous section.
As in Sec. IIT we focus our attention on the polar-
izability corrections. Because we work with different
invariant amplitudes and make contact with the low-
energy theorem in a different manner than Ref. 9, we
briefly resketch the development of Iddings.

The contribution to hfs arising from proton recoil
was first calculated by Newcomb and Salpeter!® and
by Arnowitt.!* Their analysis required a study of the
bound-state equation for the electron-proton system.
If the proton is treated as a point Dirac particle of
finite mass but with zero anomalous moment, the hfs
contribution is

m a m(3 M
—-a~—X=————{-In<—>J=—-10ppm.
M 14+« M 7 m

When the proton is also assigned a point Pauli moment
of k=1.79 nuclear magnetons the additional contribu-
tion to hfs is

m a ml K2 M
—a—X= —————{3(1———) 1n<——)
M 1+« M m 4 m

3 A
+K2£1|:— s+3 ln(ﬂ—[-)]] =~—4 ppm.

A logarithmic cutoff A~2M has been introduced as
needed into the square of the Pauli moment interaction
and shows a sensitivity of the numerical results to
virtual photons of high mass being exchanged between
the atomic electron and the proton. This divergence is
removed in a natural way when the structure of the
proton is taken into account as first studied by Iddings
and Platzman? and by Zemach.'® In particular they
show that the effect of structure analogous to the con-
tributions of (y;—vr) and of »3¢@ in the Schrédinger
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models of the preceding section can be summarized in
terms of the electromagnetic form factors of the proton
in the interaction current with the electron. In the
calculation of these structure corrections to the hfs one
can ignore all complications of the bound-state problem
and treat the electron-proton interaction in second-order
Born approximation. We saw this to be true in the
models of the preceding section where the intermediate
electron was described by free-particle wave functions
and energy eigenvalues. The bound state appears only
in the nonrelativistic factor ¥2(0) for the density of the
atomic electrons at the origin in Egs. (3.34) and (3.74).

This formulation in the relativistic calculation was
presented by Iddings and Platzman? who showed that
the complete proton-structure contribution to the hfs
in hydrogen can be obtained from the two-photon
exchange amplitude as illustrated in Fig. 3. The “blob”
in Fig. 3 is the forward spin-flip Compton scattering
amplitude, hereafter denoted by C,,, for virtual photons
from protons at rest. Iddings® exploited this result,
following the method developed by Cottingham!? for
the neutron-proton mass difference, and rotated the
contour of the dk, integration in Fig. 3 from the real
to the imaginary ko axis so that the virtual photon
masses that are involved are always spacelike (k2<0).
In this regime of photon masses the Compton amplitude
C,» may be rigorously proved to be analytic in the
entire photon-energy plane except for the right- and
left-hand cuts along the real axis required by unitarity
and crossing. Anomalous thresholds are absent. The
pole terms in the virtual Compton amplitude contain
electromagnetic form factors F1(k2) and F.(k?), where
k2< 0 is the (mass)? of the virtual photon. The structure
correction corresponding to »;—w»r and »,@ in the
preceding section comes from the difference between
the pole terms calculated with observed values of Fi
and F, and with Fi=F,=1 as for a point proton. This
difference has been studied by Iddings in detail. The
nonpole terms in C,, contribute to the polarizability
correction on which we focus our primary attention.

In place of the invariant amplitudes used by Iddings
we decompose C,, according to

Cﬂv(kz,w) = Tuv(l)Hl(kzyw)+ Tm(2)H2(k2)w) ’ (41)
where
Tw® =1/ MH{Cvuv, 1o b=y klps
- [’Ynk:lpﬂ} ) (4‘2)
Tl.w(z) = (P : k/Ms) { I:’Y#)‘yl']kg_ [’Y#ak]k”
—[vkJka}, (43)

v is the polarization index for the incident photon line,
u is the polarization index for the outgoing photon line,
 is the proton four-momentum [p=(M,0,0,0)], & is
the photon four-momentum, w=p-%k/M, and M is the
proton mass. This choice of amplitudes is particularly

p=(m,0) p=(m,0)

e

P=(M,0)

c
P=(M,0) (i

Fic. 3. Two-photon-exchange amplitude for the proton-structure
contribution to the hfs in hydrogen. C,, is the forward spin-flip
Compton amplitude for virtual photons of momentum Z,.

convenient?®; in the limit of physical Compton scat-
tering (k2=0) the amplitude H, is completely decoupled
and the remaining amplitude H; satisfies a sum rule as
we shall see below.

With the help of Eq. (2.2) of Ref. 9 the two-photon
exchange contribution to the hfs may be written
(after rotation of the k¢ contour of the Feynman loop
integration)
vey 2 1 ‘K
ve a0 M(+m) Kb

X{(2K*+K ) H:(—K%iK,)
—3K*KHy(—K%iKo)}, (44)

where vy is the point-proton splitting Eq. (3.24),
k=1.79 is the proton anomalous moment, and a, is
the Bohr radius (¢o=1/am).In Eq. (4.4) the integration
is over a four-dimensional Euclidean space K with
K():’L.ko, K2=—k2, and

/ dK=4x / K%K / dy sin?y,
1] 0

K=K cosy,

as in Eq. (2.14) of Ref. 9.

Writing dispersion relations in w for H; and H» and
explicitly displaying the contribution of the inter-
mediate one-proton pole, one has

E2AM2F (k) [ F1(k2)+«Fa(k%)]

(4.5)

Hl(kz,w) =
(k2)2——4M2(4)2
1 w2
+- / ImH,(k2w'), (4.6)
m™Jew? w’2—w2
kM2F (k%) [ F1(k%)+«F2(k?)]
Hg(kZ,CO) =
(B2)2—AM %0?
1 r dw'?
+- ImH(B2), (4.7)

T Jewh w?—w
3 J, D. Bjorken, Phys. Rev. 148, 1467 (1966). The relation of
H, and H; to the amplitudes used by Iddings (Ref. 9) is as follows:

H=3D+wG),
Hz‘—‘—G/Zw.
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where Fy(k?), and F4(k?) are the proton Dirac and Pauli
electromagnetic form factors, respectively, and the cut
starts at the pion-nucleon threshold,

C(k?) = (1/4M*) 2Mp+p*— k)% 4.8)

Throughout this section g will denote the pion mass.
Iddings® has further shown through unitarity that
ImH; and ImH, in the spacelike region k2<0 may be
determined experimentally from the cross section of
inelastic scattering of polarized electrons from polarized
protons. It will be a long time, however, before such
data exist.

In writing Eqgs. (4.6) and (4.7) we have made the
assumption that there need be no subtractions in o
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for all %2<0. We defer further remarks about this
point until the discussion of Sec. V. We must subtract
from Eqs. (4.4) to (4.7) the point-proton result which
is obtained by setting F1=Fy=1, ImH,=0, and*? by the
low-energy theorem of Low?® and of Gell-Mann and
Goldberger,3*

1 / ii—l_{_{ ) 2K2(2K2+K02)[F1(F1+KF2)— (1+K)]+6K2K02K[F2(F1+KF2)*— (1+K)_—_|

Si=—
aM(1+x)m3J) K8

T

Sy=—
acM (14-k)7

1 * dK 4 = do'?
| =omena-x-= [

’
C(—K2) W 2

2 1 r* do'
——=~/ — ImH;(0,0'). 4.9)
4: ™ J C0) w’2
We write this difference as
Vs/VF=Sl+SZ+SS, (410)
where
(KY/M*+4K
(2K2+K )k F22—1
- °2 L ]}, (4.11)

XImHl(—K2,w'){30—202-—2(2—0)[0(0+1)]1/2}}, (4.12)

—12

Sy=————
doM(l-i—K)ﬂ'z 0

and
=w'?/K?2.

Note that a nonpole term proportional to x* has been
added in .Sy and then subtracted out in S2. (As a point of
reference it might be remarked that S; happens to
coincide with the Born approximation taken with
form factors at the verticies.) The term .Sy has already
been evaluated by Iddings® and, when it is added to
the recoil corrections Sg, one has

Se+S1=—(34.542) ppm. (4.14)
Separately Sz and S; have logarithmic divergences in
the terms proportional to «? but when they are added
these divergences cancel provided®® Fy(k?) —0 as
(—k?) >0, so that the integral S (dK/K)F2*(—K?)
converges for K2—o. The detailed numerical calcu-
lations of Iddings® show that once the form factors
F; and F, are fitted to their observed rms radii [and
provided Fo— 0 as (—k?) — oo |, there is suprisingly
little freedom (<=2 ppm) in the value of .S;.

( 32 S). D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908
1966).

33 F. Low, Phys. Rev. 96, 1428 (1954).

( 3‘; 1\)4 Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1433
1954).

3 S. D. Drell, A. C. Finn, and A. C. Hearn, Phys. Rev. 136,
B1439 (1964). 1t is required that F,(%%) — 0 as k2 — + o if there
is to be no subtraction in the photon propagator. However F2(k?)
might have a different behavior for (—#2?) — 4.

0 dK 0
/ — / o' TmHy(— K2,0') {14-20—2[6(6+1) ]2},
K C(—K?2)

(4.13)

Most of the contribution to S; comes from the first
factor in the pole term which is linear in the total mo-
ment. The structure correction from this factor con-
tributes —26.6 ppm using measured form factors
whereas the pole term proportional to «(14«) subtracts
another 6.2 ppm. Finally the nonpole term is respon-
sible for only -+1.3 ppm.

For a proton without excitations we return to the
rigid-sphere proton limit of the models in Sec. III.
Furthermore we can reduce the result for », to the form
found by Zemach!? for structure corrections in the non-
relativistic limit by taking the M — o limit in which
case only Eq. (4.11) survives. The last or nonpole term
in Eq. (4.11) when added to the recoil terms Sg con-
verges for K — as remarked above. In the M —x
limit it vanishes as a result of the 1/M factor out in
front of the integral. We may do the K, integral as a
contour integral in the complex K, plane. Writing

K = (K Oik) )
k= Ikl ’
d*K =d%kdK,,
we see that poles occur at the roots of

Ko’+k2=+£2iMK,
or

ik?
Ko T1+0(1/31%] (4.15)
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T T
b
600
Fic. 4. Photopion-production
cross section in H according to the 500}
model of Gourdin-Salin (Ref. 37);
taken from (Ref. 31). op (04) is 400
the cross section for absorbing a
circularly polarized photon with its
spin parallel (antiparallel) to the 3001~
proton spin. 00—
100} -
1) 1
(¢} 100 \/

and
Ko==2+2iM[14+0(1/M?].

In the limit M — o it is only the residue at

Ko=ik2/2M

(4.16)

that survives as we close the contour in the upper half
plane and Eq. (4.11) reduces to

) ;[Fl(—kZ)GM(—kz)— 1], (417)

Sy —s —
M->0 waoJ o

where
Fi(—k2)+kFa(—F2)

14«

is the magnetic form factor of the proton. Introducing
the spherical charge and magnetic densities p,(R) and
pu(R), respectively,

Gu(—k?)=

(4.18)

Fl(_k2)=fd3R ¢®Ro,(R),

(4.19)
Gu—t)= [ RS putR),
and using the identity [see Eq. (3.40)]
1_ eik- (R—R’)
/d3k(——————)=1r?| R—R’| (4.20)
k4
we obtain .
S1=—(2/a){|R—R'|)+00/M), (421)

where

(|R—R|)= / @*RER'p(R)pu(R)[R—R'| . (4.22)

This is just the form found in Eq. (3.44).
So far the only attempts at calculations beyond S;
have been estimates®?"?? of the contribution of the

| | |
600 700 800

1
300

400 500 900

l/Iub

N*(1238) intermediate state to the absorptive ampli-
tude in the dispersion integrals. In view of the dominant
role of the 33 resonance in low-energy photopion proc-
esses and its prominent contribution to Compton
scattering, which it enhances by roughly one order of
magnitude above the pole term at photon energy
~300 MeV, it might be expected to contribute sig-
nificantly to the polarizability correction to hfs. How-
ever, it was found to play a totally negligible role con-
tributing £1 ppm. This result may be understood in
terms of the discussions that have been given of the
smallness of the two-photon exchange contributions to
electron-proton scattering at high energies.?® The
arguments given there for the smallness of a narrow
resonance’s contribution to the dispersive amplitude
may be rephrased in language appropriate to the Cot-
tingham formulation. After rotating the %o contour to
the imaginary axis as in Eq. (4.4), the hfs contribution
is expressed as an integral over the Compton scattering
of a virtual spacelike photon with an energy denomi-
nator that never becomes small even in the 33 resonance
region. No one energy region is dominant because the
energy factors in Egs. (4.12) and (4.13) are slowly
varying and it is the total area under the photopion-
production curve that contributes to H; and H,, or
equivalently to S and .S3. This area exceeds that under
any one resonance as shown in Fig. 4.

Another point emphasized by the models discussed
in Sec. III is that proton states of odd parity, in
contrast with even-parity ones excited by M1 transi-
tions, play a prominent role in the polarizability con-
tribution. We therefore turn to the continuum and the
odd-parity resonant excited states of the proton for
further corrections to the hfs.

We first discuss the term S, about which we may hope
to get some guide from physical Compton scattering.
With the help of the sum rule Eq. (4.9) we rewrite S»

36 See S. D. Drell and F. Zachariasen, Electromagnetic Structure
of Nucleons (Oxford University Press, London, 1961), Chap. 2.
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Y, K2-k? F16. 5. Kinematics

= 7 +(0) 3 1
a_-7. , , for amplitude of sin-
Pl e gle-pion  photopro-
PROTON ——-ﬁ PROTON duction by a virtual
P (NEUTRON)  Photon.

in the convenient ratio form
Ok? *® dK

Sim——— [ Zpp—x)
aM (14072 )e K

X [ 1 Jery*(de'?/w'?) ImHy(— K%w')B(w'?/K?)
Fo(—K?) Jo0)*(dw'?/w'?) ImH1(0,0”)
4.23
where ( *

4
6(0)=5{2(2—0)[0(0+1)]1/2—30+202}. (4.24)

Note that 8 satisfies

0<pB(6)<1, for 0<0 (4.252)

51
Bl —>1———---, as f—x (4.25b)
18 6

4
B8(6) —)5(4\/0—04-- --), as 6—0. (4.25¢)

Using Eq. (4.25b) it is immediately clear that in the
limit K — 0 the two terms of Eq. (4.23a) cancel and
therefore the integrand is well behaved at K=0.

To proceed further we must resort to theoretical
models and assumptions. If one assumes that the
dependence of ImH; on the photon mass is a simple
scale factor, namely,

ImHy(—K2%w)=g(K2) ImH:(00),  (4.26)
then it may be seen from Eq. (4.25a) and Eq. (4.8)
according to which C(—K?)>C(0) that S;>0 pro-
vided g(K?) <[F:(—K?)7? and provided ImH;(0,w) is
always of the same sign for p<w< . As shown in
Refs. 37 and 32 ImH;(0,w) is proportional to [op(w)
—o4(w)], where op(w)[o4(w)] is the total cross section
for the absorption of a circularly polarized photon of
laboratory energy w by a proton with its spin parallel
(antiparallel) to the photon spin. Using the same fit to
(6p—04) as in Fig. 4, we have numerically integrated
Eq. (4.23a) for the cases

gKH)=[Fy(—K)7], (4.23b)
g(K?)=1,0<K?=1.5 BeV?

g(K®)=0, K2>1.5BeV2, (4.23c)
g&y)=1, all K. (4.23d)

3 M. Gell-Mann, M. L. Golbderger, and W. Thirring, Phys.
Rev. 95, 1621 (1954).
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We approximate Fo(—K?) by the form
Fo(—K?%)=1/[14(K/0.96M)*]2.

The results are shown in Table I. Recall that this fit
uses low-energy S-wave parameters, puts in the
N*(1238) with predominately magnetic dipole excita-
tion as well as the second resonance,® and takes (cp—0.4)
equal to zero beyond 0.9 BeV.

As a crude test of the effect of assuming that the sum
rule Eq. (4.9) is only apparently saturated by 0.9
BeV—that the integrand in fact is large and oscillating
beyond 0.9 BeV—we show also the effect of adding a
tail to the above fit:

L(op—a4)=—50 ub, 0.9 BeV<w<1.8 BeV

which improves the fit to the sum rule. The resulting
values for .S, including this tail are shown also in Table
L. The sign and magnitude of S» are dependent on the
details of the cutoff as well as on the behavior of
(¢cp—o4) which may take positive as well as negative
values at high energies. However, in all cases the con-
tributions to S» amount to no more than 1-2 ppm
and thus have little impact on the hfs problem.

We next turn to S; Because physical Compton
scattering tells nothing about H; and there is no
sum rule to help normalize the calculation, the magni-
tude and sign expected for .S is even more uncertain
than for Si. Although there are some data on elec-
tropion production, the polarized inelastic electron-
proton data that are actually required do not at this
time exist. We are interested in finding if any terms in
ImH, are candidates for contributing sizably to S3
in Eq. (4.13) or whether a sensitivity of the resulting
value for S; to unknown features of the electropion
amplitude can be identified.

In the beginning, at least, we are making only a rough
search for polarization contributions, so we may use
the static model and thereby simplify the kinematics
and spin considerations. This approximation will
certainly suffice for order-of-magnitude calculations.
The small nucleon isoscalar anomalous moment will
also be neglected; thus k=kp= —«kn.

Our method for separating ImH> out of the elec-
tropion production amplitude is the following. We

TasiE I. Model calculations of S; in parts per million.

(a) (b) (c)
g(K?) g(K?) g(K2)
=[1+4+(K/0.96M)2]4 =6(1.5 BeV2—K?) =1
Sum-rule 0.5 —1.5 —-1.5
fit to 3 (op —04)
gives k =2.1
Sum-rule fit 0.6 —0.7 —0.7
with tail to
3(op—ca)

givesk=1.8

38 M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (1963);
Ph. Salin, sbid. 28, 1294 (1963).
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contract Eq. (4.4) with polarization vectors e and e’ for
the incoming and outgoing (virtual) photons, re-
spectively, and, in the gauge ey’=¢y=0, this gives

¢/ Ciigz=e'- C-e= (2i/ M) [ {k-e'- (kXe)
—k-eo- (kXe’)(Hl—Msz)}
—Muwo- (e’Xe)(H1—K2Hy)], (4.27)

where —K?=F£,k*<0.

Consider first of all the nucleon—one-pion inter-
mediate state with momenta as defined in Fig. 5. The
photoproduction amplitude A-e that we work with is
normalized according to

do _afyg
(D), "2z el
a production M% spin and

charge states

(4.28)

where
g=lal b= k|, and f=(u2/4M?)(gswn?/An)=0.08

is the pseudovector pion-nucleon coupling constant.
Unitarity in the static limit gives

aQ
Im(e"c'e)=—‘f2<£) _f
u? 47

X X (A-e)fA-e).
spin and

charge states

(4.29)

If we take for A the S-wave threshold (electric-
dipole and longitudinal dipole) production of pions,
we have

(A-e),,+,,=\/ZXT(u-e—

a-kk-e)

X,
K24 202 (4.30)

(A e)r°p=07

where X', X are nucleon two-component spinors.
Using Egs. (4.29) and (4.30), we find

f*M*q

ImH, ) (—K2%w) = — g(KH)——— ———— |
? § o (K202

(4.31)

As a second model we take for 4 the full nonrela-
tivistic Born approximation

o (k—q)(2q—k)-e

(A-e),,+n=\/2_XT(o--e+

K2+420—2q-k
i(14-2¢)
+—q- (kX e))X, (4.32)
2Mw
(1+42«)
(A-€)p0p=— Xt{w?e-e+o-[qX(kXe)]}X.
2Mw

We find from Egs. (4.27) and (4.29)

it (- K= | —d0et 20 (2) €
’ ©m8 P YARYY A

ww

+(1;:) [%(Qo— Q»-S(Z)(Qx—oa)ﬂ . (433)

where Q;=Q((K2+2w?)/2kq) are the Legendre func-
tions of the second kind. The 7% amplitude of Eq.
(4.32) makes only a negligible 1/M correction to the
smallest terms of Eq. (4.33).
If we take for 4 the N*(1238) amplitude with reso-
nant magnetic dipole excitation only,
V2iu?(142k)etdss
12Mg3f?
X{2q- (kX e)—io-(@X (kX e)}X,
(A-€)r0p=V2(A"€)r+n,

(A e)w+n= sin633 Xt

(4.34)

we find

w2(142k)? sin%d3;
ImH,®(—K2w)=g(K})——

(4.35)
48wq?f?
with 833 the pion-nucleon phase shift in the 3-3 channel.
Finally taking for 4 the Fubini-Nambu-Wataghin
(FN'W)?# approximation to the full static-model photo-
production amplitude,

o-(k—q)(2q—k)-e
(A'e)r*n=\/§X.r c-et (
K2+ 202—2k-q

iu2(142k) 3 sindss
12M g3 f?
X[2q- (kX e)—ia- (@X (kX e))]} X, (4.36)
tu2(142k)eids sin633X)r
6M2g3f2
X[2q- (kX e)—io-(@X (kX €)X,

(A'e)r“p:

we find

2M? 3
ImH "7 (— K%w)=g(K?) {f [—-%Qo'l“(g)Ql
wiok 2\k

(q)“’Q :] 1 12(142x)? sin%333
- 2 [

E 48ug? f2

} . (4.37)

In Egs. (4.31), (4.33), (4.35), and (4.37) an ad hoc
form factor g(K?) has been added. Table II gives the
results for S; for each amplitude taken with three

a ;”sg) Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111, 329
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Y a2 27 Fic. 6. Kinematics
Ky -1 for amplitude of vir-
e tual  photoproduc-
PROTON . tion of the N*(1238)
P N (1238) plus a pion_
choices of g(K?):
g(K)=[F(—K)] (4.382)
=1, 0<K2<1.5 BeV?
=0, K2>1.5 BeV? (4.38b)
=1, all K2, (4.38¢)

We also make a rough estimate of the N*(1238)-r
intermediate state.®® The momenta are labeled in Fig.
6. The amplitude is

- (k—9);i(29—k)-e
(B.e),,w.o:Xjf(eJ%( )i ) )X,
K*420%*—2k-q
(B €)g-rer+=(B-€)ge o,
(B'e)rr°N'+=O,

(4.39)

where X is the two-component polarization spinor for
the NV* satisfying

2 XiXi'=(8;i—3%0j0s).

spins

(4.40)
We find
1 f,2m
ImHy(— K2 w)=g(K?)-
3

ulwk

oo o] o

where fi is the N=N* coupling constant fi?=0.39.
Numerical results are shown at the bottom of Table II.

V. CONCLUSIONS

There can be but one conclusion from the varied
numbers in these tables: We do not know enough about
the amplitude of virtual photon absorption by a proton
to calculate the polarizability correction to hfs with
any confidence using dispersion theory. Recall from
Egs. (4.12) and (4.13) that the input for the structure
contribution »g/vr is virtual photon absorption by a
proton integrated over all energies and spacelike masses
of photons. The weighting function in the integrals is
only slowly convergent at high energies and masses.
This is the analog of our earlier observation in the
Schrodinger models that high-momentum components
of the intermediate electron state corresponding to the
electron at the proton surface are important and that
numerous excited proton states play an important role
in hfs.

With the aid of the sum rule Eq. (4.9) based on the
low-energy theorem and the no-subtraction assumption
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in the dispersion relation for H; the S contribution can
be tied down to a small value as shown in Table I.
Barring a very large and unanticipated enhancement in
ImH(—K?%w) for large —K2<0 we cannot hope to
find any significant contribution to the hfs from this
term.

We turn next to S; and the entries of Table IL
Photoexcitation of the N*(1238) is the best known and
calculable of the amplitudes but plays only a minor
role, as noted earlier, contributing <1 ppm.

The electric dipole production of S-wave charged
pions has a threshold value fixed by the Kroll-Ruderman
theorem for real photons (and in the limit of a massless
7+ being produced). Depending on the form factor
appropriate to this amplitude it may contribute up to
2-3 ppm in the direction of removing the apparent
discrepancy. However, much of its contribution is
apparently cancelled when we also include in the pion-
photoproduction amplitude the meson current con-
tribution in Born approximation and magnetic dipole
photoproduction to the 33 resonance state only as in
Eq. (4.37). Nevertheless very different and cutoff-
dependent results are found from the model of Eq.
(4.33) which includes a Pauli coupling to the isovector
moment of the proton in Born approximation. This is
because the magnetic dipole amplitude continues to
grow with increasing photon energy in this model and
the integration over ImH.(—K2%w) acquires very
sizable contributions for large w. Furthermore the
numerical results obtained in this way are sensitive
both in sign and magnitude to modifications of the
Born-approximation amplitudes by poorly known phase
shifts in the non-33 channels. The last row in Table II
shows that an N*(1238) plus-pion state in the photo-
absorption amplitude is also not a promising candidate
for a hfs contribution.

While completing this write-up of our calculations
we have received a letter from Dr. Francoise Guérin
at Orsay describing a dispersion analysis of the polar-
izability contribution to hfs along parallel lines to
our discussion of this section. She reports a contribution

TasLE II. Model calculations of Ss in parts per million.

(2) (b) (©)

g(K?) 2(K?) g(K?)
Nucleon-pion =[1+4(K/0.96M)2]¢ =06(1.5 BeV2—K?) =1
S-wave threshold +0.9 +2.1 + 2.5
electric dipole
amplitude
Born amplitude —0.6 —0.6 —-27.0
N*(1238) magnetic —-0.3 —0.6 — 0.6
dipole amplitude
Born amplitude —0.1 +0.2 + 0.3
with final-state
enhancement in
33 channel
N*(1238) pion —0.01 —0.2 — 0.2

9 F, Guérin (private communication) (to be published).
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of £1 ppm from the electric dipole photopion-produc-
tion amplitude as well as a negligible contribution from
higher resonances.

We find ourselves then with no clear candidate to
add even 10-20 ppm to the hfs. At the same time there
is enough sensitivity in the poorly calculable amplitudes
so that we cannot be sure that such a contribution is
not present. In this our dilemma is similar to that en-
countered by attempts*' to use the Cottingham ap-
proach to calculate the neutron-proton mass difference.
For this problem it is the isovector part of the non-spin-
flip forward virtual Compton amplitude that must be
determined and approximations similar to those we
have made above also fail to predict a neutron that is
more massive than the proton. As is abundantly clear
from the recent spate of analyses*? triggered by the work
of Dashen and Frautschi,*? the detailed behavior of the
high-energy and photon-mass region is very important.

We might try to achieve further progress by looking
into the possibility of a subtracted dispersion relation4
for Hsin Eq. (4.13). At high energies the K2 dependence
of ImH(—K2w) can only be guessed and as a liberal
guess we may ignore form factors altogether setting

ImHy(—K2,w")=ImH»(0,w') for o'>2M. (5.1)

The orders of integration in Eq. (4.13) can then be
interchanged and we obtain

6

high energy —00(1+K)T2

(S9) f "t Tl .  (5.2)

Whether or not this integral converges is unknown
although it exists for all of the models in Table II.
A numerical evaluation based on Eq. (4.31) gives <2
ppm to the hfs from Eq. (5.2).

With the assumption that the dispersion integral
in Eq. (4.7) does not exist we make a subtraction,
writing in place of Eq. (4.7)

KFz(F1+KF2)M2
(k2)2__4M2w2

Hy(k*w)=— +G(E», (5.3)

where we drop the dispersion integral itself as having
contributed negligibly to the hfs. Our idea here is to
determine G so that in Eq. (4.4) it adds 20-40 ppm to

4 A. Finn (unpublished).

42H. Pagels, Phys. Rev. 144, 1261 (1966); H. Fried and T.
Truong, Phys. Rev. Letters 16, 559 (1966) ; G. Shaw and D. Wong
Phys. Rev. (to be published).

4 R. Dashen and S. Frautschi, Phys. Rev. 135, B1190 (1964);
R. Dashen, Phys. Rev. 135, B1196 (1964).

4 The need for a subtraction in the dispersion relations for H;
and H, can be ruled out if one requires that the spin-dependent
contributions to the total electron-proton cross sections (elastic
plus inelastic) vanish with increasing electron energy.

hfs; this fixes the integral

6 K
— / —K®G(—K?) = (20-40) X 10~
aM(1+0)m ) K

or . (5.4)
/ AKIG(— K?) = — (30-60).

However an inescapable implication of this assumption
is that there is a sizable difference between electron-
proton and positron-proton scattering. Since we in-
troduce the subtraction constant in order to increase
the attraction between the electron and proton and
thereby to increase the hfs it is not surprising that the
effect of G is to increase the cross section for electron-
proton scattering above that for positron-proton scat-
tering.#5 This appears to be in conflict with observa-
tion% and so we abandon the idea of a simple subtrac-
tion term. This is not a rigid conclusion for two reasons.
First of all, one can tailor the K2 dependence of G(—K?)
so that the hfs is accounted for by the integral Eq.
(5.4) while at the same time the observed cross sections
at large K? are not altered. Secondly, the scattering is
observed at finite angles and so requires, for a complete
analysis of the two-photon exchange contribution to the
electron-positron difference, knowledge of virtual
Compton scattering in nonforward directions as well
as for timelike photon masses. Thus many more
amplitudes and parameters are introduced beyond those
appearing in the forward spin-flip Compton amplitude
for virtual spacelike photons. For these reasons it
does not appear profitable to explore this approach
beyond the discussion of Ref. 45. The introduction of
the subtraction constant G(k%) in Eq. (5.3) leads us
directly back to the results computed there if we keep
only the leading terms for small momentum transfer in
the electron- (positron-) proton scattering amplitude.

Further counsel against searching for significant con-
tributions to the hfs from high-energy parts of the two-
photon amplitude come from the current commutator
sum rules of Bjorken.?!

The situation as we view it presently is as follows:
A relativistic dispersion approach fails to provide any
real insight or quantitative contributions towards a
resolution of the hfs problem.

The nonrelativistic Schrédinger models show that
sizable, albeit model-dependent, polarizability con-
tributions may very well be present and it is indeed
puzzling as to where they have been lost in the dis-
persion approach. These models also suggest that one
should not expect to find the predominant polarizability

4 S. D. Drell and J. D. Sullivan, Phys. Letters 19, 516 (1966).

46 A, Browman, F. Liu, and C. Schaerf, Phys. Rev. 139, B1079
(1965). Further experiments on this ratio are in progress at
Cambridge Electron Accelerator (L. Hand) and Cornell; R. L.
Anerson, B. Borgia, G. L. Cassiday, J. W. DeWire, A. S. Ito, and
E. C. Loh, Phys. Rev. Letters 17, 407 (1966).
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contributions to the hfs in the magnetic dipole excita-
tion of the N*(1238) resonance. The electric excitations
are also important.

Both in the hfs as well as the Lamb shift studies,$47
the apparent discrepancies between theory and experi-
ment are comparable to the size of the proton recoil
current and structure contributions. The possibility
cannot be ruled out with certainty that a better under-
standing and formulation of the contributions due to
proton dynamics will not resolve these discrepancies.
We cannot claim to understand or to have computed
their contributions to the hfs to an accuracy of better
than ~10 ppm.

A new determination of the fine-structure constant
from the fine structure!* of H or D together with the
Ruderman*® analysis of the chemical shift of the muon-
moment measurements may provide a purely experi-
mental resolution of the hfs problem itself but there
would then still remain the discrepancy in the com-
parison of theory with experiment in the Lamb
shift.4

Note added in proof. Recent very precise measure-
ments of 2¢/% to an accuracy of =2 ppm by means of
the ac Josephson effect have been reported [D. N.

47E. E. Salpeter, Phys. Rev. 87, 328 (1952); 89, 92 (1953); T.
Fulton and P. C. Martin, 7bid. 95, 811 (1954).

4 M. A. Ruderman, Phys. Rev. Letters 17, 794 (1966).

4 The latest published theoretical number on the Lamb shift
in Hz is 1057.644:0.21 MHz [G. W. Erickson and D. R. Yennie,
Ann. Phys. (N.Y.) 35, 271 (1965); 35, 447 (1965)7]. This number
is further reduced by 0.14 MHz to 1057.5 MHz by the completion
of the fourth-order radiative correction by M. Soto [Phys. Rev.
Letters 17, 1153 (1966)7]. The experimental result of Ref. 6 ex-
ceeds this by ~0.540.1 MHz and the older experimental result of
Ref. 14 by 0.320.1 MHz. Since the Lamb shift itself is propor-
tional to o® Ry an increase in @ of ~100-200 ppm would be re-
quired to remove this discrepancy, short of theoretical formula
modifications or addenda, and this would disrupt the hfs compari-
son by (an intolerable) ~200-400 ppm.
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Langenberg, W. H. Parker, and B. N. Taylor, Phys.
Rev. 150, 186 (1966); B. N. Taylor (private commu-
nication)]. Accepting the Josephson junction relation
between frequency w and voltage V as exact, i.e,
w=2¢eV/h, a new value of the fine-structure constant
can be derived from the relation

a=(31—ff[e/hj—lte/mj)m.

The resulting value of « is roughly 20 ppm larger than
the value deduced from the hydrogen fine-structure
measurements and removes the difference expressed by
Eq. (2.5) between experiment and a theory with very
negligible polarizability contributions to A»®. The
central conclusion of this paper remains: Hitherto un-
calculated contributions to the hydrogen hyperfine
structure due to the proton’s polarizability may very
well be as large as 10 ppm but are not amenable to
quantitative calculation with presently available tech-
niques (dispersion theory) in the theory of strong inter-
actions. This uncertainty limits the precision to which
quantum electrodynamics can be confronted by a
comparison between theory and measurement of the
hydrogen hfs.

ACKNOWLEDGMENTS

For stimulating and provocative discussions we
thank our colleagues at Stanford, and in particular
M. Bander, J. Bjorken. A. Finn, M. Nauenberg, and
D. Yennie. We also thank V. Whitis of the SLAC
Computation Center for his valuable aid with the cal-
culations of the numbers in Fig. 2 and Tables I and II.
Finally we thank J. W. M. DuMond, V. W. Hughes,
and R. T. Robiscoe for valuable and timely information
on the experimental numbers.



