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1. Introduction

Seven years ago, the CREMA (Charge Radius Experiments with 
Muonic Atoms) Collaboration [1] measured very precisely the 
Lamb shift of muonic hydrogen. This event opened a new era 
of precise investigation of the energy spectrum of simple atoms. 
Furthermore, in the new experiments of this Collaboration with 
muonic deuterium and ions of muonic helium a charge radii of 
light nuclei were obtained with very high precision [2–4]. In the 
case of muonic hydrogen and muonic deuterium it was shown 
that obtained values of the charged radii are significantly differ-
ent from those which were extracted from experiments with elec-
tronic atoms and in the scattering of the electrons with nuclei and 
were recommended for using by the CODATA [5]. At present, sev-
eral experimental groups plan to measure the hyperfine structure 
(HFS) of various muonic atoms with more high precision [6–8]. 
This will make it possible to better understand the existing “puz-
zle” of the proton charge radius, to check the Standard Model with 
greater accuracy and, possibly, to reveal the source of previously 
unaccounted interactions between the particles forming the bound 
state. One way to overcome the crisis situation is a deeper theo-
retical analysis of the fine and hyperfine structure of muonic atom 
spectrum, in the verification of previously calculated contributions 
and the more accurate construction of the particle interaction op-
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erator in quantum field theory, the calculation of new corrections 
whose value for muonic atoms can increase substantially in com-
parison with electronic atoms. The expected results will allow to 
get also a new very important information about the forces which 
are responsible for the structure of atoms. From the theory side it 
is urgently needed to study the possible effects of exchanges be-
tween muon and proton which can contribute to hyperfine struc-
ture of muonic hydrogen. One of such effects was considered in 
recent papers [9–12]. It arises from the effective pion exchange 
between muon and proton induced by coupling of the pion to two 
photons (see Fig. 1 (left)). Despite the fact that numerically such 
contribution was found to be rather small, it can be important for 
the interpretation of new data.

In this Letter we consider the additional contribution to hyper-
fine structure of muonic hydrogen which is related to the axial-
vector mesons exchanges (see Fig. 1 (right)). We would like to 
point out, that one can expect the important contribution of this 
exchange to spin dependent part of muon–proton interaction be-
cause the exchange particle has the spin one. Furthermore, it is 
also well known that in the channel with quantum number 1++
axial anomaly effects can play an important role and, in particu-
larly, these effects might be considered as a cornerstone to solve 
so-called “proton spin crisis” [13].

2. Axial-vector meson exchange contribution to muon–proton 
interaction induced by axial anomaly

One-photon exchange interaction in quantum electrodynamics 
gives the leading order contribution to the interaction operator in 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Muon–proton interaction induced by mesonic exchange.

Fig. 2. Coupling of axial-vector mesons to two photons.

muonic hydrogen. The potential of hyperfine interaction has the 
following form [14]:

�V hf s
B = 8παμp

3mμmp
(SpSμ)δ(r) −

αμp(1 + aμ)

mμmpr3

[
(SpSμ) − 3(Spn)(Spn)

] +
αμp

mμmpr3

[
1 + mμ

mp
− mμ

2mpμp

]
(LSp)

(1)

where mμ , Sμ and mp , Sp are masses and spins of muon and pro-
ton, correspondingly, μp is the proton magnetic moment. The po-
tential (1) gives the main contribution of order α4 to the hyperfine 
structure of muonic atom. Precision calculation of the hyperfine 
structure of the spectrum, which is necessary for a comparison 
with experimental data, requires the consideration of various cor-
rections to the vacuum polarization, nuclear structure and recoil, 
and relativistic corrections [14–17]. We calculate further the con-
tribution to HFS which is determined by the axial-vector f1(1285), 
a1(1260) and f1(1420) meson exchanges shown in Fig. 1 (right).

The coupling of the axial-vector meson to two photon state is 
possible through anomalous triangle diagram, shown in Fig. 2. The 
general structure of this vertex takes the form [18–20]:

T μνα = 4π iα ερστα

{[
ν

(
A3kτ

1 − Ã3kτ
2

)
+ k2

2 A4kτ
1

−k2
1 Ã4kτ

2

]
gμρ gσν + A3kν

1kρ
1 kσ
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2 kρ

1 kσ
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+ A4kν
2kρ

1 kσ
2 gτμ − Ã4kμ

1 kρ
1 kσ

2 gτν

}
. (2)

where Ai ≡ Ai(t2, k2
1, k

2
2), Ãi ≡ Ai(t2, k2

2, k
2
1). Another form of the 

tensor describing the transition from initial state of two virtual 
photons with four-momenta k1, k2 to an axial-vector meson A
( J P C = 1++) with the mass M A is presented in [21]1:

T μνα = 4π iαερστα

×
[

Rμρ(k1,k2)Rνσ (k1,k2)(k1 − k2)
τ ν F (0)

Aγ ∗γ ∗(k2
1,k2

2) +

1 The only difference between our expression (3) and their work is related to the 
normalized factor 1/M2

A used in [21].
+ Rνρ(k1,k2)
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]
.

The relation between Ai , Ãi and form factors in (3) is the fol-
lowing:

F (1)
Aγ ∗γ ∗(t2,k2

1,k2
2) = ν

X

[
k2

2( Ã3 − A4) + ν( Ã4 − A3)
]
, (4)

F (1)
Aγ ∗γ ∗(t2,k2

2,k2
1) = ν

X

[
k2

1(A3 − Ã4) + ν(A4 − Ã3)
]
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2
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The form factors F (0)
Aγ ∗γ ∗ (k2

1, k
2
2) and F (1)

Aγ ∗γ ∗ (k2
1, k

2
2) entering in (3)

are dependent on the squares of the 4-momenta of virtual pho-
tons. With increasing k2

1, k2
2, these functions must decrease rapidly 

to ensure the ultraviolet convergence of the loop integral in the 
interaction amplitude.

We should mention that in the opposite to the case of pion 
coupling to two photons, axial-vector meson can not decay into 
two real photons, according to the Landau–Yang theorem [22,23]. 
Nevertheless, the coupling of 1++ mesons to two photons is still 
possible in the case when one or both photons are virtual. For 
small values of relative momenta of particles in the initial and final 
states and small value of transfer momentum t between muon and 
proton, the transition amplitude presented in (2) takes a simple 
form

T μνα = 8π iαεμνατ kτ k2 F (0)
AV γ ∗γ ∗(t2,k2,k2), (5)

where k = k1 = −k2. To extract HFS part of the interaction in the 
case of the S-states the following projection operators are used for 
states with spin S = 0 and S = 1 [24]:

�̂S=0[u(0)v̄(0)]S=0 = 1 + γ 0

2
√

2
γ5,

�̂S=1[u(0)v̄(0)]S=1 = 1 + γ 0

2
√

2
ε̂, (6)

where εμ is the polarization vector of 3 S1 state. The amplitude 
of the muon–proton interaction presented in Fig. 1 (right) has the 
following structure:

iM = [l̄(q1)
(μ)
α l(p1)]Dαβ(t)[N̄(p2)

(p)
β N(q2)], (7)

where the vertex operator in the proton line is fixed by the Hamil-
tonian of nucleon-axial-vector meson interaction

H I (a1N N) = ga1 N N N̄τγμγ5Naμ
1 , (8)

for a1 exchange and

H I ( f1N N) = g f1 N N N̄γμγ5N f μ (9)
1
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for f1 exchange. The vertex operator in the lepton line (μ)
α is fixed 

by the integration over k in photonic loop, and Dαβ(t) is the axial-
vector meson propagator. It is easy to show that


(μ)
α ∼ γαγ5, (10)

and using the relations [13]

N̄(P , S p)γτ γ5N(P , S p) = 2Sτ
p,

l̄(q, Sμ)γτ γ5l(q, Sμ) = 2Sτ
μ, (11)

one can see that the interaction (7) contains the spin–spin interac-
tion, M ∼ SpSμ which contributes to hyperfine splitting. Perform-
ing the projection of the amplitude (7) to the two particle states 
with the help of (6), we obtain that the numerator of the one-
meson exchange amplitude (see Fig. 1 (right)) contains a trace of 
the product of the Dirac gamma-matrices and numerous convolu-
tions by the Lorentz indices:

NA = 8π iαερστα gμρ gνσ kτ k2 gαβ F (0)
AV γ ∗γ ∗(t2,k2,k2)g AV N N ×

T r
[
(q̂1 + mμ)γ ν(p̂1 − k̂ + mμ)γ μ(p̂1 + mμ)×

1 + γ0

2
√

2
ε̂(p̂2 − mp)γβγ5(q̂2 − mp)ε̂∗ 1 + γ0

2
√

2

]
, (12)

where p1,2 (q1,2) are initial (final) momenta of the muon and pro-
ton. For the case of spin zero state the substitution ε̂ → γ5 should 
be done in (12). Introducing the total and relative momenta of par-
ticles in the initial and final states p = (0, p) and q = (0, q), and 
taking into account their smallness in the bound state (|p| ∼ μα, 
|q| ∼ μα) (μ is the reduced mass), we can obtain the leading or-
der contribution to NA which does not have terms proportional 
to the powers of transfer momentum t = p − q. Our result for hy-
perfine part of the potential is the following:

�V hf s
AV (p − q) (13)

= − 32α2 g AV pp

3π2(t2 + M2
A)

∫
id4k

(2k2 + k2
0)

k2(k2 − 2mμk0)
F (0)

AV γ ∗γ ∗(0,k2,k2).

After an analytical integration in (13) over angular variables 
more simple formula for the potential can be obtained:

�V hf s
AV (p − q)

= − 32α2 g AV pp

3π2(t2 + M2
A)

∞∫
0

dk2Lμ(k2)F (0)
AV γ ∗γ ∗(0,k2,k2), (14)

Lμ(k2) = π2

8m4
μ

[
k2(k2 − 6m2

μ) − (k2 − 8m2
μ)

√
k2(k2 + 4m2

μ)
]
,

where the kernel Lμ(k2) behaves as ∼ 2π2
√

k2/mμ for small k2

while the asymptotic value for large k2 is 9π2/4. Therefore Lμ(k2)

effectively suppresses the region of small k2.

3. Model estimations

One of the main ingredients in (13) is the form factor of tran-
sition of 1++ meson to two photons F AV γ ∗γ ∗ (t2, k2, k2). Unfor-
tunately, at present we have only few experimental data on it 
[25–27]. In the paper [25] of the L3 Collaboration the reaction 
e+e− → e+e−γ ∗γ ∗ → e+e− f1(1285) → e+e−ηπ+π− was stud-
ied and f1(1285) transition form factor was measured for the case 
when one of the photons is real and another one is virtual. In [26]
the production of f1(1420) was investigated by the same Collabo-
ration in the reaction γ ∗γ ∗ → K 0

S K ±π∓ . Using these data, we can 
parameterize the transition form factor for the case of two photons 
with equal virtualities as

F (0)
AV γ ∗γ ∗(M2

A,k2,k2) = F (0)
AV γ ∗γ ∗(M2

A,0,0)F 2
AV (k2), (15)

where

F AV (k2) = �4
A

(�2
A − k2)2

. (16)

It should be mentioned that in comparison with the case of 
light π0 exchange, the effects of off-shellness for the exchange by 
massive f1 mesons might be important. The effect of off-shellness 
was investigated in [28,29], and in [30] a simple parametrization 
was proposed. The simplest way to take it into account is to intro-
duce an exponential suppressive factor [30]:

F (0)
AV γ ∗γ ∗(t2,0,0)

F (0)
AV γ ∗γ ∗(M2

A,0,0)
≈ e(t2−M2

A)/M2
A , (17)

which gives the factor ∼ e−1 for t2 ≈ 0. The values of the form 
factors in (15) for the case of f1(1285) and f1(1420) can be fixed 
from the L3 data using the relations given by the nonrelativistic 
quark model [21]:

F (0)
AV γ ∗γ ∗(M2

A,0,0) = −F (1)
AV γ ∗γ ∗(M2

A,0,0) (18)

and

̃γ ∗γ ∗(AV ) = πα2M5
A

12
[F (1)

AV γ ∗γ ∗(M2
A,0,0)]2, (19)

where ̃γ ∗γ ∗ (AV ) is the decay width of axial-vector meson. We 
would like to mention that according to the nonrelativistic quark 
model the sign of F (0)

AV γ ∗γ ∗ (M2
A, 0, 0) should be positive [31]. Fi-

nally, we obtain from the L3 data:

F (0)

f1(1285)γ ∗γ ∗
(

M2
f1(1285),0,0

)
= (0.266 ± 0.043) GeV−2,

F (0)

f1(1420)γ ∗γ ∗
(

M2
f1(1420),0,0

)
= (0.193 ± 0.041) GeV−2. (20)

The value of form factor F (0)

f1(1285)γ ∗γ ∗ (M2
f1(1285)

, 0, 0) can be esti-
mated also within nonrelativistic quark model [31] using the rela-
tion

F (0)

f1γ ∗γ ∗(M2
f1

,0,0) = 24 < e2
q > R ′(0)

√
2√

π M9/2
A

, (21)

where R ′(0) is the derivative of the radial wave function at the 
origin, < e2

q > is effective quark charge squared in the bound state. 
For the isospin I = 1 state (uū − dd̄)/

√
2 (a1 meson) we have <

e2
q >= √

2/6, and for the isosinglet state (uū + dd̄)/
√

2 ( f1 meson) 
< e2

q >= 5
√

2/18. The value of R ′(0) can be estimated from the 
decay width f2(1270) → γ + γ [32] 3.034 keV by means of the 
expression

( f2(1270) → γ ∗γ ∗) = 576

5
α2 < e2

q >
|R ′(0)|2

M4
A

, (22)

assuming that the radial wave functions for f1(1285) and f2(1270)

at the origin are the same. The equation (22) leads to R ′(0) ≈
0.099 GeV 5/2 and

F (0)
∗ ∗(M2 ,0,0) ≈ 0.240 GeV−2, (23)
f1(1285)γ γ f1(1285)
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Table 1
Axial-vector meson contributions to hyperfine structure of muonic hydrogen.

AV meson IG ( J P C ) �A

in GeV
g AV pp F (0)

AV γ ∗γ ∗ (0, 0)

in GeV−2

�Ehf s(1S)

in meV
�Ehf s(2S)

in meV

f1(1285) 0+(1++) 1.040 3.40 0.266 −0.0090 ± 0.0033 −0.0011 ± 0.0004
a1(1260) 1−(1++) 1.040 5.67 0.160 −0.0094 ± 0.0038 −0.0012 ± 0.0005
f1(1420) 0+(1++) 0.926 1.51 0.193 −0.0019 ± 0.0011 −0.0002 ± 0.0001
which is very close to the L3 value (20). Therefore, one can be-
lieve that nonrelativistic quark model describes the dynamics of 
axial-vector mesons rather well. However, below we will use the 
L3 value for F (0)

f1(1285)γ ∗γ ∗ form factor to decrease the dependence 
of our predictions from the model. Unfortunately, there is no data 
for a1(1260) meson production in γ ∗γ ∗ collisions. We estimate 
F (0)

a1γ ∗γ ∗ (M2
a1

, 0, 0) using the diagram presented in Fig. 2 and in-
troducing the value of quark-meson couplings ga1qq and g f1qq . The 
chiral symmetry gives the relation ga1qq = g f1qq (see, for example 
[33]). Finally, the ratio of a1(1260) and f1(1285) form factors in 
this case should be equal to the ratio of the effective quark charges 
squared for f1(1285) and a1(1260):

F (0)
a1(1260)γ ∗γ ∗(M2

a1(1260),0,0)

F (0)

f1(1285)γ ∗γ ∗(M2
f1(1285,0,0)

≈ 3

5
. (24)

Then we obtain from (20) and (24):

F (0)
a1(1260)γ ∗γ ∗(M2

a1(1260),0,0) ≈ 0.160 GeV −2. (25)

Our potential (14) of hyperfine interaction can be rewritten in 
the form:

�V hf s
AV (p − q) = −32α2 g AV pp F (0)

AV γ ∗γ ∗(0,0,0)

3π2(t2 + M2
A)

I

(
mμ

�A

)
, (26)

where I
(
mμ/�A

)
is a convolution of the kernel Lμ(k2) and form-

factor F 2
A(k2) which are dependent on the muon mass mμ and 

hadron scale �A correspondingly (aμ = 2mμ/�A ):

I

(
mμ

�A

)
= −

∞∫
0

dk2Lμ(k2)F 2
A(k2)

= − π2�2
A

4(1 − a2
μ)5/2

⎡
⎢⎣3

√
1 − a2

μ − a2
μ(5 − 2a2

μ) ln
1 +

√
1 − a2

μ

aμ

⎤
⎥⎦ .

(27)

Making the Fourier transform of (26) and averaging the ob-
tained expression with the wave functions of the 1S and 2S states, 
we obtain the following contribution to hyperfine splitting coming 
from the axial-vector exchange:

�Ehf s
AV (1S) = 32α5μ3 g AV pp F (0)

AV γ ∗γ ∗(0,0,0)

3M2
Aπ3

(
1 + 2W

M A

)2
I

(
mμ

�A

)
, (28)

�Ehf s
AV (2S) =

2α5μ3 g AV pp F (0)
AV γ ∗γ ∗(0,0,0)

(
2 + W 2

M2
A

)

3M2
Aπ3

(
1 + W

M A

)4
I

(
mμ

�A

)
,

(29)

where W = μα and μ is the reduced mass.
For numerical estimate we fix the slope of form factors ac-
cording to the L3 data to � f1(1285) = 1.040 ± 0.078 GeV [25] and 
� f1(1420) = 0.926 ± 0.078 GeV [26], and assume that �a1(1260) ≈
� f1(1285) . Unfortunately, there is no direct experimental data on 
the value of axial-vector meson couplings to the quarks and pro-
ton. Therefore, we estimate them using nonrelativistic quark model 
with chiral symmetry. One of the examples of such model is the 
NJL model [33]. Within this model the form factor of f1(1285)

meson can be obtained by the calculation of triangle diagram pre-
sented in Fig. 2:

F (0)

f1(1285)γ ∗γ ∗(M2
f1(1285),0,0) = 5g f1(1285)qq

72π2m2
, (30)

where m is the dynamical quark mass related to the spontaneous 
chiral symmetry breaking.

Another couplings are related to each others by using chiral 
symmetry and SU (6)-model for wave function of the proton as 
follows:

ga1(1260)qq = g f1(1285)qq, g f1(1285)pp = g f1(1285)qq,

ga1(1260)pp = 5

3
g f1(1285)qq. (31)

In the most versions of quark models which are used in hadron 
spectroscopy, the value of quark mass is in the interval m ∼ 0.25 ÷
0.35 GeV. At the central value m = 0.300 GeV we get the following 
couplings:

ga1(1260)qq = g f1(1285)qq = g f1(1285)pp = 3.40 ± 1.19,

ga1(1260)pp = 5.67 ± 1.98. (32)

The error in determining the interaction constants, which is at 
least 35 percent, is written out directly in (32). In the case of 
f1(1420) meson one should take into account the singlet-octet 
mixing effects [26], [34]. The estimation given in [34] shows that 
the wave function of this meson in flavor space is equal

f1(1420) ≈ |ss̄ > +δ|nn̄ >, (33)

where nn̄ = 1√
2
(uū + dd̄) and δ ≈ 0.4 ÷ 0.5. Therefore, for the pro-

ton wave function in the OZI limit one can neglect the interaction 
of strange component of f1(1420) with proton and obtain the fol-
lowing estimation:

g f1(1420)pp ≈ 1.36 ÷ 1.70. (34)

The central value g f1(1420)pp = 1.51 is taken for numerical esti-
mate.

Our results for the contribution of the axial-vector mesons to 
HFS are presented in Table 1. For the case of both 1S and 2S
states, the summary contribution of axial-vector meson exchanges 
is more than an order of magnitude greater than the contribution 
of pseudoscalar mesons and very important to obtain the total 
value of the HFS with high precision. We can use the obtained 
expressions (28)–(29) to estimate the similar contribution to the 
hyperfine structure of electronic hydrogen. In the case of the 1S 



A.E. Dorokhov et al. / Physics Letters B 776 (2018) 105–110 109
state, the total contribution of the axial vector mesons f1, a1 is 
about 0.8 kHz, which is comparable with the error in calculating 
the contribution to the proton polarizability [35].

4. Conclusion

A new important contribution to the muon–nucleon interaction 
is discovered. It is determined by the effective axial-vector meson 
exchange induced by anomalous axial-vector meson vertex with 
two photon state. The contribution of this exchange to hyperfine 
structure of muonic hydrogen is calculated in the framework of 
quasipotential method in quantum electrodynamics and with the 
use of the technique of projection operators on states of two parti-
cles with a definite spin. It is shown that this contribution is large 
and should be taking into account for the interpretation of new 
data on HFS in muonic hydrogen. As has been mentioned above 
the CREMA Collaboration measured two transition frequencies in 
muonic hydrogen for the 2S triplet state (2P F=2

3/2 − 2S F=1
1/2 ) and 

for the 2S singlet state (2P F=1
3/2 − 2S F=0

1/2 ) [2]. From these measure-
ments it is possible to extract the value of hyperfine splitting of the 
2S level. The obtained value �Ehf s

exp(2S) = 22.8089(51) meV allows 
to get the value of the Zemach radius with accuracy 3.4% rZ =
1.082(31)exp(20)th with the help of following relation: �Ehf s

th =
22.9843(15) − 0.1621(10)R Z . This is in the agreement with an-
other numerical values rZ = 1.086(12) fm [36], rZ = 1.045(4) fm 
[37], rZ = 1.047(16) fm [38], rZ = 1.037(16) fm [39] obtained from 
electron–proton scattering and from hydrogen and muonium spec-
troscopy. At present the theory estimates of hadronic corrections 
to the 1S hyperfine splitting in muonic hydrogen are known with a 
precision near 400 ppm [3] (see more detailed analysis in a recent 
paper [40]). We should emphasize that the changing the theoret-
ical value of the HFS on 0.001 meV leads to the changing of the 
Zemach radius on 0.006 fm. Therefore, our contribution coming 
from axial-vector meson exchange leads to new value of the ra-
dius R Z = 1.067(37) fm, which is greater in the comparison with 
most listed results but still agree with them within errorbars.

The CREMA Collaboration have performed successively several 
experiments with muonic hydrogen. In the first experiment of 
2010 [1], the frequency of a single 2P F=2

3/2 − 2S F=1
1/2 transition was 

measured. To extract a new value of the proton charge radius in 
this case, there was used the theoretical expression for the hyper-
fine splitting of the 2S-level in the form:

�Eth(2P F=2
3/2 ÷ 2S F=1

1/2 ) = 209.9779(49) − 5.2262r2
p + 0.0347r3

p.

(35)

Since in this paper we are just calculating the hyperfine structure 
of the spectrum, our result could be related to the correction of the 
proton charge radius. But already in the experiment of 2013 [2]
two transition frequencies were measured, which made it possi-
ble to find the experimental value of the hyperfine splitting of the 
2S-level. The theoretical result was used for the hyperfine struc-
ture of the P-levels. Since the hyperfine splitting of the 2S-level 
can now be considered fixed from the experiment and used fur-
ther, the theoretical contribution to the HFS obtained in this paper 
does not lead to a change in the proton charge radius, which re-
mains equal to rp = 0.84087(39) fm [2] and differs from the value 
recommended by CODATA-2014, rp = 0.8751(61) fm [5], based on 
H spectroscopy and electron– proton scattering.

There are a number of uncertainties related to the main used 
parameters, among which the key role are played by the value of 
form factor F (0)

AV γ ∗γ ∗ (0, 0) (or R ′(0)) and coupling constants g AV pp . 
The errors in determining the parameters ̃γ γ and �A , through 
which R ′(0) is expressed, are 25% and 8%, respectively. Another er-
ror of about 35% for the mesons f1(1285), a1(1260) and f1(1420)

is related to the magnitude of the interaction constants of the axial 
vector mesons with the nucleon. Therefore, from the experimen-
tal data and model approximations for constructing the transition 
form factor and the interaction potential of particles, we estimate 
the error in calculating the contribution of the axial vector mesons 
f1(1285) to 35%, a1(1260) to 40%, and the meson f1(1420) in 60%. 
All theoretical errors are directly indicated in Table 1.

It is necessary to mention that our estimations are mainly 
based on the data of the L3 Collaboration on the transition form 
factors of the axial vector mesons in photon–photon interaction. 
These data are restricted by rather small kinematical region. A new, 
more detailed measurements of these form factors are urgently 
needed. Such type experiment is possible, for example by the BE-
SIII and BELLEII Collaborations.

We also believe that it is important to investigate this new con-
tribution to the hyperfine structure of the muonic deuterium and 
muonic helium. In this case it might be even possible to sepa-
rate contributions coming from a1 and f1 mesons due to different 
isospin structure of these nuclei. The research in this direction is 
in progress.
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