Testing MOdified Gravity (MOG) Theory with the Milky Way

María Benito

for C. Negrelli, S. Landau, F. locco & L. Kraiselburd

UNESP

O DE FÍSICA

Tensions in the LCDM paradigm 16/05/2018

Goal

- Test MOdified Gravity (MOG) theory of John Moffat using tracers of the total gravitational potential of the MW
- Methodology already used for testing MOND phenomenology.

B. Famaey & J. Binney, MNRS 363 (2005) [astro-ph/0506723]

S. S. McGaugh, ApJ 683 (2008) [0804.1314]

F. locco, M. Pato & G. Bertone, Phys. Rev. D92 (2015) [1505.05181]

Rotation Curve Milky Way

is in the LCDM paradigin

Motivation

Observations of the dynamics of galaxies reveal a discrepancy between dynamical mass and the mass inferred from luminous matter.

> V.C. Rubin +, ApJ 141 (1965) V.C. Rubin & W.K. Ford Jr., ApJ 159 (1970)

A proposal for explaining the mismatch is a modification of gravity.

M. Milgrom, ApJ 270 (1983)

J.D. Bekenstein, Phys. Rev. D70 (2004) [astro-ph/0403694

> J.W. Moffat, JCAP 03 (2006) [gr-qc/0506021v7]

MOdified Gravity (MOG) Theory

J.W. Moffat, JCAP 03 (2006) [gr-qc/0506021v7]

Scalar-Tensor-Vector Gravity (STVG) theory

Gravitational action:

$$S_G = -\frac{1}{16\pi} \int \frac{1}{G} \left(R + 2\Lambda\right) \sqrt{-g} \ d^4x$$

Massive vector field action:

$$S_{\phi} = -\frac{1}{4\pi} \int \omega \left[\frac{1}{4} B^{\mu\nu} B_{\mu\nu} - \frac{1}{2} \mu^2 \phi_{\mu} \phi^{\mu} + V_{\phi} (\phi_{\mu} \phi^{\mu}) \right] \sqrt{-g} \ d^4x$$
$$B_{\mu\nu} = \partial_{\mu} \phi_{\nu} - \partial_{\nu} \phi_{\mu}$$

Scalar fields action:

$$S_S = -\int \frac{1}{G} \Big[\frac{1}{2} g^{\alpha\beta} \left(\frac{\nabla_\alpha G \nabla_\beta G}{G^2} + \frac{\nabla_\alpha \mu \nabla_\beta \mu}{\mu^2} \right) + \frac{V_G(G)}{G^2} + \frac{V_\mu(\mu)}{\mu^2} \Big] \sqrt{-g} \ d^4x$$

Tensions in the LCDM paradigm

MOdified Gravity (MOG) Theory

J.W. Moffat, JCAP 03 (2006) [gr-qc/0506021v7]

Able to explain data coming from:

- motion of globular clusters (J.W. Moffat & V.T. Toth, ApJ 680 (2008) [0708.1935])
- ➡ galaxy clusters (e.g. J.W. Moffat & S. Rahvar, MNRAS 441 (2014) [1309.5077])
- rotation curves (RCs) of spiral and dwarf galaxies (e.g. M.H. Zhoolideh Haghighi & S. Rahvar, MNRAS 468 (2017) [1609.07851])
- → Bullet Cluster (J.R. Brownstein & J.W. Moffat, MNRAS 382 (2007) [astro-ph/ 0702146])

Unable to explain:

- ➡ Bullet Cluster (D. Clowe +, ApJ 648 (2006) [astro-ph/0608407])
- ➡ galaxy clusters (e.g. T.M. Nieuwenhuizen +, MNRS 476 (2018) [1802.04891])

MOdified Gravity (MOG) Theory

J.W. Moffat & S. Rahvar, MNRAS 436 (2013) [1306.6383]

Weak field limit:

$$\Phi_{eff}(\vec{x}) = -\int \frac{G_0 \rho(\vec{x}')}{|\vec{x} - \vec{x}'|} d^3 \vec{x}' + \kappa^2 \int \frac{e^{-\mu |\vec{x} - \vec{x}'|}}{|\vec{x} - \vec{x}'|} \rho(\vec{x}') d^3 \vec{x}'$$

$$G_0 - \kappa^2 = G_N$$

$$\alpha = (G_\infty - G_N)/G_N$$

$$\vec{a} = -\vec{\nabla} \Phi_{\text{eff}}$$

$$\vec{a}(\vec{x}) = -G_N \int \frac{\rho(\vec{x}')(\vec{x} - \vec{x'})}{|\vec{x} - \vec{x'}|^3} \times \left[1 + \alpha - \alpha e^{-\mu|\vec{x} - \vec{x'}|}(1 + \mu|\vec{x} - \vec{x'}|)\right] d^3\vec{x'}$$

For $r < 1/\mu$: recover Newtonian gravity

MOdified Gravity (MOG) Theory

Weak field limit:

$$\vec{a}(\vec{x}) = -G_N \int \frac{\rho(\vec{x}')(\vec{x} - \vec{x'})}{|\vec{x} - \vec{x'}|^3} \times \left[1 + \alpha - \alpha e^{-\mu|\vec{x} - \vec{x'}|}(1 + \mu|\vec{x} - \vec{x'}|)\right] d^3\vec{x'}$$

Parameters (α , μ):

control the strength and the range of the repulsive force and

can be expressed in terms of the mass of the system

$$\mu = \frac{D}{\sqrt{M}} \qquad \qquad \alpha = \frac{M}{(\sqrt{M} + E)^2} \left(\frac{G_{\infty}}{G_N} - 1\right)$$

 $(D,\,E,\,G_\infty)\,$ are constants that can be determined by observations

J.W. Moffat & V.T. Toth, Classical and Quantum Gravity 26 (2009) [0712.1796v5]

Methodology: Rotation Curve

Observed RC: Two different compilations

Methodology: Rotation Curve

Observed RC: Two different compilations

M. Pato & F. locco, SoftwareX 6 (2017) [1703.00020] Y. Huang +, MNRS 463 (2016) [1604.01216]

Visible component (star + gas): Large array of observationally inferred 3D density profiles

50 kpc

$R_0 = 8 \text{ kpc}$

Most of the galaxy's light comes from stars and gas in the galactic disk and central bulge . . .

Galactic Bulge region

... but measurements suggest that most of the mass lies unseen in the spherical halo that surrounds the entire disk.

The visible Milky Way

SUN

Tensions in the LCDM paradigm María Benito

Stellar + gas disc

Bulge distribution: $\rho_b(x, y, z) = \bar{\rho}_b f(x, y, z)$

	f(x, y, z)	Bar angle [°]	Xo:Yo:Zo	Reference	
	e^{-r}	25	2.8 : 1.4 : 1	K.Z. Stanek + (1996) [G2]	
	$e^{-r_{s}^{2}/2}$	24	3.6 : 1.5 : 1	K.Z. Stanek + (1996) [E2]	
e^{-}	$e^{-r_s^2/2} + r_a^{-1.85}e^{-r_a}$	20	3.7 : 1.5 : 1	H. Zhao (1996)	
	$e^{-r_s^2}/(1+r_s)^{1.8}$	20	2.6 : 0.8 : 1	N. Bissantz & O. Gerhard (2002)	
	$\operatorname{sech}^2(-r_s) + e^{-r_s}$	13	3.7 : 1.3 : 1	A.C. Robin + (2012)	
	$e^{-r_s^2}/(1+r_s)^{1.8}$	15	3.2 : 2.2 : 1	E. Vanhollebeke + (2013)	

Normalisation $\bar{\rho}_b$

 $\langle \tau \rangle = 2.17^{+0.47}_{-0.38} \times 10^{-6}$ (ℓ, b) = (1.50°, -2.68°) P. Popowski +, ApJ 631 (2005) [astrop-ph/0410319]

Stellar disc distribution: $\rho_d(r, z) = \bar{\rho}_d f(r, z)$

f(r,z)		Scale-length [kpc]	Scale-height [kpc]	Reference
$e^{-r}\operatorname{sech}^{2}(z)$ $e^{-r}e^{-(z+z_{0})}$	thin thick	2.75 2.75	0.27 η(r) 0.44 η(r)	C. Han & A. Gould (2003)
$e^{-r} e^{- z }$ $e^{-r} e^{- z }$ $(r^{2} + z^{2})^{-2.77/2}$	thin thick halo	2.6 3.6	0.30 0.90	M. Juric + (2008)
$e^{-r} e^{- z }$ $e^{-r} e^{- z }$ $(r^{2} + z^{2})^{-2.75/2}$	thin thick halo	2.75 4.1	0.25 0.75	J. T. A. De Jong + (2010)
$e^{-r} e^{- z } e^{-r} e^{- z }$	thin thick	2.75 4.1	0.25 0.75	S. Calchi Novati & L. Mancini (2011)
$e^{-r} e^{- z }$	single	2.15	0.4	J. Bovy & H.W. Rix (2013)

Normalisation $\bar{\rho}_d$

$$\Sigma_*(R_0) = 38 \pm 4 \,\mathrm{M_\odot pc}^{-2}$$
 J. Bovy & H.W. Rix, ApJ 779 Tensions in the LCDM paradigm (2013) [1309.0809] Tensions in the LCDM paradigm María Benito

Gas distribution:

 $\rho_g(x, y, z) = \rho_{H_2}(x, y, z) + \rho_{H_I}(x, y, z) + \rho_{H_{II}}(x, y, z)$

Components		Range	Reference
molecular ring cold, warm warm, hot	H2 HI HII	r = 3 - 20 kpc	K. Ferrière (1998)
CMZ, disc CMZ, disc warm, hot, very hot	H2 HI HII	r = 0.01 - 3 kpc	K. Ferrière + (2007)

Uncertainties CO-to-H₂ factor: $X_{CO}(r > 3 \text{ kpc}) = (5.0 \pm 2.5) \times 10^{19} \text{ cm}^{-2} \text{K}^{-1} \text{km}^{-1} \text{s}$ $X_{CO}(r < 3 \text{ kpc}) = (1.9 \pm 1.4) \times 10^{20} \text{ cm}^{-2} \text{K}^{-1} \text{km}^{-1} \text{s}$

K. Ferriere +, ApJ 467 (2007) [astro-ph/0702532]

Baryonic morphologies

Tensions in the LCDM paradigm

MOG (α , μ) parameters

Rotation curve of the MW

 $(\alpha, \mu)^{\text{MW}} = (15.01, 0.0313 \, \text{kpc}^{-1})$ J.W. Moffat & V.T. Toth, Phys. Revm D91 (2015) [1411.6701]

We use equations

$$\mu = \frac{D}{\sqrt{M}} \qquad \qquad \alpha = \frac{M}{(\sqrt{M} + E)^2} \left(\frac{G_{\infty}}{G_N} - 1\right)$$

to obtain $(\alpha, \mu)^{c}$ self-consistently with our MW mass determination

$$D = 6.25 \text{ M}_{\odot} \text{pc}^{-1}$$
$$E = 25 \times 10^3 \text{ M}_{\odot}^{1/2}$$
$$G_{\infty} = 20 G_N$$

J.W. Moffat & V.T. Toth, Classical & Quantum Gravity 26 (2009) [0712.1796]

Representative Morphology

K.Z. Stanek + (1996) [E2] S. Calchi Novati & L. Mancini (2011)

 $M_{MW} = 6.7^{+0.7}_{-0.6} \times 10^{10} M_{\odot}$

Newton

Best Performing Morphology

N. Bissantz & O. Gerhard (2002) J. Bovy & H.W. Rix (2013)

MW galkin 400 С Huang 350 300 v [km/s]250200 150100 50 $\dot{20}$ 60 80 40 100 R [kpc] Huang et al galkin $(\alpha, \mu \, [\mathrm{kpc}^{-1}])$ Huang et al. [1] galkin [2] 5 σ equivalent $\tilde{\chi}_{5\sigma}^2$ 2.411.14 $(15.01, 3.13 \cdot 10^{-2})^{MW}$ 1.58 1.98 $(15.98, 2.26 \cdot 10^{-2})^{\rm C}$ 3.822.82 2.6σ discrepancy Tensions in the LCDM paradigm

 $M_{MW} = 7.7^{+0.8}_{-0.7} \times 10^{10} M_{\odot}$

$$\vec{a}(\vec{x}) = -G_N \int \frac{\rho(\vec{x}')(\vec{x} - \vec{x'})}{|\vec{x} - \vec{x'}|^3} \times \left[1 + \alpha - \alpha e^{-\mu|\vec{x} - \vec{x'}|}(1 + \mu|\vec{x} - \vec{x'}|)\right] d^3\vec{x'}$$

$$\mu = \frac{D}{\sqrt{M}} \qquad \qquad \alpha = \frac{M}{(\sqrt{M} + E)^2} \left(\frac{G_{\infty}}{G_N} - 1\right)$$

 (α, μ) calibrated with spiral galaxies

 (α, μ) is a function of the enclosed mass:

$$\mu = \mu(R) \propto \int \rho(R) dV$$
 $\alpha = \alpha(R) \propto \int \rho(R) dV$

Conclusions

Simplified version of MOG ruled out.

Dynamical (calibrated self-consistently) MOG: depends on the morphology (ignorance on shape crucial).