DETERMINATION OF THE DM DENSITY PROFILE OF THE MW (AND HOW MUCH TO TRUST IT)

KARUKES EKATERINA

In collaboration with: María Beníto, Fabío Iocco, Alex Gerínger-Sameth and Roberto Trotta

Tensions in the LCDM paradigm, MITP

OUTLINE

- Why the knowledge of the DM distribution in the MW is important
- MW RC compilation
- MCMC based reconstruction and results
- Mock RCs and MCMC based reconstruction of their DM parameters
- Conclusions

Why it is important

Galaxy formation theories

Why it is important

Indírect DM searches

Dynamics of the $M \ensuremath{\mathcal{W}}$

In the very inner part $\lesssim 2.5 \ kpc$ we have triaxial bulge and nonaxisymmetric features of the Galactic bulge.

Compilation of MW RC

 $(U_{\odot}, V_{\odot}, W_{\odot}) = (7.01, 10.13, 4.95) \text{ km/s}$

 $\Theta_0 = 239.89 \text{ km/s}$ $R_{\odot} = 8.34 \text{ kpc}$

Compilation of MW RC

 $(U_{\odot}, V_{\odot}, W_{\odot}) = (7.01, 10.13, 4.95) \ \rm km/s$

 $\Theta_0 = 239.89 \text{ km/s}$ $R_{\odot} = 8.34 \text{ kpc}$

Methodology

standard approach

SEE E.G. SOFUE & RUBIN'01, CATENA & ULLIO'09...

total gravitational potential:

 $\phi_{total} = \phi_{bar} + \phi_{dm}$

DM potential assuming spherical symmetry:

gNFW DM density profile:

 R_0 - Sun's position ho_0 - density at Sun's location

Methodology

standard approach

SEE ALSO E.G. SOFUE & RUBIN'01, CATENA & ULLIO'09...

Methodology

standard approach

SEE E.G. SOFUE & RUBIN'01, CATENA & ULLIO'09...

total gravitational potential:

 $\phi_{total} = \phi_{bar} + \phi_{dm}$

DM potential assuming spherical symmetry:

 $\phi_{dm} = -\frac{GM_{dm}(r)}{r} \quad ---- \quad M_{dm}(r) = 4\pi \int_0^R \rho_{dm}(r) r^2 dr$

gNFW DM density profile:

Our free parameters: $\gamma
ho_0 r_s$

 \mathbf{O}

 $-2\mathrm{Ln}(\mathcal{L})\propto\chi^2$

where

PATO ET AL.'15

$$\chi^{2} = \sum_{i=1}^{n} \frac{(V_{totalRC}^{i} - V_{DM+bar}^{i}(r_{s}, \gamma, \rho_{0}))^{2}}{(\sigma_{totalRC}^{i})} + \frac{(\sum_{*}^{obs} - \sum_{*})^{2}}{(\sigma_{\Sigma_{*}}^{obs})^{2}} + \frac{(<\tau >^{obs} - <\tau >)^{2}}{(\sigma_{\tau}^{obs})^{2}}$$
Stellar surface density (bulge) Microlensing optical depth (bulge)

E. KARUKES

16/05/2018

E. KARUKES

The idea is to test the MCMC-based reconstruction by creating mock rotation curves based on "underlying known" DM profiles (+ visible) and with the same statistical properties of the observed RC

We use the following way to create the mock data:

$$V_{mock} = V_{fiducial} + X \,\sigma$$

and

$$V_{fiducial} = V_{bar} + V_{gNFW}$$

is the standard random gaussian variable with mean=0 and std dev=1 and $\,\sigma\,$ is the error of the observed total RC

Do I perform well in all cases (also extreme DM profiles)?

Which parameter space is reconstructed better?

What is the best estimator (median, mode, mean)?

Does the estimator depend on the position in the parameter space?

Results

Results

- \bullet the reconstructed value of the local DM density is always compatible with the actual within ~8%
- somewhat larger values of the inner DM density slope are better reconstructed

Further steps

- to analyse the MCMC-based results of the actual RC on the basis of mock data
- to investigate how the DM parameters vary by varying the morphology of of the baryonic components
- to include the DM halo oblateness in the mock data