Elucidating CDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy

Graeme Addison Tensions in the LCDM paradigm 16 May 2018

gaddison@jhu.edu

G. E. Addison, D. J. Watts, C. L. Bennett, M. Halpern, G. Hinshaw, J. L. Weiland ApJ 853, 119 (2018)

(updated post-Riess *et al.* 2018b 1804.10655, *H*₀=73.52±1.62)

Low-redshift tensions with Planck 2013

Planck XVI 2013 results in 2-2.5 tension with various low-redshift measurements...

Tensions with some cluster constraints: *not fully resolved;* mass calibration!

Tension with local distance ladder: *much worse (2.5σ has become 3.8σ)!*

None of these effects disappeared as statistical fluctuations

What is the BAO scale?

$$r_{\rm s} = \int_{z_{\rm drag}}^{\infty} \frac{c_{\rm s}(z)}{H(z)} {\rm d}z$$

sound horizon

$$\Delta\theta = r_{\rm s}/(1+z)D_{\rm A}$$

$$\Delta z = H(z) r_{\rm s}/c$$

BAO observables

- Standard ruler length set at recombination ('sound horizon')
- Expands with the universe
- ~150 Mpc comoving large enough scale to be (nearly) unchanged by nonlinear growth

What is the BAO scale?

- Early-universe expansion rate (*matter vs radiation*)
- Baryon-photon ratio
- Number of effective *neutrino species*

 $\Delta \theta = r_{\rm s} / (1 + z) D_{\rm A}$ Late-time expansion (*matter vs dark energy*)

BAO measurements alone cannot distinguish between change in absolute sound horizon r_s and change in H_0

Addison et al. (2018): BAO data sets

Data Set	LSS Tracer	Zeff	Measurement ^a	Constraint ^a	References
6dFGS	galaxies	0.106	$r_d/D_V(z_{\rm eff})$	0.336 ± 0.015	Beutler et al. (2011)
SDSS MGS	galaxies	0.15	$D_V(z_{\rm eff})r_{d,{\rm fid.}}/r_d$ [Mpc]	664 ± 25	Ross et al. (2015)
BOSS DR12	galaxies	0.38	$D_M(z_{\rm eff})r_{d,{\rm fid.}}/r_d$ [Mpc]	1512 ± 25	Alam et al. (2017)
			$H(z_{\rm eff})r_d/r_{d,{\rm fid.}} [{\rm km}{\rm s}^{-1}{\rm Mpc}^{-1}]$	81.2 ± 2.4	
		0.51	$D_M(z_{\rm eff})r_{d,{\rm fid.}}/r_d$ [Mpc]	1975 ± 30	
			$H(z_{\rm eff})r_d/r_{d,{\rm fid.}} [{\rm km}{\rm s}^{-1}{\rm Mpc}^{-1}]$	90.9 ± 2.3	
		0.61	$D_M(z_{\rm eff})r_{d,{\rm fid.}}/r_d$ [Mpc]	2307 ± 37	
			$H(z_{\rm eff})r_d/r_{d,{\rm fid.}} [{\rm km \ s^{-1} \ Mpc^{-1}}]$	99.0 ± 2.5	
BOSS DR11 Ly α	Ly α absorbers ^b	2.34	$D_A(z_{\rm eff})/r_d$	11.28 ± 0.65	Delubac et al. (2015)
			$c/[H(z_{\rm eff})r_d]$	9.18 ± 0.28	
BOSS DR11 QSO \times Ly α	QSO, Ly α^{b}	2.36	$D_A(z_{\rm eff})/r_d$	10.8 ± 0.4	Font-Ribera et al. (2014)
	-		$c/[H(z_{\rm eff})r_d]$	9.0 ± 0.3	

Caveats!

Assume Gaussian likelihood for some measurements: known to be inaccurate far from peak of likelihood for some of the less-precise measurements

Use BAO scale constraints like data points: not fit to 2-point measurements

Error bars from sims: assume fiducial cosmological model and values of params for covariance; validity beyond LCDM? (e.g. N_{eff})

Comparing galaxy and Lya BAO

For flat LCDM **ALL** BAO constrain Ω_m and H_0r_d (Addison *et al.* 2013)

Combined fit produces matter density in agreement with CMB, SNe

But ~2.4 σ tension between galaxy and Ly α measurements

Synergy between BAO and CMB

 $\tau = 0.07 \pm 0.02$

Synergy between BAO and CMB

Angle-averaged D_V is compression of information - diminishes downward pull on H_0 in CMB+BAO

Breaking the BAO H_0 - r_d degeneracy with baryon density constraint

- Need external constraint on baryon density to get H_0 from BAO
- Want something independent from the CMB anisotropy measured by *Planck* etc.
- Primordial deuterium abundance sensitive to baryon-to-photon ratio (assuming standard Big Bang nucleosynthesis - BBN - physics)
- Estimated using extremely metal-poor damped Lyα systems

BAO + baryon density from D/H

Big improvement in precision (Addison *et al.* 2013: **68.9 ± 3.0 km s⁻¹ Mpc⁻¹**)

Galaxy, Ly α BAO individually prefer higher H_0 ...

But BAO and higher-z SNe do not allow big enough shifts to reconcile with distance ladder!

Planck, SNe, BAO 68.14 \pm 0.85 (*w*) 68.18 \pm 0.87 (*w*₀, *w*_a)

Scolnic et al. (2017)

Changing the CMB prediction for H_0 ?

Changing low-redshift expansion history **very** effective at shifting CMB prediction for $H_0...$

Changing early universe physics?

- CMB, BAO, D/H & BBN data have some common dependence on early universe physics
- BUT dependence not the same! Not obvious in practice that a solution with H₀ compatible with distance ladder can be achieved.
- E.g. N_{eff}: affects BAO through sound horizon, affects BBN through early-universe expansion, affects CMB in several ways (not only acoustic scale through r_d)
- 67.5 ± 1.2 (Alam *et al.* 2017; *Planck*+BAO for LCDM+ N_{eff})

N_{eff} impact on CMB

 $N_{\rm eff}$ does NOT just affect $r_{\rm s}$ but also damping tail...

Hinshaw et al. (2013)

Conclusions

- Combining non-*Planck* CMB measurements with BAO produces H₀ values 2.7-3.5σ lower than distance ladder
- BAO alone do not constrain H₀ (degeneracy with absolute sound horizon)
- Add information on baryon density (e.g. primordial deuterium abundance): tight H₀ constraint (2.8-3.3σ lower than distance ladder)
- But galaxy and Lyα BAO not in very good agreement with one another!
- Can't solely blame systematic in *Planck* data (although highmultipole *Planck* TT still drives tensions with other measurements)