Constraining cosmological parameters with **BAO** and **RSD** from **BOSS** & **eBOSS** galaxy clustering datasets

Héctor Gil-Marín (Institute Lagrange de Paris Fellow, LPNHE Sorbonne University) Tensions in the LCDM paradigm Mainz, 16th May 2018

Probes to test Dark Energy on late-time Universe

- Standard Candle Supernovae
- Weak lensing
- Cluster counting

Standard Ruler BAO & RSD

Observe dark matter tracers with high precision redshift covering a large area/ volume of the sky

How?

Standard Ruler BAO & RSD

Growth of structure: Ratio monopole to quadrupole ~ $f\sigma_8$

BAO peak position: in monopole ~ $(D_A^2/H)^{1/3} / r_s \rightarrow D_V / r_s$

BAO relative peak position: monopole, 'quadrupole' ~ D_AH

Cosmological Parameters

 $f\sigma_8(z)$ H(z)r_s D_A(z)/r_s (D_V/r_s)

non-Cosmological Parameters

Galaxy bias physics: $b_1\sigma_8$ $b_2\sigma_8$ σ_{FoG}

BOSS in a nutshell

DR12 footprint for the LRG sample DR12

- Part of SDSS-III collaboration
- Apache Point Telescope 2.5m
- 2009 2014 observing period
- LOWZ-LRGs (0.15<z<0.43),
- CMASS-LRGs (0.43<z<0.70),
- Ly-α (z~2.5)

- high density of tracers
 4 x 10⁻⁴ h/Mpc
- High density variation

eBOSS in a nutshell

- Part of SDSS-IV collaboration
- Apache Point Telescope 2.5m
- 2014 2019 observing period
- LRGs & ELGs (0.6 < z < 1.1),
- Quasars (0.8 < z < 2.2)
- Ly-a (z~2.5)

Hector Gil Marin

Clustering of Tracers: What do we measure?

The redshift survey catalogues deliver: **angles** and **redshifts** for each galaxy

$$r(z) = \int_0^z \frac{cdz'}{H(z', \Omega_m)}$$
$$H(z, \Omega_m) = H_0 \sqrt{\Omega_m (1+z)^3 + 1 - \Omega_m}$$

3D galaxy maps

Clustering strength: Quantify number of pairs over a uniform random distribution: correlation function, $\xi(R)$, or Power Spectrum, P(k)

$$\langle \delta(r_1)\delta(r_2) \rangle = \xi(r_1 - r_2) \qquad \langle \delta(k_1)\delta(k_2) \rangle = P(k_1)\delta^D(k_1 + k_2)$$

... and higher order functions, such as bispectrum.

Hector Gil Marin

Credit. Anand Raichoor

Age [Gyr]

Fat Stripe 82

eBOSS (2014-2016)

OSO+Lya

LRG ELG 2.0 2.5

Before recombination

- Photons and baryons are coupled
- Radiation pressure makes them oscillate
- Pressure waves within the fluid travelling at certain speed

Decoupling at z~1000

- Universe become optically thin
- Decoupling between baryons and photons
- Sounds speed within the fluid decreases
- <u>Travelling wave freezes</u>

Baryons & photons are left a distinct imprint, a spherical peak, at a specific scale: **The sound horizon scale at recombination**, ~150 Mpc.

Hector Gil Marin

- Universe assumed isotropic and homogeneous
- RSD: Enhancement / reduction of the clustering along the line-of-sight (LOS) direction due to peculiar velocities not detected (Kaiser 1987)

2. Coherent with growth of structure

Hector Gil Marin

- Break isotropy: µ-dependence: monopole, quadrupole, hexadecapole
- Modify the clustering: boost depends on f(z)
- Does not change shape of P_m(k)

Alcock-Paczynski effect

- Universe assumed isotropic and homogeneous
- AP effect: Anisotropy induced by transforming redshifts into coming distances assuming a <u>wrong cosmology</u>

Both transverse and longitudinal modes are modified by Ω_m

Alcock-Paczynski effect

- Universe assumed isotropic and homogeneous
- AP effect: Anisotropy induced by transforming redshifts into coming distances assuming a <u>wrong cosmology</u>

Both transverse and longitudinal modes are modified by Ω_m

Hector Gil Marin

 α_V modify the k vector in the monopole

 α_ϵ generates an anisotropy (distort symmetric 3D-features along and across the LOS)

 $\alpha_{\epsilon} \sim D_A H$

Hector Gil Marin

RSD & AP are degenerated!

Hector Gil Marin

LRGs BAO/RSD from BOSS

Type of analyses:

- RSD (full shape) vs. BAO,
- pre-recon vs. post-recon,
- configuration space vs. Fourier space

Hector Gil Marin

quasar BAO/RSD from eBOSS

DR14Q 0.8<z<2.2

Hector Gil Marin

Hector Gil Marin

Tensions with H₀

GR & ACDM assumed

relax flatness

D_A(z), H(z), fo₈(z) from BOSS galaxies / eBOSS quasars

Tensions with H₀

16th May 2018 Tensions in the LCDM paradigm

 $H_0(r_s/r_s^{fid})$

HGM et al. 2018

- BOSS measured $H(z)r_s$ in the range 0.2<z<0.75 using LRGs (high density)
- First results from eBOSS quasars measuring H(z)r_s in the range 0.8<z<2.2
- If r_s taken from Planck or BBN, $H(z)r_s$ from eBOSS+BOSS galaxies in agreement with Planck+LCDM ('tension' with cosmic ladder at ~3 σ)
- This disagreement doesn't reduce when flatness, GR, N_{eff}=3 conditions are relaxed
- More eBOSS data coming in the next 1.5yr (ELG, LRG, quasars + Lyα): errors of quasars to ~1/2, measurements at z~0.75 from LRGs + ELGs
- Ly- α BAO at z=2.4 at 2.3 σ from Planck (see next talk by Andreu)
- DESI will deliver more precise results within 5yr from now.

Back up slides

 $10^{3}(\xi[s] - \xi_{\text{smooth}})$

2

25

DR14Q BAO results

Power Spectrum

Ata et al. 2017

- Correlation factor ρ=0.97
- 3σ detection

0

0.8

In good agreement with Planck+GR

0.9

- D_V(z=1.52)=3843 ± 147 Mpc (3.8%)
- χ²=6.2/13 for ξ(R) and 27.7/33 for P(k)

1.0

 $\alpha_{\rm BAO}$

1.2

1.1

Impact of potential systematics

BAO Systematics

- Very robust
- $\sim 0.1\%$ non-linear shift at z=1.5
- relative velocity between DM & bar (?)
- Reconstruction assumptions (bias and f)

RSD systematics

- model dependent
- Intrinsic alignments
- failures & collisions

Impact of systematics

Redshift Failures: *i*) Weight the nearest neighbour (NN), use in BOSS analysis. *ii*) Weight all observed galaxies by their position in the plate,

$$W_{spec}(x_{foc}, y_{foc}) \sim \frac{1}{P_{sucess}(x_{foc}, y_{foc})}$$

Collision Pairs: Traditional nearest
 neighbour weighting (NN)

Redshift efficiency pattern en eBOSS DR14Q

Imprint such effects on the mocks and check how these correction schemes perform

Hector Gil Marin

True signal (systematic effect not applied)

Corrected: redshift failures (focal weight) + close pairs (NN)

Corrected: redshift failures (NN) + close pairs (NN)

Corrected: redshift failures (focal weight) [close pairs not applied]

Hector Gil Marin

Hector Gil Marin

16th May 2018 Tensions in the LCDM paradigm

BAO post-recon RSD Full Shape pre-recon Consensus Planck

Hector Gil Marin

+

Institut Lagrange

HGM et al. 2018

Hector Gil Marin

16th May 2018 Tensions in the LCDM paradigm