The tight coupling between baryons and DM in galaxies

Federico Lelli

European Southern Observatory

In collaboration with Stacy McGaugh (Case Western Reserve University) Pengfei Li (Case Western Reserve University) Marcel Pawlowski (University of California – Irvine) James Schombert (University of Oregon)

Robert Gendler

Rotation curves: historical evidence for DM

Federico Lelli (ESO Fellow)

Outline

I. The SPARC Galaxy Database

II. The Radial Acceleration Relation (RAR)

III. Models in LCDM and Open Problems

Federico Lelli (ESO Fellow)

Database for 175 Late-Type Galaxies at z~0 (spirals and dwarf irregulars): astroweb.case.edu/SPARC Lelli, McGaugh, Schombert 2016, AJ

Federico Lelli (ESO Fellow)

Spitzer Photometry & Accurate Rotation Curves

- HI+Hα Rotation Curves from Literature
 - 30 years of radio and optical observations
 - PhD theses from the University of Groningen Begeman 1987; Broeils 1992; Verheijen 1997; de Blok 1997; Swaters 1999; Noordermeer 2005; Lelli 2013 + other studies

Spitzer Photometry & Accurate Rotation Curves

- HI+Hα Rotation Curves from Literature
 - 30 years of radio and optical observations
 - PhD theses from the University of Groningen Begeman 1987; Broeils 1992; Verheijen 1997; de Blok 1997; Swaters 1999; Noordermeer 2005; Lelli 2013 + other studies
- Homogeneous Photometry at 3.6 μm
- Optimal tracer of the stellar mass: $M_* = \Upsilon_* L$
- Smaller variations of Υ_* in the NIR than optical

Verheijen 2001; Bell & de Jong 2001; Martinsson+2013; Meidt+2014; McGaugh & Schombert 2014; Schombert & McGaugh 2014; Querejeta+2015; Röck+2015; Herrmann+2016; Norris+2016.

WSRT

Spitzer

Widest possible range of disk properties

Federico Lelli (ESO Fellow)

Example: High-Mass, High-Density Spiral

 $\nabla^2 \Phi_{\rm bar}({\rm R},z) = 4\pi G \rho_{\rm bar}({\rm R},z)$

- Vertical Structure: Disks: $exp(-z/h_z)$ with $h_z \propto h_R$ Bulges: spherical symmetry
- Stellar mass-to-light ratio: $\Upsilon_* = 0.5 M_{\odot}/L_{\odot}$ for disks $\Upsilon_* = 0.7 M_{\odot}/L_{\odot}$ for bulges

Federico Lelli (ESO Fellow)

Example: Low-Mass, Low-Density Dwarf

 $\nabla^2 \Phi_{\rm bar}({\rm R},z) = 4\pi G \rho_{\rm bar}({\rm R},z)$

- Vertical Structure: Disks: $exp(-z/h_z)$ with $h_z \propto h_R$ Bulges: spherical symmetry
- Stellar mass-to-light ratio: $\Upsilon_* = 0.5 M_{\odot}/L_{\odot}$ for disks $\Upsilon_* = 0.7 M_{\odot}/L_{\odot}$ for bulges

Federico Lelli (ESO Fellow)

Spitzer Photometry & Accurate Rotation Curves

- 1. Basic Data & Structural Relations: Lelli+2016a, AJ
- 2. Baryonic TF Relation: Lelli+2016b, ApJL
- 3. Central Density Relation: Lelli+2016c, ApJL
- 4. Radial Acceleration Relation (I): McGaugh+2016, PRL
- 5. Radial Acceleration Relation (II): Lelli+2017a, ApJ
- 6. Testing DM Halo Profiles: Katz+2017, MNRAS
- 7. Testing Emergent Gravity: Lelli+2017b, MNRAS
- 8. Radial Acceleration Relation (III): Li+2018, A&A

Spitzer Photometry & Accurate Rotation Curves

- 1. Basic Data & Structural Relations: Lelli+2016a, AJ
- 2. Baryonic TF Relation: Lelli+2016b, ApJL
- 3. Central Density Relation: Lelli+2016c, ApJL
- 4. <u>Radial Acceleration Relation</u> (I): McGaugh+2016, PRL
- 5. <u>Radial Acceleration Relation</u> (II): Lelli+2017a, ApJ
- 6. Testing DM Halo Profiles: Katz+2017, MNRAS
- 7. Testing Emergent Gravity: Lelli+2017b, MNRAS
- 8. Radial Acceleration Relation (III): Li+2018, A&A

II. Radial Acceleration Relation

Federico Lelli (ESO Fellow)

Radial Acceleration Relation (RAR)

Federico Lelli (ESO Fellow)

Radial Acceleration Relation (RAR)

Federico Lelli (ESO Fellow)

Very different galaxies but ONE relation

Federico Lelli (ESO Fellow)

Very different galaxies but ONE relation

Federico Lelli (ESO Fellow)

Very different galaxies but ONE relation

Federico Lelli (ESO Fellow)

Building up the Radial Acceleration Relation

Large Diversity in Rotation Curves

Regularity in Acceleration Plane

Lelli et al. (2017), ApJ

Federico Lelli (ESO Fellow)

Building up the Radial Acceleration Relation

Large Diversity in Rotation Curves

Regularity in Acceleration Plane

Lelli et al. (2017), ApJ

Federico Lelli (ESO Fellow)

Is There Any Intrinsic Scatter?

Uncertainties drive scatter!

 $err(g_{bar}) \rightarrow \Upsilon_{\star}$, 3D geometry $err(g_{obs}) \rightarrow Dist, Inc, V_{rot}$

 $\sigma_{obs}^{2} = \sigma_{err}^{2} + \sigma_{int}^{2}$

 $\sigma_{\rm obs}$ — measured rms

 $\sigma_{\rm err} \rightarrow$ error propagation

 $\sigma_{\rm int} {\rightarrow}$ consistent with zero!

McGaugh+2016, PRL; Lelli+2017, ApJ

Federico Lelli (ESO Fellow)

MCMC Fits to Individual Galaxies

Fit the mean relation to individual galaxies marginalizing over D, i, $\Upsilon_{\rm disc,}$ and $\Upsilon_{\rm bul.}$

Gaussian priors on free parameters with $\sigma = \sigma_{\rm err}$

Li, LELLI, McGaugh, Schombert 2018, A&A

Federico Lelli (ESO Fellow)

MCMC Fits to Individual Galaxies

Extremely tight relation: $\sigma_{obs} = 0.057 \text{ dex} (\sim 13\%)$ Not trivial because D, i, and Υ_* are global prop! Residual best-fitted by two Gaussians: it can be explained by two error sources in V_{rot} !

Federico Lelli (ESO Fellow)

OK. This works for star-forming galaxies... What about passive ones (ETGs)?

Federico Lelli (ESO Fellow)

Radial Acceleration Relation for ETGs

Massive Ellipticals: g_{obs} from hot X-rays haloes in hydrostatic equilibrium (Humprey+2006,2009,2012)

Rotating ETGs:

g_{obs} from stellar kinematics + Jeans Axisymmetric Models (Atlas^{3D} - Cappellari+2010)

Dwarf Spheroidals: g_{obs} from stellar kinematics + Jeans Spherical Models (many many references...)

Lelli+2017, ApJ

Federico Lelli (ESO Fellow)

Radial Acceleration Relation for ETGs

Massive Ellipticals: g_{obs} from hot X-rays haloes in hydrostatic equilibrium (Humprey+2006,2009,2012)

Rotating ETGs:

g_{obs} from stellar kinematics + Jeans Axisymmetric Models (Atlas^{3D} - Cappellari+2010)

Dwarf Spheroidals: g_{obs} from stellar kinematics + Jeans Spherical Models (many many references...)

Lelli+2017, ApJ

Federico Lelli (ESO Fellow)

We can infer the DM profile <u>empirically</u> only from the baryons with a ~30% accuracy! From the observations: $g_{DM} = g_{obs} - g_{bar} = F(g_{bar})$ For a spherical DM halo: $M_{DM}(R) = \frac{R^2}{G} F(g_{bar})$ For our fiducial fitting F: $M_{DM}(R) = \frac{R^2}{G} \frac{g_{bar}}{\exp(\sqrt{g_{bar}/g_0}) - 1}$

We can infer the DM profile empirically only from the baryons with a ~30% accuracy! $g_{DM} = g_{obs} - g_{bar} = F(g_{bar})$ From the observations: For a spherical DM halo: $M_{DM}(R) = \frac{R^2}{C} F(g_{bar})$ For our fiducial fitting F: $M_{DM}(R) = \frac{R^2}{G} \frac{g_{bar}}{\exp(\sqrt{g_{bar}/g_0}) - 1}$ "Cusp-Core" is just a symptom of a more serious illness:

Baryon-DM coupling at each radius (not just the center).

No freedom to fit arbitrary DM halos!

Federico Lelli (ESO Fellow)

III. Models in LCDM

Federico Lelli (ESO Fellow)

MUGS2 simulations: Keller & Wadsley 2017 EAGLE+APOSTOLE: Ludlow et al. 2018 MassiveBlack II: Tenneti et al. 2017 ZOMG simulations: Garaldi et al. 2018

In Summary:

- RAR is reproduced but shape is a problem

- Sims have too much DM inside galaxies at every radius (~50%)

Federico Lelli (ESO Fellow)

MUGS2 simulations: Keller & Wadsley 2017 EAGLE+APOSTOLE: Ludlow et al. 2017

MassiveBlack II: Tenneti et al. 2018

OBSERVATIONS: $g_0 = 1.20 \pm 0.24$ (sys) x 10⁻¹⁰ m s⁻²

Federico Lelli (ESO Fellow)

MUGS2 simulations: Keller & Wadsley 2017 EAGLE+APOSTOLE: Ludlow et al. 2017 MassiveBlack II:

Tenneti et al. 2018

OBSERVATIONS: $g_0 = 1.20 \pm 0.24$ (sys) x 10⁻¹⁰ m s⁻²

EAGLE: $g_0 = 2.6 \times 10^{-10} \text{ m s}^{-2} \rightarrow 5.8 \sigma$ discrepancy

Federico Lelli (ESO Fellow)

MUGS2 simulations: Keller & Wadsley 2017 EAGLE+APOSTOLE: Ludlow et al. 2017 MassiveBlack II:

OBSERVATIONS: $g_0 = 1.20 \pm 0.24$ (sys) x 10^{-10} m s⁻² EAGLE: $g_0 = 2.6 \times 10^{-10} \text{ m s}^{-2} \rightarrow 5.8 \sigma$ discrepancy MassiveBlack II: $g_0 = 2.0 \times 10^{-10} \text{ m s}^{-2} \rightarrow 3.3 \sigma$ tension

Federico Lelli (ESO Fellow)

MUGS2 simulations: Keller & Wadsley 2017 EAGLE+APOSTOLE: Ludlow et al. 2017 MassiveBlack II:

Tenneti et al. 2018

OBSERVATIONS: $g_0 = 1.20 \pm 0.24$ (sys) x 10⁻¹⁰ m s⁻²

EAGLE: $g_0 = 2.6 \times 10^{-10} \text{ m s}^{-2} \rightarrow 5.8 \sigma$ discrepancy

MassiveBlack II: $g_0 = 2.0 \times 10^{-10} \text{ m s}^{-2} \rightarrow 3.3\sigma$ tension

ZOMG: $g_0 = 1.4 \times 10^{-10} \text{ m s}^{-2} \rightarrow \sim 1\sigma \text{ agreement}$

RAR from Semi-Empirical Analytic Models

Di Cintio & Lelli (2016): RAR-like relation emerges in ACDM once we impose 4 basic scaling relations:

- 1) $M_h c$ from N-body simulations
- 2) $M_* M_h$ from abundance matching
- 3) $M_* R_*$ from observations
- 4) $M_* M_{gas}$ from observations

RAR from Semi-Empirical Analytic Models

Di Cintio & Lelli (2016): RAR-like relation emerges in ACDM once we impose 4 basic scaling relations:

- 1) $M_h c$ from N-body simulations
- 2) $M_* M_h$ from abundance matching
- 3) $M_* R_*$ from observations
- 4) $M_* M_{gas}$ from observations

Existence of the RAR is not a problem per se. Real problem is the RAR tightness: all these relations have significant intrinsic scatter! Where does it go?

Federico Lelli (ESO Fellow)

RAR from Abundance-Matching Models

Desmond (2017):

1- Take N-body sims and assign each SPARC galaxy into a DM halo using AM 2- For each galaxy, $g_{tot} = g_{bar} + g_{DM}$ taking observed spatial sampling and errors into account

3- Repeat N-times perturbing M_{*} to account for variance

Federico Lelli (ESO Fellow)

RAR from Abundance-Matching Models

Desmond (2017):

1- Take N-body sims and assign each SPARC galaxy into a DM halo using AM 2- For each galaxy, $g_{tot} = g_{bar} + g_{DM}$ taking observed spatial sampling and errors into account

3- Repeat N-times perturbing M_{*} to account for variance

Federico Lelli (ESO Fellow)

RAR from Abundance-Matching Models

MEMO: $\sigma_{tot}^{2} = \sigma_{err}^{2} + \sigma_{int}^{2}$ If the errors turn out to be under-estimated, the discrepancy will increase!

Federico Lelli (ESO Fellow)

Conclusions:

 Local, tight coupling between baryons and DM in galaxies over ~5 dex in mass.

- There is an acceleration scale in galaxies. If you like numerology: $g_0 \sim CH_0 \sim 10^{-10}$ m s⁻².

Questions?

Federico Lelli (ESO Fellow)

Residuals vs Local Galaxy Properties

Federico Lelli (ESO Fellow)

Residuals vs Global Galaxy Properties

Federico Lelli (ESO Fellow)

Alternative versions of the RAR

Federico Lelli (ESO Fellow)

The tight coupling between baryons and DM in Galaxies

Spitzer [3.6] Photometry: Stellar Mass

 $\Upsilon_*\text{-color relations from SPS models}$ (McGaugh & Schombert 2014)

- Υ_* shows smaller variations at [3.6] than optical bands
- Details depend on SPS model and assumed IMF
- Most recent models: $\Upsilon_{[3.6]}$ is nearly constant for LTGs (Meidt+2014; Schombert & McGaugh 2014; Norris+2016)

Dwarf Spheroidals (dSphs) in the Local Group

Satellites of MW and M31: extremely low masses, sizes, densities, and accelerations!

"Classical" dSphs discovered between the '40 and the '80. → well-studied properties

"Ultrafaint" dSphs discovered during the past ~10 years with SDSS, DES and other surveys → properties remain uncertain

Federico Lelli (ESO Fellow)

Open Problems for ACDM models:

1. Why is the RAR scatter so small?

Is this consistent with stochastic hierarchical merging?

2. Why is the RAR low-acceleration slope ~0.5? $g_{obs} = \sqrt{(g_0 g_{bar})} \rightarrow V_{flat}^4 = M_{bar} / (g_0 G) \rightarrow Observed BTFR$ Whatever sets the RAR should also set the BTFR.

3. Why an acceleration scale? What sets its value? <u>Different roles</u> of g_0 : baryon-to-DM transition (RAR)

& global baryon-to-DM content (BTFR)!

Federico Lelli (ESO Fellow)