

Tensions in the orbits of dwarf satellites

Marius Cautun

Carlos Frenk and Shi Shao

Tensions in the LCDM paradigm Mainz 15 May 2018

MC+ 2015a, 2015b Shao, MC+ 2016, 2017 MC & Frenk, 2017 MC+ in prep

"Small scale problems"

- The missing satellites problem
- The too-big-to-fail problem
- The core-cusp problem
- The plane of satellites problem
- The tangential motion excess

"Small scale problems"

- The missing satellites problem
- The too-big-to-fail problem
- The core-cusp problem
- The plane of satellites problem
- The tangential motion excess

Potentially reflect our poor understanding of baryonic processes in dwarf galaxies (e.g. Sawala+ 2016).

Unlikely to be solved by baryonic processes.

The plane of satellites problem

The Milky Way plane of satellites

Kroupa 2005

The Milky Way plane of satellites

Preferred rotation

Pawlowski+ 2012

The Andromeda plane

The Andromeda plane

Preferred rotation

PAndAS view of the Andromeda's satellites.

Ibata+ 2013; Shaya & Tully 2013

The Centaurus-A plane

Spatially thin & preferred rotation

Mueller+ 2018

The incidence of MW and M31 satellite planes

	MW	M31
Satellites in the plane	11 out of 11	15 out of 27
Plane thickness	19.6 kpc	12.6 kpc
Same sense of rotation	8 out of 11	13 out of 15
Probability of the same exact system in LCDM	~ 1 out of 10 ³	~ 1 out of 10 ³
	Is this a problem for LCDM ?	

Ibata+ 2014; Pawlowski+ 2014

Testing against the LCDM paradigm

What is the probability within LCDM to obtain planes as extreme as those found in observations?

Testing against the LCDM paradigm

What is the probability within LCDM to obtain planes <u>as extreme</u> as those found in observations?

Spatially thin

High degree of coherent rotation

Identifying planes of satellites

- 1. Does the system have a plane of satellites?
- 2. If so, which satellites are part of the plane?

Identifying prominent planes

Need robust and objective method for identifying planes that is not *subjective* or based on *a posteriori* information.

Which plane stands out the most?

Define plane prominence:

probability that it is due to a statistical fluctuation

Identifying prominent planes

Each halo has a most prominent plane of satellites. But, is this significant?

Planes of satellites

The Local Group planes

Marius Cautun

Properties of prominent planes

Each plane is different, no two are the same.

In tension with LCDM?

0.5 — 0.05 % (2.8–3.5 sigma)

What about tests for external SDSS galaxies?

The spatial distribution

- Photometrically selected satellites
- Study anisotropies in the plane of the sky

The spatial distribution

 Study anisotropies in the plane of the sky

Ibata+ 2014a

The significance of the original detection ($\sim 4\sigma$) decreases sharply when accounting for the **look-elsewhere effect**:

sample selection variation

How do planes of satellites form?

Correlated infall

1. Accretion of dwarf galaxy groups

2. Accretion along the cosmic web filaments

Shao, MC+ (2017)

Satellite PDF

Correlated infall

Accretion of satellite galaxies is highly anisotropic, with a preferential accretion direction along the halo major axis.

Correlated infall

Can the plane of satellites be explained by the accretion of one rich group or many satellites along the same filament?

Shao, MC+ (2017)

Orbit evolution inside the host

Can the plane of satellites be explained by the accretion of one rich group or many satellites along the same filament?

The tangential velocity excess

Satellites velocity anisotropy

Marius Cautun

33

Individual satellites

What could give rise to more circular orbits?

- Satellites with cored profiles since they are more easily disrupted by the Galactic tides.
- Self-interacting dark matter. This could potentially lead to a faster disruption of satellites on radial orbits.
- Unusually early accretion of the Galactic satellites. Dynamical friction can act for a longer time resulting in more circular orbits.

Summary

- Each of the observed "plane of satellites" for the three systems where observations are available are within the ~10% tail of the LCDM predictions.
- The Milky Way satellites have more circular orbits than expected, with only 1.5% of the LCDM systems being more extreme.
- So what do the two "problems" tell us about the Universe?
 - A. The Local Group is very atypical. Which properties are unusual and how do they compare to the typical LCDM halo?
 - B. Breakdown of the cosmological model on galactic scales.

Thank you!