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The missing satellites problem

The too-big-to-fail problem

The core-cusp problem

The plane of satellites problem

The tangential motion excess
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“Small scale problems”
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The missing satellites problem

The too-big-to-fail problem

The core-cusp problem

The plane of satellites problem

The tangential motion excess

Potentially reflect our 
poor understanding of 
baryonic processes in 
dwarf galaxies 
(e.g. Sawala+ 2016).

Unlikely to be solved by 
baryonic processes.
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The plane of satellites 
problem
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The Milky Way plane of satellites
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Kroupa 2005

Spatially thin
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The Milky Way plane of satellites
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Pawlowski+ 2012

Preferred rotation
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The Andromeda plane
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Figure 1: Map of the Andromeda satellite system. The homogenous PAndAS survey (irregular 

polygon) provides the source catalogue for the detections and distance measurements of the 27 

satellite galaxies20  (filled circles) used in this study.  Near M31 (ellipse), the high background 

hampers the detection of new satellites and precludes reliable distance measurements for M32 and 

NGC 205 (black open circles); we therefore exclude the region inside 2◦.5 (dashed circle) from the 

analysis. The seven satellites known outside the PandAS area (green circles/arrows) constitute a 

heterogenous sample, discovered in various surveys with non-uniform spatial coverage, and their 

distances are not measured in the same homogenous way. Since a reliable spatial analysis requires 

a dataset with homogenous selection criteria, we do not include these objects in the sample either. 

The analysis shows that satellites marked red are confined to a highly planar structure. Note that 

this structure is approximately perpendicular to lines of constant Galactic latitude, so it is therefore 

aligned approximately perpendicular to the Milky Way’s disk (the grid squares are 4◦  × 4◦). 

Ibata+ 2013; Shaya & Tully 2013 
PAndAS view of the 

Andromeda’s satellites.

Spatially thin
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The Andromeda plane
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Ibata+ 2013; Shaya & Tully 2013 

Preferred rotation

PAndAS view of the 
Andromeda’s satellites.
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The Centaurus-A plane
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Mueller+ 2018 

Spatially thin & 
preferred rotation
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The incidence of MW and M31
satellite planes
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Ibata+ 2014; Pawlowski+ 2014

MW M31

Satellites in the 
plane 11 out of 11 15 out of 27

Plane thickness 19.6 kpc 12.6 kpc

Same sense of 
rotation 8 out of 11 13 out of 15

Probability of  
the same exact 

system in LCDM
~1 out of 103 ~1 out of 103

Is this a problem 
for LCDM ?
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Testing against the LCDM paradigm

11

What is the probability within LCDM to obtain 
planes as extreme as those found in observations?
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Testing against the LCDM paradigm
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What is the probability within LCDM to obtain 
planes as extreme as those found in observations?

• Spatially thin

• High degree of coherent rotation



Marius Cautun Satellite orbit tensions

Identifying planes of satellites
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1. Does the system have a plane of satellites?

2. If so, which satellites are part of the plane?
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Identifying prominent planes
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Need robust and objective method for identifying planes that is 
not subjective or based on a posteriori information.

Which plane stands
out the most?

Plane 1:   Nsat = 7,  P = 410

Define plane prominence:

P =
1

probability that it is due 
to a statistical fluctuation

MC, Bose + 2015b
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Identifying prominent planes
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Plane 1:   Nsat = 7,  P = 410 Plane 2:   Nsat = 11,  P = 660 Plane 3:   Nsat = 15,  P = 450

Each halo has a most prominent plane of satellites.
But, is this significant?
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Planes of satellites
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5-10% of LCDM systems  
have more extreme planes
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Figure 5. The characteristics of the rarest spatial + 2D-
kinematic planes of satellites that are at least as prominent as
the M31 plane, i.e. P rarest

spatial+ 2D-kin

> 1.8 ⇥ 104. There are 852
such systems in MS-II. The grid cells are coloured according to
the number of systems with those properties. The three panels
show the number of satellites sharing the same sense of rotation,
N

s.s.r.

(top), the thickness, r? (centre), and the radial extent, rk
(bottom), of the best-fit plane, as a function of the number of
satellites in the plane, N

sat

. The large triangle shows the proper-
ties of the M31 plane.

for the most prominent plane, since, on top of the spatial
distribution, also the 2D kinematics are considered.

4.4 The characteristics of rare planes

In Fig. 5 we show the characteristics of the rarest spatial +
2D-kinematic planes that are at least as prominent as the
M31 plane. We describe the planes in terms of the number
of members sharing the same sense of rotation, the plane
thickness and the radial extent of the plane, rk. This latter
property characterizes the dispersion of the satellites within
the plane and it is calculated as the mean sum of the squares
of the distance projected onto the best fit plane. We choose
these plane characteristics to be consistent with previous
studies that investigated the incidence of the MW and M31
plane of satellites in term of these properties (e.g. Bahl &
Baumgardt 2014; Ibata et al. 2014c).

Fig. 5 shows that there is considerable variation among
the properties of the most prominent planes, suggesting that
each plane is di↵erent. For example, the number of members
sharing the same sense of rotation,N

s.s.r.

, can take values be-
tween N

sat

/2 to N
sat

. The top panel of the figure shows that
the planes haveN

s.s.r.

values spanning the full allowed range,
although there is a higher preference for N

s.s.r.

' N
sat

, since
that will result in a higher prominence. The behaviour in the
middle panel is governed by two requirements. Firstly, to be
prominent, planes with a small number of members need to
be very thin since such structures cannot have a high 2D-

kinematic prominence, which explains the distribution seen
in the left-half of the panel. Secondly, once the number of
members is high enough, ⇠16 in this case, the 2D-kinematic

prominence can be by itself very large, so that such planes
do not necessarily need to be very thin. This explains the
large scatter in the r? values seen in the right-half of the
middle panel. And lastly, the prominence of a plane does not
depend on rk, which explains the large scatter in rk values
seen in the bottom panel of the figure.

Fig. 5 also shows the properties of the M31 plane of
satellites whose position is marked with a large triangle.
The M31 plane is within the scatter expected for ⇤CDM
planes, although it does stand out as having an unusually
large radial extent, rk.

4.5 The incidence of rare planes

For each halo, we study the incidence of the rarest spatial +
2D-kinematic plane among the distribution of satellites of
all other ⇤CDM haloes. This is motivated by the studies of
Ibata et al. (2014c) and Pawlowski et al. (2014) that inter-
preted the low incidence of the M31 plane as evidence for
an inconsistency between observed planes of satellites and
⇤CDM predictions.

We define the incidence or frequency of a plane using the
approach of Ibata et al. (2014c). Each plane of satellites is
characterized by: its number of members, N

sat

; how many of
them share the same sense of rotation, N

s.s.r.

; the thickness,
r?; and radial extent, rk, of the plane. Then, the frequency
or incidence, f

⇤CDM

(N
sat

,6r?,>rk,>N
s.s.r.

), of this plane
is given by the fraction of ⇤CDM systems that have a similar
plane. To describe the procedure, we exemplify it for the case
of two systems A and B. We are interested in the frequency
of the rarest plane of satellites of halo A and we wish to find
out if halo B has a similar plane. We take all possible satellite
configurations of system B that have NA

sat

members, which
we find using the procedure described in Appendix A1. If any
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• Milky Way:

• Andromeda:

• Centaurus-A: 

5%

10% 

~10% 

0.5 — 0.05 %   (2.8–3.5 sigma)

2.0 sigma

1.6 sigma 

~10% 
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MC, Wang, Frenk and Sawala 2015a
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The spatial distribution
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MC, Wang, Frenk and Sawala 2015a

• Photometrically selected satellites 
• Study anisotropies in the plane of 

the sky
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MC, Wang, Frenk and Sawala 2015a

A new spin on disks of satellite galaxies 5
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Figure 2. The probability distribution function (PDF) of the

angle, ✓BS·S, of satellites with respect to the line joining the
primary to the brightest satellite. Results are shown for pri-

maries in three magnitude ranges: �22.5 > M

Cen
r >�23.5 (top),

�21.5 > M

Cen
r > �22.5 (centre) and �20.5 > M

Cen
r > �21.5

(bottom). The solid black curve is for the observational data,

while the red and blue curves are for the MS and MS-II respec-
tively.

the faintest magnitude bin where most of the signal is due to
satellites with Mr>⇠ � 16 which are not properly resolved in
the MS. We have also tested the e↵ect of excluding orphan
galaxies from the analysis and find that, in the case of the
MS-II, the results hardly change.

In general, we find a good agreement between the data
and the model predictions. The largest deviations are seen in
the central panel of Fig. 2 and are likely caused by the corre-
lated deviations among the data points. The area under each
PDF is the same, so an excess at one angle leads to a lack
of satellites at another angle. In addition, semi-analytical
models still have some problems when it comes to match-
ing the observed radial and color distribution of satellites
(e.g. Wang et al. 2014). So small di↵erences between data
and mocks are potentially indicative of shortcomings in the
semi-analytical models and are not very worrying.

In Fig. 3 we investigate the spatial anisotropy of satel-
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Figure 3. Same as Fig. 2 but restricted to satellites within a
projected radial distance of 20 to 150 kpc.

lites in the projected radial extent 20�150 kpc. This is mo-
tivated by the findings of Ibata14, according to which ⇠50%
of the satellites in this projected radial range are on rotating
disks. We find again a good agreement in the spatial distri-
bution of satellites in both data and mocks. In addition, the
two mocks, MS and MS-II, show a reasonable concordance,
though to a lesser extent than in Fig. 2. This is likely due
to the treatment of orphan galaxies that, so close to the pri-
mary, account for most of the MS satellites (e.g. see Wang
et al. 2014).

The main conclusion from Figs 2-3 is that the SDSS
data agree well with the results from the mocks based on a
semi-analytic model of galaxy formation in ⇤CDM. Recent
claims (e.g. Kroupa 2012) suggest there is a conflict between
the observed spatial anisotropies in the satellite distribution
and the ⇤CDM model. According to the test done here, we
do not find any such conflict. In fact, as emphasized amongst
others by Libeskind et al. (2005) and Wang, Frenk & Cooper
(2013), such anisotropies are actually expected in ⇤CDM.

The simulations predict 20% more satellites at ✓BS·S =
180� than at ✓BS·S = 90� for the two brightest bins, and
17% more for the faintest primary sample. If we were to in-
terpret these results in the light of the simplified disk model
introduced in Fig. 1, this would suggest that, on average,
around ⇠50% of the satellites are in a relatively thin plane.
Other studies based on cosmological simulations (eg. Libe-
skind et al. 2005; Wang, Frenk & Cooper 2013) showed that
planes of satellites exist and, thus, it is natural to expect that
the signal found in Fig. 2 is related to that phenomenon. In
cosmological simulations, these planar structures arise from
the anisotropic infall of satellite galaxies along filaments,
which leads to the formation of flattened, pancake-like satel-
lite distributions (Libeskind et al. 2005).

c� 0000 RAS, MNRAS 000, 000–000
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Figure 2. The probability distribution function (PDF) of the

angle, ✓BS·S, of satellites with respect to the line joining the
primary to the brightest satellite. Results are shown for pri-

maries in three magnitude ranges: �22.5 > M

Cen
r >�23.5 (top),

�21.5 > M

Cen
r > �22.5 (centre) and �20.5 > M

Cen
r > �21.5

(bottom). The solid black curve is for the observational data,

while the red and blue curves are for the MS and MS-II respec-
tively.

the faintest magnitude bin where most of the signal is due to
satellites with Mr>⇠ � 16 which are not properly resolved in
the MS. We have also tested the e↵ect of excluding orphan
galaxies from the analysis and find that, in the case of the
MS-II, the results hardly change.

In general, we find a good agreement between the data
and the model predictions. The largest deviations are seen in
the central panel of Fig. 2 and are likely caused by the corre-
lated deviations among the data points. The area under each
PDF is the same, so an excess at one angle leads to a lack
of satellites at another angle. In addition, semi-analytical
models still have some problems when it comes to match-
ing the observed radial and color distribution of satellites
(e.g. Wang et al. 2014). So small di↵erences between data
and mocks are potentially indicative of shortcomings in the
semi-analytical models and are not very worrying.

In Fig. 3 we investigate the spatial anisotropy of satel-
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Figure 3. Same as Fig. 2 but restricted to satellites within a
projected radial distance of 20 to 150 kpc.

lites in the projected radial extent 20�150 kpc. This is mo-
tivated by the findings of Ibata14, according to which ⇠50%
of the satellites in this projected radial range are on rotating
disks. We find again a good agreement in the spatial distri-
bution of satellites in both data and mocks. In addition, the
two mocks, MS and MS-II, show a reasonable concordance,
though to a lesser extent than in Fig. 2. This is likely due
to the treatment of orphan galaxies that, so close to the pri-
mary, account for most of the MS satellites (e.g. see Wang
et al. 2014).

The main conclusion from Figs 2-3 is that the SDSS
data agree well with the results from the mocks based on a
semi-analytic model of galaxy formation in ⇤CDM. Recent
claims (e.g. Kroupa 2012) suggest there is a conflict between
the observed spatial anisotropies in the satellite distribution
and the ⇤CDM model. According to the test done here, we
do not find any such conflict. In fact, as emphasized amongst
others by Libeskind et al. (2005) and Wang, Frenk & Cooper
(2013), such anisotropies are actually expected in ⇤CDM.

The simulations predict 20% more satellites at ✓BS·S =
180� than at ✓BS·S = 90� for the two brightest bins, and
17% more for the faintest primary sample. If we were to in-
terpret these results in the light of the simplified disk model
introduced in Fig. 1, this would suggest that, on average,
around ⇠50% of the satellites are in a relatively thin plane.
Other studies based on cosmological simulations (eg. Libe-
skind et al. 2005; Wang, Frenk & Cooper 2013) showed that
planes of satellites exist and, thus, it is natural to expect that
the signal found in Fig. 2 is related to that phenomenon. In
cosmological simulations, these planar structures arise from
the anisotropic infall of satellite galaxies along filaments,
which leads to the formation of flattened, pancake-like satel-
lite distributions (Libeskind et al. 2005).
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Figure 2: Anti-correlated satellites in the SDSS. a, The number of satellite pairs that have cor-

related and anti-correlated velocities is shown as function of the tolerance angle. There is a clear

surplus of anti-correlated pairs for all angles considered. b, This fraction shows an overall de-

cline with increasing tolerance angle, reaching 2.4 at 15�, which we consider the maximum useful

opening angle given the low number of satellite pairs in the SDSS. c, The significance (in units of

standard deviation) of the excess of anti-correlated satellite pairs. The most significant peak has

significance > 4� at an opening angle of 8�.
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Figure 11. The excess of same side satellite pairs with correlated

velocities as predicted by the MS. It shows that in semi-analytical

models this excess is largely independent of satellite brightness
and that even very bright satellite pairs that are within 1 to 2

magnitudes di↵erence from their primaries show the same signal.
Thus, the lack of a signature of a rotating disk of satellites for

same side pairs cannot be due to bright binary pairs. The solid

triangles corresponds to the triangles from the top panel of Fig. 9.
Note the very di↵erent scales used in the two figures.

2. Diametrically opposed pairs

3. Same side pairs

Under closer scrutiny, we find that the proposals of
Ibata14-b do not explain the decrease in significance when
relaxing the selection criteria for diametrically opposite
pairs. Similarly, they also do not explain the absence of a
rotating disk signature for same side pairs. We also com-
ment on the very high spatial anisotropy of satellites re-
ported in Ibata14-b, which we find unphysically large. Their
anisotropy is larger than one would expect even for the most
extreme case, when all satellites are distributed in an in-
finitely thin plane.

6 CONCLUSION AND DISCUSSION

In the first part of this study we characterised the spatial
distribution of satellites in a large sample of SDSS galaxies.
Our analysis focused on isolated primaries that have one
or more satellites with spectroscopic redshifts. We used the
photometric catalogue of SDSS/DR8 galaxies to count the
number of satellites as a function of the angle they subtend
relative to a reference axis defined by the brightest satellite.
We considered three samples of primary galaxies centred on
absolute magnitudes of Mr = �23, -22 and -21. We found
a clear signal of anisotropy in the spatial distributions of
satellites of the two brightest samples of primaries, while for
the faintest sample the uncertainties are of the same order as
the expected signal. We compared the observational data to
the predictions of the semi-analytic galaxy formation model
of Guo et al. (2011) implemented in the ⇤CDM Millennium
and Millennium-II cosmological simulations, and find very
good agreement between the observations and the theoreti-
cal predictions.

In the second part of this study we extended the analy-
sis of Ibata14 to explore if the anisotropy we detected could
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Figure 12. Comparison of the excess of satellite pairs with an-

ticorrelated velocities for pairs diametrically opposite (left-half)

and on the same side (right-half) of the primary. The observa-
tional results are shown by the filled circles. The filled triangles

show the expected signal if the results found for diametrically op-

posite pairs were indicative of a rotating disk of satellites (it is
a mirror image of the left-half results with respect to the y = x

diagonal). The shaded region shows the 1� uncertainty.

be related to the rotating disks of satellites claimed by these
authors. We concluded that the observational sample is not
robust enough to detect such disks. This result is also con-
sistent with ⇤CDM where rotating satellite disks do ex-
ist (Lovell et al. 2011) but not to the extent reported by
Ibata14. In particular, we found the excess of diametrically
opposite satellite pairs with anticorrelated velocities seen by
Ibata14 to be very sensitive to the sample selection crite-
ria. Small variations from the reference criteria employed by
these authors lead to smaller excesses of anticorrelated pairs
and, almost invariably, to a reduced significance, which in
many cases is well below 3�. We can think of no good physi-
cal reason why relaxing some of the sample selection criteria
would lead to a lower signal and conclude that the detection
of rotating satellite disks in the SDSS data is not robust.

To test further if the reported excess of anticorrelated
velocities among satellites on opposite sides of the primary
could originate from a large fraction of systems having rotat-
ing disks of satellites, we compared it to the expected excess
of correlated velocities among satellites on the same side of
their respective primaries. Using similar selection criteria to
those used by Ibata14 to define the opposite-side pairs, we
found no excess of correlated velocities in same-side pairs in
the SDSS sample.

The results for opposite and same-side satellite systems
are summarised in Fig. 12, which shows the fraction of an-
ticorrelated pairs of satellites on either the opposite or the
same side of their host primary. Filled circles show the actual
measurements on both sides, while on the right half, grey tri-
angles denote the expected signal for same-side pairs if the
excess of anticorrelated velocities measured for opposite-side
pairs were indicative of rotating disks. The measurements
for same-side pairs are clearly in disagreement with this hy-
pothesis, especially at small tolerance angle, �, where the
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Figure 11. The excess of same side satellite pairs with correlated

velocities as predicted by the MS. It shows that in semi-analytical

models this excess is largely independent of satellite brightness
and that even very bright satellite pairs that are within 1 to 2

magnitudes di↵erence from their primaries show the same signal.
Thus, the lack of a signature of a rotating disk of satellites for

same side pairs cannot be due to bright binary pairs. The solid

triangles corresponds to the triangles from the top panel of Fig. 9.
Note the very di↵erent scales used in the two figures.

2. Diametrically opposed pairs

3. Same side pairs

Under closer scrutiny, we find that the proposals of
Ibata14-b do not explain the decrease in significance when
relaxing the selection criteria for diametrically opposite
pairs. Similarly, they also do not explain the absence of a
rotating disk signature for same side pairs. We also com-
ment on the very high spatial anisotropy of satellites re-
ported in Ibata14-b, which we find unphysically large. Their
anisotropy is larger than one would expect even for the most
extreme case, when all satellites are distributed in an in-
finitely thin plane.

6 CONCLUSION AND DISCUSSION

In the first part of this study we characterised the spatial
distribution of satellites in a large sample of SDSS galaxies.
Our analysis focused on isolated primaries that have one
or more satellites with spectroscopic redshifts. We used the
photometric catalogue of SDSS/DR8 galaxies to count the
number of satellites as a function of the angle they subtend
relative to a reference axis defined by the brightest satellite.
We considered three samples of primary galaxies centred on
absolute magnitudes of Mr = �23, -22 and -21. We found
a clear signal of anisotropy in the spatial distributions of
satellites of the two brightest samples of primaries, while for
the faintest sample the uncertainties are of the same order as
the expected signal. We compared the observational data to
the predictions of the semi-analytic galaxy formation model
of Guo et al. (2011) implemented in the ⇤CDM Millennium
and Millennium-II cosmological simulations, and find very
good agreement between the observations and the theoreti-
cal predictions.

In the second part of this study we extended the analy-
sis of Ibata14 to explore if the anisotropy we detected could
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ticorrelated velocities for pairs diametrically opposite (left-half)

and on the same side (right-half) of the primary. The observa-
tional results are shown by the filled circles. The filled triangles

show the expected signal if the results found for diametrically op-

posite pairs were indicative of a rotating disk of satellites (it is
a mirror image of the left-half results with respect to the y = x

diagonal). The shaded region shows the 1� uncertainty.

be related to the rotating disks of satellites claimed by these
authors. We concluded that the observational sample is not
robust enough to detect such disks. This result is also con-
sistent with ⇤CDM where rotating satellite disks do ex-
ist (Lovell et al. 2011) but not to the extent reported by
Ibata14. In particular, we found the excess of diametrically
opposite satellite pairs with anticorrelated velocities seen by
Ibata14 to be very sensitive to the sample selection crite-
ria. Small variations from the reference criteria employed by
these authors lead to smaller excesses of anticorrelated pairs
and, almost invariably, to a reduced significance, which in
many cases is well below 3�. We can think of no good physi-
cal reason why relaxing some of the sample selection criteria
would lead to a lower signal and conclude that the detection
of rotating satellite disks in the SDSS data is not robust.

To test further if the reported excess of anticorrelated
velocities among satellites on opposite sides of the primary
could originate from a large fraction of systems having rotat-
ing disks of satellites, we compared it to the expected excess
of correlated velocities among satellites on the same side of
their respective primaries. Using similar selection criteria to
those used by Ibata14 to define the opposite-side pairs, we
found no excess of correlated velocities in same-side pairs in
the SDSS sample.

The results for opposite and same-side satellite systems
are summarised in Fig. 12, which shows the fraction of an-
ticorrelated pairs of satellites on either the opposite or the
same side of their host primary. Filled circles show the actual
measurements on both sides, while on the right half, grey tri-
angles denote the expected signal for same-side pairs if the
excess of anticorrelated velocities measured for opposite-side
pairs were indicative of rotating disks. The measurements
for same-side pairs are clearly in disagreement with this hy-
pothesis, especially at small tolerance angle, �, where the
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Figure 7. The maximum significance of the excess of satellite

pairs with anticorrelated velocities over the tolerance angle range

5� 6 ↵ 6 30�, as a function of di↵erent sample selection criteria.
For all cases we retain the same selection parameters as in the

reference case of Ibata14 but vary, in turn, the maximum redshift

(top panel), the radial extent of the volume over which satellites
are found (second panel), the maximum velocity di↵erence with

respect to the primary (third panel), and the magnitude di↵er-

ence between primary and satellite (bottom panel). The grey lines
indicate the choices made in the reference model of Ibata14. The

points to the left (right) of the grey lines correspond to smaller
(larger) sample size.

Our original sample missed two pairs with anticorrelated ve-
locities that appear in the sample of Ibata14, corresponding
to rows 1 and 18 in their Table 1. Using VizieR, we found
the satellite pair in row 18 in another catalogue, but we
could not identify one of the satellites of the pair in row 1.
Nevertheless, we have chosen to include both these pairs in
our sample. We also found an additional pair with ↵ < 8�,
which has correlated velocities, that does not appear in the
Ibata14 sample.

The excess of pairs with anticorrelated velocities and
its significance as a function of the tolerance angle, ↵, is
shown by the thick black line in Fig. 6. The significance of
the excess is evaluated as the sigma-value corresponding to
the probability of obtaining such an excess for a binomial
distribution of mean 0.5. The inclusion of an additional pair
with correlated velocities in our sample results in a smaller
excess of anticorrelated pairs than found by Ibata14 and
a correspondingly lower statistical significance. The most
significant excess is found at ↵ = 8� and corresponds to a
3.6� significance, compared to a maximum significance of
4� reported by Ibata14 at the same tolerance angle.

Fig. 6 also shows how the excess of anticorrelated ve-
locity pairs changes when the sample selection criteria are
relaxed. We vary one parameter of the selection criteria at
a time, keeping the remaining parameters at their reference
values as given in Sec. 2. In all cases we find that the excess
of anticorrelated pairs decreases as does the corresponding
maximum significance of the excess.

We explore further the sensitivity of the excess of an-
ticorrelated velocity pairs by systematically varying, one at
a time, some of the parameters used to select the sample.
In each case, we determine the maximum significance of the
signal over the range of tolerance angles, 5� 6 ↵ 6 30�.
With few exceptions, the maximum significance is found for
↵ = 8�. The maximum significance as function of some of
the main parameters in the selection criteria is plotted in
Fig. 7. For clarity, the reference values for each parameter
are shown as a vertical grey line. We find that small varia-
tions in the sample selection parameters can lead to a sig-
nificant reduction in the significance of the observed excess
of anticorrelated velocity pairs. Except for a few values, the
maximum significance is below the 3� level.

In Table 2 we give the total number of pairs and the
number of pairs with anticorrelated velocities for the data
plotted in Fig. 7. It shows that relaxing the zmax or the
�MSat�Cen

r selection criteria adds at most a small number
of new pairs. Increasing zmax from 0.05 to 0.1 adds 8 ex-
tra pairs, while decreasing �MSat�Cen

r from 1 mag to 0 mag
adds 6 additional pairs. So, for these cases, the measurement
is always dominated by the pairs found in the reference sam-
ple, which contains 23 pairs. In contrast, relaxing Rmax and
Vmax adds significantly more pairs. Increasing Rmax from
150 to 300 kpc adds 57 new pairs. Out of these, only 28
have anticorrelated velocities, which is exactly half of the
sample. Similarly, increasing Vmax from 300 to 500 km/s
adds 29 new pairs, with 14 of them having anticorrelated
velocities, which is again exactly half of the sample. Thus,
there is no signature of a rotating disk for Vmax > 300 km/s
or for Rmax > 150 kpc. Any large excess of pairs with anti-
correlated velocities seen in Fig. 7 is therefore driven by the
reference sample.

The choices made by Ibata14 reflect various compro-
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tions centred on the most likely values of each quantity and
with dispersion equal to the uncertainties. These are trans-
formed from heliocentric coordinates to Galactic ones, with
the Monte Carlo realizations used to compute confidence
intervals. The largest uncertainty is in the tangential veloc-
ities, with 1� errors varying from 20 to 55 km/s (median
value 40 km/s).

The theoretical model is based on the semi-analytic
galaxy formation model of Henriques et al. (2015) applied
to the Millennium II ⇤CDM dark matter only cosmologi-
cal simulation (Boylan-Kolchin et al. 2009), which has been
rescaled to corresponds to the Planck-1 cosmogony (for de-
tails see Henriques et al. 2015). Our sample consists of haloes
in the mass range, M200 = (0.8�3.0)⇥1012M�, where M200

is the mass enclosed by a spherical overdensity of 200 times
the critical density. The broad mass range is motivated by
the large uncertainties in the MW halo mass (Wang et al.
2015) and the advantages of having an abundant sample of
MW analogues. We find 3672 such host haloes. We restrict
the satellite selection to galaxies with a minimum stellar
mass of 105M� and that are found within a distance of
300 kpc from the central galaxy. For each host, we select
the 10 satellites with the largest stellar mass. In the case of
the MW observations, we have proper motions for 10 satel-
lites out of 12 objects brighter than MV = �8.6 (the classical
satellites and Canes Venitici). To check for systematic biases,
we constructed a second satellite catalogue by randomly se-
lecting 10 objects out of the 12 with the largest stellar mass.
We found that the two catalogues have the same satellite ve-
locity distribution, so, for simplicity, we limited our analysis
to the 10 brightest satellites.

We construct mock satellite catalogues to account for
the radial and tangential velocity uncertainties. We start
by ranking the satellites according to their distance from
the central galaxy. We do the same for the MW satellites.
Then, the simulated satellites are assigned the errors corre-
sponding to the MW satellite with the same rank, e.g. the
inner most satellite is linked to the MW inner most one.
To model observational uncertainties, for every satellite we
add to each velocity component a random value generated
from a Gaussian distribution centred on zero and with dis-
persion equal to the error of that velocity component. We
repeat this procedure 10 times for each host, resulting in
36720 MW mocks.

3 RESULTS

The velocity anisotropy parameter, �, provides a simple ap-
proach to quantify the motion of satellite galaxies. It is de-
fined as

� = 1 �
P

i V
2
tan; iP

i V
2
rad; i

, (1)

where Vrad; i and Vtan; i denote the radial and tangential
velocity components of satellite i. The sum is over all the
satellites associated to a host halo, which in our case is 10
satellites. The � parameter takes values in the range �1 to
1, with � < 0, � = 0 and � > 0 describing preferentially
circular, isotropic and radial orbits, respectively.

Fig. 1 shows the velocity anisotropy of the 10 bright-
est satellites of galactic mass haloes (dashed curve). These
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Figure 1. The distribution of the velocity anisotropy, �, for the
10 brightest satellites of MW-mass haloes. We show results for the
cosmological simulation (dashed line) and for mock satellite cata-
logues that account for observational uncertainties (solid line).
The vertical down-pointing arrow shows the measured value,
� = �2.1, for the MW satellites. Only 3.3% of mocks have a
lower � value than the MW system.

Figure 2. The distribution of the energy fraction in radial mo-

tion, fE; rad =
V 2
rad
V 2 , for the brightest 10 satellites. The dashed

line shows the median trend for the ⇤CDM Galactic mocks. The
darker and lighter shaded regions show the 1 and 2 sigma scatter
regions. The distribution of MW satellites, which is shown by the
solid line, is consistent with the mocks at the 1.6% level. We also
show the median expectation in the absence of observational er-
rors for the simulation used to construct the mocks (dotted line)
and that for a higher resolution simulation (dashed-dotted line).

objects have preferentially radial orbits, with a most likely
value, � = 0.45. The � distribution of the mock catalogues is
slightly shifted towards lower values, but, nonetheless, most
systems still have � > 0. The shift is due to the transverse
velocity errors being an order of magnitude larger than the
radial velocity errors. On average, this leads to an overesti-
mation of V 2

tan; i by a larger amount than of V 2
rad; i, and thus

systematically underestimating �.
The Galactic satellites have � = �2.1, which means

that they have preferentially tangential motions. This �
value, shown via a vertical arrow in Fig. 1, is in the tail of
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Piatek et al. (2003), Fornax – Piatek et al. (2007), Leo II –
Piatek et al. (2016); and Leo I – Sohn et al. (2013). We used
satellite distances and heliocentric velocity values from the
McConnachie (2012) compilation. To obtain the radial and
tangential velocity components with respect to the Galac-
tic Centre we followed the procedure described in Cautun
et al. (2015b). We generate 1000 Monte Carlo realizations
of the MW system in which we sample the satellite positions
and proper motions from Gaussian distributions centred on
the most likely values of each quantity and with dispersion
equal to the uncertainties. These are transformed from he-
liocentric to Galactic coordinates, with the Monte Carlo re-
alizations used to compute confidence intervals. The largest
uncertainty is in the tangential velocities, with 1� errors
varying from 20 to 55 km/s (median value 40 km/s).

The theoretical model is based on the semi-analytic
galaxy formation model of Henriques et al. (2015) applied to
the Millennium II ⇤CDM dark matter cosmological simula-
tion (Boylan-Kolchin et al. 2009), which has been rescaled
to correspond to the Planck-1 values of the cosmological pa-
rameters (for details see Henriques et al. 2015). Our sample
consists of haloes in the mass range, M200 = (0.8 � 3.0) ⇥
1012M�, where M200 is the mass enclosed by a spherical
overdensity of 200 times the critical density. Our results are
insensitive to the host halo mass, so we use a broad mass
range motivated by the large uncertainties in the MW halo
mass (Wang et al. 2015) and the advantages of having a large
sample of MW analogues. We find 3672 such host haloes. We
restrict the satellite selection to galaxies with a minimum
stellar mass of 105M� found within a distance of 300 kpc
from the central galaxy. For each host, we select the 10 satel-
lites with the largest stellar mass. In the case of the MW
observations, we have proper motions for 10 satellites out of
12 objects brighter than MV = �8.6 (the classical satellites
and Canes Venitici). To check for systematic biases, we con-
structed a second satellite catalogue by randomly selecting
10 out of the 12 objects with the largest stellar mass. We
found that the two catalogues have the same satellite veloc-
ity distribution, so, for simplicity, we limit our analysis to
the 10 brightest satellites.

We construct mock satellite catalogues to account for
the uncertainties in the radial and tangential velocity com-
ponents. We start by ranking the satellites according to their
distance from the central galaxy. We do the same for the
MW satellites. Then, the simulated satellites are assigned
the errors corresponding to the MW satellite with the same
rank, e.g. the innermost satellite in the simulation is linked
to the MW innermost one. To model observational uncer-
tainties, for every satellite we add to each velocity compo-
nent a random value generated from a Gaussian distribution
centred on zero with dispersion equal to the error reported
for that velocity component. We repeat this procedure 10
times for each host, resulting in 36720 MW mocks.

3 RESULTS

The velocity anisotropy parameter, �, provides a simple
measure of the kinematical properties of satellite galaxies.
It is defined as:

� = 1 �
P

i V
2
tan; i

2
P
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2
rad; i
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Figure 1. The distribution of the velocity anisotropy, �, for the
10 brightest satellites of MW-mass haloes. We show results for the
cosmological simulation (dashed line) and for mock satellite cat-
alogues that account for observational uncertainties (solid line).
The vertical line shows the measured value, � = �2.2 ± 0.4, for
the MW satellites and the grey shaded region shows the 1� un-
certainty interval. Only 2.9% of mock systems have a lower value
of � than the MW system.

where Vrad; i and Vtan; i denote the radial and tangential ve-
locity components of satellite i with respect to the central
galaxy. The sum is over all the satellites associated with a
host halo, which, in our case, is 10. The � parameter takes
values in the range �1 to 1, with � < 0, � = 0 and � > 0
describing circularly-biased, isotropic and radially-biased or-
bits, respectively.

Figure 1 shows the distribution of � values for the 10
brightest satellites of galactic mass haloes in our sample. We
show the distribution for mock satellite catalogues and also
for the original cosmological simulation (i.e. in the absence
of velocity errors). In both cases, the satellite systems have
radially-biased orbits, with a most likely value, � ' 0.4, but
the � distribution in the mock catalogues is slightly shifted
towards lower values. The shift is due to the transverse ve-
locity errors being an order of magnitude larger than the
radial velocity errors. On average, this leads to an overesti-
mation of V 2

tan; i by a larger amount than of V 2
rad; i, and thus

a systematic reduction in �.
The Galactic satellites have � = �2.2 ± 0.4, which

means that they have tangentially-biased motions. This �
value, marked with a vertical line in Figure 1, lies in the tail
of the theoretical prediction, with only 2.9% of ⇤CDM mock
catalogues having an even more extreme value.

Figure 2 shows the distribution of tangential versus ra-
dial motion for individual satellites. We characterize this by

the fraction of kinetic energy, fE; rad =
V 2
rad
V 2 , along the radial

direction. A satellite that, at a given moment, has a preferen-
tially tangential motion corresponds to fE; rad < 1

3 , while a
satellite that has a preferentially radial motion corresponds
to fE; rad > 1

3 . ⇤CDM predicts that at any moment 49% of
the satellites have fE; rad < 1

3 , which increases to 52% for
the Galactic mock satellite catalogues.

The distribution of fE; rad values for the Galactic satel-
lites is dominated by tangential motions, with fE; rad < 0.2
for 9 out of the 10 satellites (thick solid line in Figure 2); on
average ⇤CDM predicts only 4 such objects. To quantify the
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tions centred on the most likely values of each quantity and
with dispersion equal to the uncertainties. These are trans-
formed from heliocentric coordinates to Galactic ones, with
the Monte Carlo realizations used to compute confidence
intervals. The largest uncertainty is in the tangential veloc-
ities, with 1� errors varying from 20 to 55 km/s (median
value 40 km/s).

The theoretical model is based on the semi-analytic
galaxy formation model of Henriques et al. (2015) applied
to the Millennium II ⇤CDM dark matter only cosmologi-
cal simulation (Boylan-Kolchin et al. 2009), which has been
rescaled to corresponds to the Planck-1 cosmogony (for de-
tails see Henriques et al. 2015). Our sample consists of haloes
in the mass range, M200 = (0.8�3.0)⇥1012M�, where M200

is the mass enclosed by a spherical overdensity of 200 times
the critical density. The broad mass range is motivated by
the large uncertainties in the MW halo mass (Wang et al.
2015) and the advantages of having an abundant sample of
MW analogues. We find 3672 such host haloes. We restrict
the satellite selection to galaxies with a minimum stellar
mass of 105M� and that are found within a distance of
300 kpc from the central galaxy. For each host, we select
the 10 satellites with the largest stellar mass. In the case of
the MW observations, we have proper motions for 10 satel-
lites out of 12 objects brighter than MV = �8.6 (the classical
satellites and Canes Venitici). To check for systematic biases,
we constructed a second satellite catalogue by randomly se-
lecting 10 objects out of the 12 with the largest stellar mass.
We found that the two catalogues have the same satellite ve-
locity distribution, so, for simplicity, we limited our analysis
to the 10 brightest satellites.

We construct mock satellite catalogues to account for
the radial and tangential velocity uncertainties. We start
by ranking the satellites according to their distance from
the central galaxy. We do the same for the MW satellites.
Then, the simulated satellites are assigned the errors corre-
sponding to the MW satellite with the same rank, e.g. the
inner most satellite is linked to the MW inner most one.
To model observational uncertainties, for every satellite we
add to each velocity component a random value generated
from a Gaussian distribution centred on zero and with dis-
persion equal to the error of that velocity component. We
repeat this procedure 10 times for each host, resulting in
36720 MW mocks.

3 RESULTS

The velocity anisotropy parameter, �, provides a simple ap-
proach to quantify the motion of satellite galaxies. It is de-
fined as

� = 1 �
P

i V
2
tan; iP

i V
2
rad; i

, (1)

where Vrad; i and Vtan; i denote the radial and tangential
velocity components of satellite i. The sum is over all the
satellites associated to a host halo, which in our case is 10
satellites. The � parameter takes values in the range �1 to
1, with � < 0, � = 0 and � > 0 describing preferentially
circular, isotropic and radial orbits, respectively.

Fig. 1 shows the velocity anisotropy of the 10 bright-
est satellites of galactic mass haloes (dashed curve). These
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Figure 1. The distribution of the velocity anisotropy, �, for the
10 brightest satellites of MW-mass haloes. We show results for the
cosmological simulation (dashed line) and for mock satellite cata-
logues that account for observational uncertainties (solid line).
The vertical down-pointing arrow shows the measured value,
� = �2.1, for the MW satellites. Only 3.3% of mocks have a
lower � value than the MW system.
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Figure 2. The distribution of the energy fraction in radial mo-

tion, fE; rad =
V 2
rad
V 2 , for the brightest 10 satellites. The dashed

line shows the median trend for the ⇤CDM Galactic mocks. The
darker and lighter shaded regions show the 1 and 2 sigma scatter
regions. The distribution of MW satellites, which is shown by the
solid line, is consistent with the mocks at the 1.6% level. We also
show the median expectation in the absence of observational er-
rors for the simulation used to construct the mocks (dotted line)
and that for a higher resolution simulation (dashed-dotted line).

objects have preferentially radial orbits, with a most likely
value, � = 0.45. The � distribution of the mock catalogues is
slightly shifted towards lower values, but, nonetheless, most
systems still have � > 0. The shift is due to the transverse
velocity errors being an order of magnitude larger than the
radial velocity errors. On average, this leads to an overesti-
mation of V 2

tan; i by a larger amount than of V 2
rad; i, and thus

systematically underestimating �.
The Galactic satellites have � = �2.1, which means

that they have preferentially tangential motions. This �
value, shown via a vertical arrow in Fig. 1, is in the tail of
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tions centred on the most likely values of each quantity and
with dispersion equal to the uncertainties. These are trans-
formed from heliocentric coordinates to Galactic ones, with
the Monte Carlo realizations used to compute confidence
intervals. The largest uncertainty is in the tangential veloc-
ities, with 1� errors varying from 20 to 55 km/s (median
value 40 km/s).

The theoretical model is based on the semi-analytic
galaxy formation model of Henriques et al. (2015) applied
to the Millennium II ⇤CDM dark matter only cosmologi-
cal simulation (Boylan-Kolchin et al. 2009), which has been
rescaled to corresponds to the Planck-1 cosmogony (for de-
tails see Henriques et al. 2015). Our sample consists of haloes
in the mass range, M200 = (0.8�3.0)⇥1012M�, where M200

is the mass enclosed by a spherical overdensity of 200 times
the critical density. The broad mass range is motivated by
the large uncertainties in the MW halo mass (Wang et al.
2015) and the advantages of having an abundant sample of
MW analogues. We find 3672 such host haloes. We restrict
the satellite selection to galaxies with a minimum stellar
mass of 105M� and that are found within a distance of
300 kpc from the central galaxy. For each host, we select
the 10 satellites with the largest stellar mass. In the case of
the MW observations, we have proper motions for 10 satel-
lites out of 12 objects brighter than MV = �8.6 (the classical
satellites and Canes Venitici). To check for systematic biases,
we constructed a second satellite catalogue by randomly se-
lecting 10 objects out of the 12 with the largest stellar mass.
We found that the two catalogues have the same satellite ve-
locity distribution, so, for simplicity, we limited our analysis
to the 10 brightest satellites.

We construct mock satellite catalogues to account for
the radial and tangential velocity uncertainties. We start
by ranking the satellites according to their distance from
the central galaxy. We do the same for the MW satellites.
Then, the simulated satellites are assigned the errors corre-
sponding to the MW satellite with the same rank, e.g. the
inner most satellite is linked to the MW inner most one.
To model observational uncertainties, for every satellite we
add to each velocity component a random value generated
from a Gaussian distribution centred on zero and with dis-
persion equal to the error of that velocity component. We
repeat this procedure 10 times for each host, resulting in
36720 MW mocks.

3 RESULTS

The velocity anisotropy parameter, �, provides a simple ap-
proach to quantify the motion of satellite galaxies. It is de-
fined as

� = 1 �
P

i V
2
tan; iP

i V
2
rad; i

, (1)

where Vrad; i and Vtan; i denote the radial and tangential
velocity components of satellite i. The sum is over all the
satellites associated to a host halo, which in our case is 10
satellites. The � parameter takes values in the range �1 to
1, with � < 0, � = 0 and � > 0 describing preferentially
circular, isotropic and radial orbits, respectively.

Fig. 1 shows the velocity anisotropy of the 10 bright-
est satellites of galactic mass haloes (dashed curve). These
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Figure 1. The distribution of the velocity anisotropy, �, for the
10 brightest satellites of MW-mass haloes. We show results for the
cosmological simulation (dashed line) and for mock satellite cata-
logues that account for observational uncertainties (solid line).
The vertical down-pointing arrow shows the measured value,
� = �2.1, for the MW satellites. Only 3.3% of mocks have a
lower � value than the MW system.
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Figure 2. The distribution of the energy fraction in radial mo-

tion, fE; rad =
V 2
rad
V 2 , for the brightest 10 satellites. The dashed

line shows the median trend for the ⇤CDM Galactic mocks. The
darker and lighter shaded regions show the 1 and 2 sigma scatter
regions. The distribution of MW satellites, which is shown by the
solid line, is consistent with the mocks at the 1.6% level. We also
show the median expectation in the absence of observational er-
rors for the simulation used to construct the mocks (dotted line)
and that for a higher resolution simulation (dashed-dotted line).

objects have preferentially radial orbits, with a most likely
value, � = 0.45. The � distribution of the mock catalogues is
slightly shifted towards lower values, but, nonetheless, most
systems still have � > 0. The shift is due to the transverse
velocity errors being an order of magnitude larger than the
radial velocity errors. On average, this leads to an overesti-
mation of V 2

tan; i by a larger amount than of V 2
rad; i, and thus

systematically underestimating �.
The Galactic satellites have � = �2.1, which means

that they have preferentially tangential motions. This �
value, shown via a vertical arrow in Fig. 1, is in the tail of
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What could give rise to 
more circular orbits?
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• Satellites with cored profiles since they are more easily 
disrupted by the Galactic tides.  

• Self-interacting dark matter. This could potentially lead to a 
faster disruption of satellites on radial orbits. 

• Unusually early accretion of the Galactic satellites. Dynamical 
friction can act for a longer time resulting in more circular 
orbits. 
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Summary

36

• Each of the observed “plane of satellites”  for the three systems where 
observations are available are within the ~10% tail of the LCDM 
predictions.

• The Milky Way satellites have more circular orbits than expected, with 
only 1.5% of the LCDM systems being more extreme.

• So what do the two “problems” tell us about the Universe?
A. The Local Group is very atypical. Which properties are unusual and how 

do they compare to the typical LCDM halo? 
B. Breakdown of the cosmological model on galactic scales. 
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Thank you!
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