

Fitting LCDM to SPT-SZ and SPTpol

Kimmy Wu KICP Fellow, KICP/UChicago (for the SPT collaboration)

Sim TEEE

1008

Tensions in LCDM Workshop Mainz, Germany May 14, 2018

Outline

- * The South Pole Telescope; SPT-SZ; SPTpol; preliminaries
- * SPT-SZ vs Planck (Aylor et al. 2017, Hou et al. 2017)
- * SPTpol cosmology from TE/EE spectra (Henning et al. 2017); Current efforts
- * How about lensing? (Simard et al. 2017, Omori et al. 2017)
- Summary of SPT's view of LCDM

The South Pole Telescope (SPT)

10-meter sub-mm quality wavelength telescope 95, 150, 220 GHz and 1.6, 1.2, 1.0 arcmin resolution

2007: SPT-SZ

960 detectors 95,150,220 GHz

2012: SPTpol 1600 detectors 95,150 GHz +Polarization

2016: SPT-3G ~16,000 detectors 95,150,220 GHz +Polarization

SPT-SZ and SPTpol fields

Planck 143 GHz 50 deg²

SPTpol 150 GHz. 50 deg²

6x finer angular resolution6x deeper

CMB temperature anisotropy spectrum

EE spectra compilation

TE spectra compilation

Lensing spectrum

Alens on primary CMB spectrum

- * With A_s and w_m , one fixes the amount of smoothing of the peaks in the CMB spectra
- When we let A_{lens} float, we further tune the amount of lensing manifested on the power spectra relative to the inferred A_s and w_m

Alens on lensing spectrum

- * The amplitude and shape of the lensing spectrum is set by LCDM parameters from CMB primary spectra
- * When we fit for Alens, we scale the lensing spectrum

Under LCDM, Alens should be consistent with 1

Outline

- * The South Pole Telescope; SPT-SZ; SPTpol
- * SPT-SZ vs Planck (Aylor et al. 2017, Hou et al. 2017)
- * SPTpol cosmology from TE/EE spectra (Henning et al. 2017); Current efforts
- * How about lensing? (Simard et al. 2017, Omori et al. 2017)
- Summary of SPT's view of LCDM

Planck TT and SPT-SZ TT spectra derived parameters

Not an apples-to-apples comparison

- Planck full-sky vs SPT-SZ 2500 sq. deg (~6% of sky)
- Planck's constraints come from lower ell multipoles than SPT's (ell < 650)
- SPT's constraints contain information from higher ell multipoles than Planck's (ell > 2500)

Compare the same modes in-patch

- * Mock-observe the Planck map given SPT-SZ's pointing
- * Apply same high-pass filter on mock-observed Planck map as on SPT-SZ's

Planck 143 GHz, with SPT Filters

SPT 150 GHz, Planck beam smoothed

Parameters comparison

> Planck Full Sky vs Planck in-patch —> consistent with sample variance

> Restricting to modes on the sky that both measure well, the parameters are consistent.

yellow bands: Planck in patch and ell > 650; SPT at ell < 2000 ----- PTE = 0.32

Parameters comparison

yellow band: Planck x SPT ell > 650; SPT at ell < 2000

PTE = 0.74

Difference of 150x143 and 150x150

Removed common sample variance —> stringent test of instrumental systematics

Is SPT consistent with itself when increasing ℓ_{max} ?

yellow band: SPT at ell < 2000 vs SPT at ell < 2500 SPT at ell < 2000 vs SPT at ell < 3000

Take home 1:

 Planck Full Sky vs Planck in-patch -> statistical fluctuations consistent with noise+sample variance
 SPT l < 3000 vs SPT l < 2000 -> consistent with expected statistical fluctuations

Outline

- * The South Pole Telescope; SPT-SZ; SPTpol
- * SPT-SZ vs Planck (Aylor et al. 2017, Hou et al. 2017)
- * SPTpol cosmology from TE/EE spectra (Henning et al. 2017); Current efforts
- * How about lensing? (Simard et al. 2017, Omori et al. 2017)
- Summary of SPT's view of LCDM

SPTpol 500 deg²

SPTpol measurements

150GHz; 9.4 μK-arcmin between 2000 < ℓ < 4000; Smoothed by 4 arcmin FWHM Gaussian.

SPTpol 500 deg²

SPTpol measurements

150GHz; First-half map minus second-half map.

SPTpol TE, EE spectra measurements

LCDM parameter constraints

- * "Low-ℓ" SPTpol data (ℓ < 1000) in good agreement with PlanckTT results.
- Adding "high-ℓ" data (ℓ > 1000) pushes H_0 1.7 σ higher σ_8 2.1 σ lower compared to *Planck*TT:

 $H_0 = 71.2 \pm 2.1 \,\mathrm{km \, s^{-1} Mpc^{-1}}$ $\sigma_8 = 0.770 \pm 0.023$

(full *l* range)

 Similar to trends of high H_0 seen in SPT-SZ TT data

Adding Alens relieves tension

The best-fit A_L are 2.4 σ discrepant $A_L = 0.81 \pm 0.14 \,(\text{SPTpol})$ $A_L = 1.22 \pm 0.10 \,(\text{PlanckTT})$

SPTpol's TE/EE spectra prefer less smoothing of peaks/troughs than what their best-fit LCDM expects

PlanckTT spectrum prefers **more** smoothing of peaks/troughs than what its best-fit LCDM expects

Statistical fluke? Will they persist?

Consistency tests with SPT-SZ and SPTpol TT

- * SPT-SZ TT inferred parameters are completely consistent with PlanckTT when restricted to the same angular multipoles and patch of sky
- SPTpol TT is a subset of SPT-SZ TT. Are the cosmologies they infer consistent with each other?
- Do they infer consistent parameters with SPTpol TE/EE?

Adding SPT-SZ and SPTpol TT information

- Should improve LCDM parameter constraints by 10-15%
- * H0 is currently 1.7σ different from from Planck's TT best-fit
- * σ_8 is currently 2.1 σ different from from Planck's TT best-fit
- Will see what the combined datasets says!

Outline

- * The South Pole Telescope; SPT-SZ; SPTpol
- * SPT-SZ vs Planck (Aylor et al. 2017, Hou et al. 2017)
- * SPTpol cosmology from TE/EE spectra (Henning et al. 2017); Current efforts
- * How about lensing? (Simard et al. 2017, Omori et al. 2017)
- Summary of SPT's view of LCDM

CMB Lensing: Planck T+ SPT-SZ T

CMB TT Lensing: Planck + SPT

* Lensing power spectrum prefers less structure (or lower $\Omega_m h^2$) than Planck TT

Highlights of SPT's view of LCDM

Matter density and H₀

- CMB measures θ_{*} (acoustic scale)
 extremely well (better than 0.1%);
 can think of it as essentially fixed
- * increase in w_m -> decrease in sound horizon (~ w_m ^{-0.25});
- * increase $w_m \longrightarrow decrease d_A$ more than it needs to for θ_* to be fixed. So we need to decrease H_0

$$d_A(z_*) \propto \int_0^{z_*} dz/H(z)$$

 $\propto rac{1}{H_0} \int_0^{z_*} rac{dz}{\sqrt{\Omega_{m,0}(1+z)^3 + \Omega_A}}$

physical sound horizon (determined by sound speed of baryon-photon fluid)

angular diameter distance

(All assuming flatness)