Planck 2018 before the legacy release

K. Benabed

Institut d'Astrophysique de Paris - CNRS/Sorbonne Université

This talk is based mainly on the 2015+2016 (intermediate) papers

Planck Legacy is almost there

- It's been a rough ride
 - data analysis at this level of precision is hard
 - *large reduction in resources (money but mainly people and energy)*
- I cannot present the latest data, but...
 - I will give a little teaser of what's to come at the end of this talk

Planck (1993-L14/5/2009-23/10/2013)

Planck in numbers

Driving goal Perform the definitive temperature anisotropies measurement

- Primary 1.5m
- 2 instruments
 - LFI, 3 bands, 22 polarized radiometers
- HFI, 6 bands, 50 bolometers (32 polarized)
- 4 stage cooler chain, going down to 0.1K
 - last stage is a He3/He4 dilution cooler
- Flawless operation !
 - 2yr: 4 sky surveys for HFI (until 01/2012)
 - 4yr: 8 sky surveys for LFI
- Data releases
 - 2013 : 1yr survey
- 2015 : full mission
- 2018 : Legacy release

Next stages in CMB experiments. Entering Stage 3 - entirely ground based

S4 science book

Planck in numbers

Driving goal Perform the definitive temperature anisotropies measurement

- Primary 1.5m
- 2 instruments
 - LFI, 3 bands, 22 polarized radiometers
- HFI, 6 bands, 50 bolometers (32 polarized)
- 4 stage cooler chain, going down to 0.1K
 - last stage is a He3/He4 dilution cooler
- Flawless operation !
 - 2yr: 4 sky surveys for HFI (until 01/2012)
 - 4yr: 8 sky surveys for LFI
- Data releases
 - 2013 : 1yr survey
- 2015 : full mission
- 2018 : Legacy release

North ecliptic pole - 70GHz

North ecliptic pole - 100GHz

Planck 2015

Components in the microwave sky

Polarization (10° scale)

Likelihood & Cosmology products

- 2015 (Planck 2015 XI)
 - Low-ell: I<30 TEB LFI data (survey 2 and 4)
 - T from commander (gibbs) comp sep map
 - P cleaned using LFI (30GHz) and HFI (353GHz) data
 - Pixel based approximation
 - High-ell: 30<I<2500 TT (+TE and EE with residual) HFI data
 - Power spectrum template based fg cleaning
 - Gaussian approximation
 - Lensing : 40<I<400 T+P HFI data
 - larger coverage limited by null test failure
 - **2016 Intermediate** (Planck intermediate XLVI)
 - Low-ell : I<30 EE HFI data
 - Use improved HFI large scale improved analysis
 - 100x143 cross spectra

Analytical covariance

-4

30

500

Coadded, foreground cleaned spectrum Residual beam mismatch

expected dominant residual contribution at muK² level (high I) Polarization is NOT USED FOR PLANCK 2015 COSMOLOGY

Planck 2015 XI

1500

2000

1000

Parameter	[1] Planck TT+lowP	[2] <i>Planck</i> TE+lowP	[3] Planck EE+lowP	[4] <i>Planck</i> TT,TE,EE+lowP	$([1] - [4]) / \sigma_{[1]}$
$ \frac{\Omega_{\rm b}h^2}{\Omega_{\rm c}h^2} \dots \dots$	$\begin{array}{c} 0.02222 \pm 0.00023 \\ 0.1197 \pm 0.0022 \\ 1.04085 \pm 0.00047 \\ 0.078 \pm 0.019 \end{array}$	$\begin{array}{c} 0.02228 \pm 0.00025 \\ 0.1187 \pm 0.0021 \\ 1.04094 \pm 0.00051 \\ 0.053 \pm 0.019 \end{array}$	$\begin{array}{c} 0.0240 \pm 0.0013 \\ 0.1150 \substack{+0.0048 \\ -0.0055} \\ 1.03988 \pm 0.00094 \\ 0.059 \substack{+0.022 \\ -0.019} \end{array}$	$\begin{array}{c} 0.02225 \pm 0.00016 \\ 0.1198 \pm 0.0015 \\ 1.04077 \pm 0.00032 \\ 0.079 \pm 0.017 \end{array}$	$ \begin{array}{r} -0.1 \\ 0.0 \\ 0.2 \\ -0.1 \end{array} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3.089 \pm 0.036 \\ 0.9655 \pm 0.0062 \\ 67.31 \pm 0.96 \\ 0.315 \pm 0.013 \\ 0.829 \pm 0.014 \\ 1.880 \pm 0.014 \end{array}$	$\begin{array}{c} 3.031 \pm 0.041 \\ 0.965 \pm 0.012 \\ 67.73 \pm 0.92 \\ 0.300 \pm 0.012 \\ 0.802 \pm 0.018 \\ 1.865 \pm 0.019 \end{array}$	$\begin{array}{c} 3.066^{+0.046}_{-0.041} \\ 0.973 \pm 0.016 \\ 70.2 \pm 3.0 \\ 0.286^{+0.027}_{-0.038} \\ 0.796 \pm 0.024 \\ 1.907 \pm 0.027 \end{array}$	$\begin{array}{c} 3.094 \pm 0.034 \\ 0.9645 \pm 0.0049 \\ 67.27 \pm 0.66 \\ 0.3156 \pm 0.0091 \\ 0.831 \pm 0.013 \\ 1.882 \pm 0.012 \end{array}$	$ \begin{array}{c} -0.1 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ -0.1 \end{array} $

Planck 2015 XI

To summarize, our systematic error budget consists of a 0.1σ methodology bias on $n_{\rm s}$ for TT, at most a 0.2σ instrumental bias on TT (on $\omega_{\rm b}$), TE and possibly a slightly greater one on EE. The few- μ K²-level leakage residual in polarization does not appear to project onto biases on the ACDM parameters. We conservatively evalute our astrophysical bias to be 0.2σ on $n_{\rm s}$. The astrophysical parameters might suffer from instrumental biases.

Robustness under data selection

Planck 2015 XV

Parameter	TT+lowP 68 % limits	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	TT,TE,EE+lowP+lensing 68 % limits	TT,TE,EE+lowP+lensing+ext 68 % limits
$\Omega_{ m b}h^2$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\Omega_{ m c}h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	0.1193 ± 0.0014	0.1188 ± 0.0010
$100\theta_{\rm MC}$. 1.04085 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	1.04087 ± 0.00032	1.04093 ± 0.00030
τ	. 0.078 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.063 ± 0.014	0.066 ± 0.012
$\ln(10^{10}A_s)$	3.089 ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	3.059 ± 0.025	3.064 ± 0.023
<i>n</i> _s	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	0.9653 ± 0.0048	0.9667 ± 0.0040
H_0	$ 67.31 \pm 0.96$	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66	67.51 ± 0.64	67.74 ± 0.46

- slope of the fluctuations
- Sound horizon: location of the first peak
- Total matter: Changes the contrast between the peaks
- Baryon density: Changes the ratio between peak heights
- Amplitude of the fluctuation
- Reionization fraction
 - (from low I LFI polar or lensing)
- Ho: indirect measurement from the above parameters

Planck 2015 XIII

Constraints on Inflation

Planck 2015 XX

No deviation from **ACDM**

$\Omega_K = 0.000 \pm 0.005 \ (95\%)$

(PlanckTT+lowP+Lensing+BAO)

$$\sum m_{\nu} < 0.23 \, \mathrm{eV}$$

(PlanckTT+lowP+Lensing+ext) Bound already stronger than what achievable by Katrin (tritium beta decay)

 $N_{\rm eff} = 3.13 \pm 0.32$

(PlanckTT+lowP) Compatible with standard predition N_{eff} =3.046 with 3 active neutrinos

$Y_{\rm P}^{\rm BBN} = 0.253 \pm 0.021$

(PlanckTT+lowP) Good agreement with measurements of primordial abundances and BBN predictions

 $\frac{dn_{\rm s}}{d\ln k}$ $= -0.0084 \pm 0.0082$ (PlanckTT+lowP)

Planck 2015 XIII

Planck intermediate XLVI

Large improvement in the handling of HFI polarized systematics and T->P leakage (at the simulation and map-making level) -> ADC non-linearity (including dipole distortion using simulations based template) -> Bandpass leakage -> better freq inter calibration

2016 Intermediate - low-ell HFI specific data analysis

2016 intermediate low-l likelihood

- Cannot use HFI channels for pixel based likelihood
 - Poor description of noise covariance
 - residual systematic biases
- Simulation based likelihood for 100x143 FG cleaned QML
 - FG clean using 30GHz and 353GHz
 - use approximate noise covariance for QML estimates (using E2E sims)
 - Estimate residual systematic biases on E2E sims

Planck intermediate XLVI

Good Planck/WMAP consistency (see also Huang et al. 2018)

SPTPol, Henning et al. (2017)

Low-I / high-I tension

Planck 2015 XI

Low-I / high-I tension

Planck 2015 Ll

Residuals to I<800 best fit Small oscillatory in all freqs. Cause (in part) a 2.4sigma high Alens Or a tension in tau Beware: tension reduced by ~1sigma when fixing FG

Planck XI, Planck XIII, Planck Intermediate LI

(luminosity distance @ z=0 - 1.4)

Good agreement with BAO (acoustic scale/distance @ z=0.1 – 0.9) Some tension in the highest redshift bin of BOSS RD12

Excellent agreement with BBN

Planck 2015 XIII

Sigma8 tension (clusters)

Prior name	Quantity	Value & Gaussian errors
Weighing the Giants (WtG)	1 – b	0.688 ± 0.072
Canadian Cluster Comparison		
Project (CCCP)	1 – <i>b</i>	0.780 ± 0.092
CMB lensing (LENS)	1/(1-b)	0.99 ± 0.19

- Number of clusters as a function of z sensitive to cosmological parameters.
- Clusters can be detected through Sunyaev-Zeldovitch effect in CMB surveys (e.g. Planck, ACT, SPT).
- To compare observations to predictions, we need to know the redshift and the mass of the observed clusters.
- Relation between SZ observables and mass calibrated on X-ray observations.
 Mass estimate assume hydrostatic equilibrium and is thus biased.
- mass bias is obtained through lensing observations of some clusters

Reasonable agreement between CMB and CMB Lensing.

CMB Lensing wants slightly less deflection than CMB. Tension is 2.4sigma. At all frequencies.

1Sigma « due » to FG.

Planck 2015 XIII & XV, Planck Intermediate LI, and also Mortloch & Hu 2018

SPT, Simard et al. 2017

Sigma8 tension (Lensing)

DES 1Yr, Troxel et al. 2018

Riess et al. 2016

The road to Planck Legacy

- Main limitation of the 2015 release was the quality of the polarization data model, preventing us from using all of it at large and small scales
 - 2016 intermediate data analysis gave us insight on how to deal with the large scale residuals in HFI and improve tau constraints
 - Hivon et al (2017) proposed a model to account for beam leakage effects
- 2018 release will be mainly about improving the polarisation data model
 - improved data analysis, better characterisation and modelling of polarisation data, better simulations for LFI & HFI
 - Improvements and more robustness at low-ell, high-ell and lensing

The road to Planck Legacy: *Polarisation at high-ell*

Much improved inter frequency agreement in TE and EE

Better characterisation of the new E maps and application of Hivon et al (2017) beam leakage templates

The road to Planck Legacy: *Polarisation at high-ell*

500 1000 1500 EE 100 × 217

Much improved inter frequency agreement in TE and EE

Better characterisation of the new E maps and application of Hivon et al (2017) beam leakage templates

The road to Planck Legacy

- Main limitation of the 2015 release was the quality of the polarization data model, preventing us from using all of it at large and small scales
 - 2016 intermediate data analysis gave us insight on how to deal with the large scale residuals in HFI and improve tau constraints
 - Hivon et al (2017) proposed a model to account for beam leakage effects
- 2018 release will be mainly about improving the polarisation data model
 - *improved data analysis, better characterisation and modelling of polarisation data, better simulations for LFI & HFI*
 - Improvements and more robustness at low-ell, high-ell and lensing

Planck Legacy Cosmology is in general agreement with 2015+2016

Summary

- 2015 release based mainly on TT (for the cosmological parameters) provides excellent agreement with LambdaCDM
 - Some tension with sigma8/OmegaM (cluster counting, lensing)
 - Some tension between the low-ell and high-ell part of the spectrum (1.8sigma) and feature that project toward extra smoothing of the peaks (2.2sigma)
- Road to Legacy release
 - Improved low-ell HFI polarization (and expand on the LFI data, only 2 survey used for 2015)
 - Improving the high-ell Polarization (beam leakages)