HOlicow: Cosmology from Strong Gravitational lensing

Thomas Collett On behalf of the H0licow collaboration

R. Blandford P. Marshall Y. Hezaveh [Stanford]

T. Treu X. Ding K. Liao [Los Angeles]

C. Fassnacht E. Rusu N. Rumbaugh C. Chen [Davis]

T. Collett [Portsmouth]

D. Sluse [Liege]

M. Auger

[Cambridge]

G. Meylan F. Courbin V. Bonvin D. Paraficz O. Tihhonova [Lausanne]

L. Koopmans [Groningen]

M. Tewes [Bonn] **PI: S. Suyu** S. Hilbert A. Agnello C. Spiniello S. Vegetti [Munich]

K. Wong A. Sonnenfeld [Tokyo]

H0LiCOW: H₀ Lenses in COSMOGRAIL's Wellspring
→ Establish time-delay gravitational lenses as one of the best cosmological probes

 $\theta_{\rm E} = \sqrt{\frac{GM(\theta_{\rm E})}{c^2}} \frac{D_{\rm ls}}{D_{\rm ol}D_{\rm os}}$

$$\Delta t \propto D_{\Delta t} = (1+z_l) (D_l D_s) / D_{ls}$$

HE 1104-1805 **Arrives later**

Most sensitive to the Hubble constant.

Suyu et al 2017

Modelling the lenses

 $\Delta t \propto D_{\Delta t} = (1 + z_1) (D_1 D_s / D_{1s})$ What's the constant of proportionality?

- Location of the images
- Gravitational potential

$$c\Delta t = D_{\Delta t} \frac{1}{2} (\theta_1 - \beta)^2 - \frac{1}{2} (\theta_2 - \beta)^2 - \psi(\theta_1) + \psi(\theta_2)$$

Modelling the lenses

 $\Delta t \propto D_{\Delta t} = (1 + z_1) (D_1 D_s / D_{ls})$ What's the constant of proportionality?

- Location of the images
- Gravitational potential

How is the mass distributed in the lens?

$$c\Delta t = D_{\Delta t} \frac{1}{2} (\theta_1 - \beta)^2 - \frac{1}{2} (\theta_2 - \beta)^2 - \psi(\theta_1) + \psi(\theta_2))$$

Lens Modelling

Then sample the mass + source model

Constraining the steepness of the potential

(Most probable) Model

Data (F814W)

Suyu et al 2013

Lens environment

Spectroscopic campaign of HE0435-1223 field

- 100 spec-z within 3' from strong lens
- identified 9 group candidates
- spec-z of galaxies within 12" measured, important for lens mass model
- negligible flexion shift [McCully et al. 2016]: most galaxies and groups can be treated as external shear field [Sluse, Sonnenfeld, Rumbaugh et al. arxiv:1607.00382]

Lens environment

- wide-field multi-band imaging to quantify κ_{ext}
- weighted number counts + Millennium Simulation [Fassnacht et al. 2011; Hilbert et al. 2007, 2009; Suyu et al. 2010, 2013, Greene et al. 2013]
- thorough investigation of weighting schemes with CFHTLenS as control field, get κ_{ext} distribution with uncertainty σ_{κ} =0.025 [Rusu, Fassnacht, Sluse et al. arxiv:1607.01047]

Sluse et al 2017 Rusu et al 2017

Wong et al 2017

Bonvin et al 2017

Reconstructed source

AO modeling

Chen et al. in prep.

Wong et al in prep

Birrer et al in prep

Beyond time-delays Low redshift lenses

z = 0.035

Data from Collett et al, 2018.

EMBARGOED until 2nd June 2018

Please email <u>thomas.collett@port.ac.uk</u> for this content

MGE decomposition (with M/L gradient) +

Black Hole

Jeans Anisotropic Modelling (JAM) 'Free' anisotropy profile Free Inclination

Lens model from Collett et al, 2018.

EMBARGOED until 2nd June 2018

Please email <u>thomas.collett@port.ac.uk</u> for this content

Kinematic model from Collett et al, 2018.

EMBARGOED until 2nd June 2018

Please email <u>thomas.collett@port.ac.uk</u> for this content

W

Collett et al, submitted

Extra slides

Beyond time-delays

Double source plane strong lensing A gravitational lens system with two background sources, each at a different redshift.

New observable: Ratio of Einstein radii

 $= \frac{D_{ls1}D_{s2}}{D_{s1}D_{ls2}}$

No dependence on the Hubble constant!

Lens modelling

Lens modelling

\mathbf{H}	Щ	\mathbf{H}	H	
	44	14	1	
	74	Ħ		
╈				
╉	+++	╉╋	+	e) S

	N	
		Γ
	1.10	

Modelling J0946

