Simulations of Self-Interacting Dark Matter (a simulation perspective on SIDM)

Mark Vogelsberger

Tensions in the LCDM paradigm, MITP, May 2018

Massachusetts Institute of Technology

ellipticals

irregulaı

disk galaxies

MV+ 2014 (Nature)

http://www.illustris-project.org

Illustris: Results

MV+ 2014

IllustrisTNG Team:

Mark Vogelsberger Shy Genel Volker Springel **Paul Torrey Dylan Nelson** Lars Hernquist Annalisa Pillepich Federico Marinacci

Illustris Team

Mpc

50

Jill Naiman Rainer Weinberger **Ruediger Pakmor**

TNG50

dwarfs

three boxes with different primary science focus

galaxy clusters

The Evolution of Large-Scale Simulations

IllustrisTNG: Results

Springel+ w/ MV 2018

Warm Dark Matter? [CDM is cold]

Self-Interacting Dark Matter? [CDM is collisionless]

Fuzzy Dark Matter?

The Outcome of SIDM Simulations

Number of Scattering

'solving' the TBTF problem with SIDM

MV+ 2012

Self-Interacting Dark Matter

Impact on Subhalo Abundance

ETHOS – Effective Theory of Structure Formation: Ingredients

Large Scale Statistics

impact on halo mass function due to transfer function cutoff

MV+ 2016

ETHOS: An Effective Theory For Structure Formation

ETHOS: A tuned Model

ETHOS: Damping vs. SIDM

disentangling the impact of SIDM and power spectrum modifications

self-interactions do not change the subhalo abundance

High Redshift Universe

Lovell, Zavala, MV+ 2018

High Redshift Universe

optical depth of one specific ETHOS model explore with full hydro simulations using IllustrisTNG model

ETHOS model constructed based on local group passes observational tests at high z

impact on halo mass function due to reduction in power at small scales

late time self-interactions typically do not affect the halo abundance

CDM: Diversity?

OBSERVATION

THEORY

"The severity of the problem ... with the apparent failure of 'baryon physics' to solve it begs for the consideration of various alternatives [like] 'self-interacting' dark matter,..."

Oman+ 2015

SIDM: Diversity?

Inelastic SIDM:exo- and endothermic reaction

Inelastic SIDM:exo- and endothermic reaction

MV+ 2018

MV+ 2018

Other Alternatives? Ultralight Axions - BECDM

Summary

- SIDM provides a promising alternative to CDM to alleviate small-scale CDM problems
- · velocity-dependent cross sections avoid cluster-scale constraints and are natural
- more general models also consider modifications of initial power spectra leading to other interesting effects
- inelastic models create larger cores for the same cross section normalization