The dark hearts of dwarves and globular clusters - Predictions for dark matter content in low mass objects

Peter Creasey w. L. Sales, Hai-bo Yu, Omid Sameie Eric Peng, Mark Vogelsberger, Jesús Zavala

University of California at Riverside (UCR)

FOF group finding (arxiv)

- 1. Spreading out and staying sharp creating diverse rotation curves via baryonic and self-interaction effects Creasey, P., Sameie, O., Sales, L. V., Yu, H-B., Vogelsberger, M.; Zavala, J., 2017, MNRAS, 468, 2283
- 2. Back from the brink: Did some of todays globular clusters originate in the largest halos during the reionization era?

Creasey, Sales et al., in prep

MITP

Outline

- Part I Self interacting dark matter in dwarf galaxies
 - Physics beyond LCDM
 - Baryonic explanations
 - Self-interacting dark matter (SIDM) overview
 - Dwarf core and cusp simulations
- Part II Globular clusters
 - DM halos for GCs?
 - N-body infall models
 - Predictions vs. observations

Part I - Dwarf Galaxies with Self Interacting Dark Matter (SIDM)

Physics beyond LCDM

- Lambda a cosmological constant
- Dark matter is dark
- Dark matter is collisionless
- Dark matter is cold

Peter Creasey UCR

LCDM - Turtles all the way down

Springel et al. 2008

Steep halo mass function to low mass

Steep subhalo mass function

10⁻⁵ 10⁻⁴ M₋₁ / M₂₀₀

 10^{6} a q-A-1 10^{6} A q-A-1 10^{6} A q-A-1 10^{6} A q-A-2 10^{6} A q-A-3 10^{6} A q-A-3 10^{6} A q-A-4 10^{6} A q-A-4 10^{6} A q-A-4 10^{7} A q-A-4 10^{7} A q-A-5 10^{7} A q-A-4 10^{10} A q-A-4

NFW/Einasto profiles

Baryonic effects?

Diagram of a column of an idealised disk (not a resimulation) e.g. Larson '74

Di Cintio, Brook et al. 2014

LCDM - Turtles all the way down

Springel et al. 2008

Steep halo mass function to low mass

Steep subhalo mass function

10⁻⁵ 10⁻⁶ M₋₁ / M₂₀₀

 $10^{6} \qquad z = 0.0$ $10^{6} \qquad Aq.A.2$ $10^{6} \qquad Aq.A.2$ $10^{6} \qquad Aq.A.3$ $10^{6} \qquad Aq.A.3$ $10^{6} \qquad Aq.A.5$ $10^{6} \qquad Aq.A.5$ $10^{6} \qquad Aq.A.5$ $10^{7} \qquad Aq.A.5$

NFW/Einasto profiles

Self interacting dark matter (SIDM) overview

 Particle interactions between dark matter particles, modelled as being elastic with some cross-section

σ_T/m_χ (cm² g⁻¹)

- Elastic collisions evolve the phase space distribution towards a Gaussian (M-B) or the continuum approximation if you're a fluid dynamicist (more on this later)
- This process is most effective in regions of higher density and velocity dispersion, (e.g. centres of halos, higher redshift)
- Also velocity dependence (e.g. Loeb & Weiner 2011) and consequently angular dependent scattering

Primer on SIDM effects on halos

SIDM + baryons

Unexpected diversity on the rotation curves of dwarfs

MITP

Unexpected diversity on the rotation curves of dwarfs

IVILLE

relei Uleasey UCR

- Baryons removed and replaced with static Miyamoto-Nagai potential (avoid instabilities in baryonic disk with Hubble time too may dynamical times for a dwarf)
- M. Vogelsberger's SIDM code for 10 Gyr to see what happens...

 $\sigma_T/m_{\chi} = 2 \text{ cm}^2 \text{ g}^{-1}$

SIDM diversity

• DM only

Peter Creasey UCR

SIDM diversity

- Take halos with concentrations sampled from mass-conc relation (Ludlow 2014)
- Realistic disk masses

 (abundance matching) in gas
 and stars,
- Sizes 0.5-6 kpc to span observables, (later resampled onto observed Shen '03 relations)
- Disk size and halo concentration assumed to be independent

SIDM diversity

Peter Creasey UCR

Individual dwarfs

Part II - Old Metal Poor Globular Clusters in LCDM

Peter Creasey UCR

GCs are not observed to have any dark matter

- Theoretical equipartition of stellar and dark components around 100 pc
- c.f. Conroy, Loeb and Spergel '11, but also Ibata et al. '13

- or for metal poor only ~= 2.5-3x10⁻⁵ M₂₀₀
- (see also MBK '17, El Badry, Quataert et al. '18)

Clustering of halos at high z

Creasey, Sales, et al. in prep., see also Diemand & Moore '05, Bekki '05, Boylan Kolchin '17

- Paint in GCs
- Halos around 10^8 Msun at z~10 give you the right number density

Infalling halos not compact enough at z=0?

- Median GC radius vs stellar mass
- baryonic contraction reduces tension, stripping increases it

Intergalactic GCs?

- How many GCs in the LG (say <1 Mpc of the MW) not associated with a galaxy?
- (given in SDSS we see none, e.g. di Tullio Zinn & Zinn '15)

Orbital velocity anisotropies

Conclusions:

Dwarf galaxy cores & cusps

- Dwarfs also have quite diverse rotation curves (some more core-like, but some cusp-like also).
- Significant scatter in the central (2kpc) densities of dwarfs seems hard to achieve in hydro sims of LCDM (requires moving DM out of cusp)
- SIDM systematically turns cusps into cores. SIDM + baryons can make cores *and* cusps. Works very well at 100 km/s, struggles a bit at 60 km/s.

Globular clusters in their own halos

- Metal poor GC formation in their own DM halos poorly constrained by intergalactic GC counts (field density)
- Median GC distance from the MW seems to exclude *all* metal poor GCs forming in this mechanism (a fraction still possible)
- Velocity anisotropies curious, seems hard to explain with GCs in halos or outside