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Figure 3. Projected dark matter density in our six different high-resolution halos at z = 0, at the ‘2’ resolution level. In each panel,
all particles within a cubic box of side length 2.5 × r50 centred on the halo are shown, and the circles mark the radius r50. The image
brightness is proportional to the logarithm of the squared dark matter density, and the colour hue encodes the local particle velocity
dispersion, with the same colour map as in Figure 2.

to make them feasible on today’s supercomputers. We have
carried out our most expensive calculation, the Aq-A-1 run,
on the Altix 4700 supercomputer of the Leibniz Computing
Center (LRZ) in Garching/Germany, using 1024 CPUs and
about 3 TB of main memory. The calculation took more than
3.5 million CPU hours to carry out about 101400 timesteps
that involved 6.72×1013 force calculations in total. We have
stored 128 simulation dumps for this calculation, amounting
to a data volume of about 45 TB. The other simulations of
the Aquarius Project were in part calculated on the LRZ
system, and in part on other supercomputers across Eu-
rope. These were the COSMA computer at Durham Univer-
sity/UK, the Bluegene/L system STELLA of the LOFAR
consortium in Groningen/Netherlands, and a Bluegene/P
system of the Max-Planck Computing Center in Garching.
For all these simulations we also stored at least 128 outputs,
but for Aq-A-2 and Aq-A-4 we kept 1024 dumps, and for
Aq-A-3 half this number. This provides exquisite time reso-
lution for studies of the detailed formation history of halos
and the evolution of their substructure. In the present study,
however, we focus on an analysis of the objects at z = 0.

2.4 A first view of the simulations

In Figures 2 and 3, we show images† of the dark matter
distribution in our 6 high resolution halos at redshift z = 0.
The brightness of each pixel is proportional to the logarithm
of the squared dark matter density projected along the line-
of-sight,

S(x, y) =

∫

ρ2(r) dz, (1)

while the colour hue encodes the mean dark matter velocity
dispersion, weighted as

σ(x, y) =
1

S(x, y)

∫

σloc(r) ρ2(r) dz. (2)

Here the local dark matter density ρ(r) and the local veloc-
ity dispersion σloc(r) of the particles are estimated with an
SPH kernel interpolation scheme based on 64 neighbours.
We use a two-dimensional colour-table (see Fig. 2) in which
the information about the local dark matter ‘temperature’ is

† Further images and videos of the formation process of the halos
are available at http://www.mpa-garching.mpg.de/aquarius
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FIG. 1.—A comparison between the halo mass function offset by a factor of
0.05 (dashed line), the observed galaxy mass function (symbols), our model
without scatter (solid line) and our model including scatter (dotted line).We
see that the halo and the galaxy mass functions are different shapes, implying
that the stellar-to-halo mass ratio m/M is not constant. Our four parameter
model for the halo mass dependent stellar-to-halo mass ratio is in very good
agreement with the observations (both including and neglecting scatter).

SHM ratio is equal to (m/M)0, and two slopes β and γ which
indicate the behavior of m/M at the low and high mass ends
respectively. We use the same parameters for the central and
satellite populations, since – unlike luminosity – the stellar
mass of satellites changes only slightly after they are accreted
by the host halo.
Note that though both β and γ are expected to be positive,

they are not restricted to be so. The SHM relation is therefore
not necessarily monotonic.

3.2. Constraining the free parameters
Having set up the model we now need to constrain the four

free parameters M1, (m/M)0, β and γ. To do this, we pop-
ulate the halos in the simulation with galaxies. The stellar
masses of the galaxies depend on the mass of the halo and are
derived according to our prescription (equation 2). The po-
sitions of the galaxies are given by the halo positions in the
N-body simulation.
Once the simulation box is filled with galaxies, it is straight-

forward to compute the SMF Φmod(m). As we want to fit this
model mass function to the observed mass function Φobs(m)
by Panter et al. (2007), we choose the same stellar mass range
(108.5−1011.85 M⊙) and the same binsize. The observed SMF
was derived using spectra from the Sloan Digital Sky Survey
Data Release 3 (SDSS DR3); see Panter et al. (2004) for a
description of the method.
Furthermore it is possible to determine the stellar mass de-

pendent clustering of galaxies. For this we compute projected
galaxy CFs wp,mod(rp,mi) in several stellar mass bins which
we choose to be the same as in the observed projected galaxy
CFs of Li et al. (2006). These were derived using a sample
of galaxies from the SDSS DR2 with stellar masses estimated
from spectra by Kauffmann et al. (2003).
We first calculate the real space CF ξ(r). In a simulation

this can be done by simply counting pairs in distance bins:

ξ(ri) =
dd(ri)
Np(ri)

−1 (3)

where dd(ri) is the number of pairs counted in a distance bin
and Np(ri) = 2πN2r2i ∆ri/L3box where N is the total number of
galaxies in the box. The projected CF wp(rp) can be derived
by integrating the real space correlation function ξ(r) along
the line of sight:

wp(rp) = 2
∫ ∞

0
dr||ξ(

√

r2|| + r2p) = 2
∫ ∞

rp
dr

r ξ(r)
√

r2 − r2p
, (4)

where the comoving distance (r) has been decomposed into
components parallel (r||) and perpendicular (rp) to the line
of sight. The integration is truncated at 45 Mpc. Due to
the finite size of the simulation box (Lbox = 100 Mpc) the
model correlation function is not reliable beyond scales of
r ∼ 0.1 Lbox ∼ 10 Mpc.
In order to fit the model to the observations we use Powell’s

directions set method in multidimensions (e.g. Press et al.
1992) to find the values ofM1, (m/M)0, β and γ that minimize
either

χ2r = χ2r (Φ) =
χ2(Φ)
NΦ

(mass function fit) or

χ2r = χ2r (Φ)+χ2r (wp) =
χ2(Φ)
NΦ

+
χ2(wp)
Nr Nm

(mass function and projected CF fit) with NΦ and Nr the num-
ber of data points for the SMF and projectedCFs, respectively,
and Nm the number of mass bins for the projected CFs.
In this context χ2(Φ) and χ2(wp) are defined as:

χ2(Φ) =
NΦ
∑

i=1

[

Φmod(mi)−Φobs(mi)
σΦobs(mi)

]2

χ2(wp) =
Nm
∑

i=1

Nr
∑

j=1

[

wp,mod(rp, j,mi)−wp,obs(rp, j,mi)
σwp,obs(rp, j ,mi)

]2

,

with σΦobs and σwp,obs the errors for the SMF and projected CFs,
respectively. Note that for the simultaneous fit, by adding the
reduced χ2r , we give the same weight to both data sets.

3.3. Estimation of parameter errors
In order to obtain estimates of the errors on the parame-

ters, we need their probability distribution prob(A|I), where A
is the parameter under consideration and I is the given back-
ground information. The most likely value of A is then given
by: Abest = max(prob(A|I)).
As we have to assume that all our parameters are coupled,

we can only compute the probability for a given set of param-
eters. This probability is given by:

prob(M1, (m/M)0,β,γ|I)∝ exp(−χ2)

In a system with four free parameters A,B,C and D one can
calculate the probability distribution of one parameter (e.g.
A) if the probability distribution for the set of parameters is
known, using marginalization:

prob(A|I) =
∫ ∞

−∞
prob(A,B|I)dB

=
∫ ∞

−∞
prob(A,B,C,D|I)dBdCdD

M
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Figure 20. Cumulative subhalo mass function within r250 for our
6 different halos at level 2 resolution, as well as for our highest
resolution run Aq-A-1. Subhalo masses are measured in units of
M250 in each case. The dashed line is a fit to the mean mass
function.

our results for this comparison, both in terms of the count
of all substructures down to the resolution limit, and by just
counting subhalos with a maximum circular velocity larger
then 0.1 V250, which effectively measures the amplitude of
the (sub-)subhalo velocity function. We here used uncontam-
inated field halos found in the high-resolution region around
the main halo in Aq-A-1, and compared them to subhalos
in the outer parts of the main halo (with r > 258 kpc, such
that their tidal radius is larger than r250). Again we find
an offset of about a factor of 2 in the mean substructure
abundance between field halos and genuine subhalos.

We conclude that the (sub-)substructure abundance in
subhalos is not, in general, a scaled version of that in main
halos. Rather, the self-similar expectation provides an upper
limit on the abundance of these second generation substruc-
tures; less (sub-)substructure is typically found. This reflects
the fact that the substructure abundance of a subhalo is not
only diminished by tidal truncation once it falls into a larger
structure; in addition, its retained substructures continue to
lose mass to the main subhalo through tidal effects and, in
strong contrast to the situation for main halos, they are not
continually replenished by infall of new subhalos from the
field. The substructure deficit in subhalos when compared
to main halos at the same mean overdensity is expected to
grow with time as they orbit within their main halos. It
will therefore be more marked in subhalos in the inner halo,
which are typically “older”.

Our results thus caution strongly against the assump-
tion that subhalos typically have mass fractions in substruc-
ture similar to the main halo (as suggested by, e.g., Shaw
et al., 2007; Kuhlen et al., 2008).
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Figure 21. Substructure count in subhalos of Aq-A-1 within r250

(red filled circles) compared with field halos (hollow black circles)
inside r250, as a function of M250. The top panel shows the sub-
structure count down to our resolution limit, while the bottom
panel gives the count above a limiting maximum circular velocity
equal to 0.1 V250, which effectively measures the amplitude of the
subhalo velocity function. The solid lines give averages for inde-
pendent logarithmic mass bins. We see that there is a systematic
offset in the substructure abundance of field halos and genuine
subhalos. The downturn of the count above 0.1 V250 for masses
below ∼ 109 M⊙ is due to resolution limitations.

5 INTERNAL STRUCTURE OF SUBHALOS

In this section we study the structural properties of sub-
halos, and we compare them to the properties of similar
mass isolated halos. We analyze how the density profiles of
individual subhalos converge as numerical resolution is in-
creased, and we measure the concentration of subhalos as a
function of mass, circular velocity and radial distance. We
then compare with the corresponding relations for field ha-
los.

5.1 Density profiles for subhalos

The internal density structure of nonlinear dark matter ha-
los is one of the most important predictions obtained from
numerical simulations of the CDM paradigm. The density
profile directly affects the rotation curves of galaxies, the
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Figure 4. Spherically averaged density profile of the Aq-A halo
at z = 0, at different numerical resolutions. Each of the pro-
files is plotted as a thick line for radii that are expected to be
converged according to the resolution criteria of Power et al.
(2003). These work very well for our simulation set. We continue
the measurements as thin solid lines down to 2 ϵ, where ϵ is the
Plummer-equivalent gravitational softening length in the notation
of Springel et al. (2001b). The dotted vertical lines mark the scale
2.8 ϵ, beyond which the gravitational force law is Newtonian. The
mass resolution changes by a factor of 1835 from the lowest to the
highest resolution simulation in this series. Excellent convergence
is achieved over the entire radial range where it is expected.

√
200
8

N(r)
ln N(r)

(

ρ(r)
ρcrit

)−1/2

≥ 1, (3)

where N(r) is the number of particles inside r, and ρ(r)
is the average enclosed density. Note that this form of the
convergence criterion is in principle also applicable to dark
matter subhalos (see below), but in this regime it has not
been empirically validated so far.

We find that there is very good agreement between the
densities and enclosed masses for all radii larger than the
convergence radius estimated in this way. The quality of
this convergence is impressively demonstrated by Figure 5,
where we show the local logarithmic slope of the density
profile, for the radial range where convergence is expected
according to the Power criterion. There are some large fluc-
tuations of the local slope in the outer parts of the halo,
caused by substructures, which are remarkably well repro-
duced at the different resolutions. In the more relaxed inner
regions, the local logarithmic slope varies smoothly with ra-
dius. In particular, it becomes gradually shallower towards
the centre, as suggested by Navarro et al. (2004). In fact,
the local slope becomes clearly shallower than −1 at the in-
nermost converged radius. This has important implications
for the structure of the central cusp which will be analyzed
in full detail in Navarro et al. (2008, in preparation). For
the rest of this paper, we focus on an analysis of the dark
matter substructures.
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Figure 5. Local logarithmic slope of the density profiles as a func-
tion of radius for the Aq-A halo simulated at different numerical
resolution. Only the radial region that should be converged ac-
cording to the criteria of Power et al. (2003) is shown. Note that
the large fluctuations in the outer parts are caused by substruc-
tures but nevertheless reproduce well between simulations. In this
regime, we expect significant halo-to-halo scatter.

3 SUBSTRUCTURE ABUNDANCE AND

SPATIAL DISTRIBUTION

In this section, we investigate the abundance of dark matter
substructures as measured by the SUBFIND algorithm. All
our substructures consist of particle groups that are gravi-
tationally self-bound and are overdense with respect to the
local background. Every simulation particle can be part only
of one subhalo, but we are able to detect substructure within
substructure (see below). We count substructures down to
a minimum of 20 bound particles.

3.1 Subhalo counts and substructure mass

fraction

In Figure 6, we show the differential abundance of subhalos
by mass (i.e. the number of subhalos per unit mass inter-
val) in our ‘A’ halo within r50, and we compare results for
simulations of the same object at different mass resolution.
For masses above ∼ 5 × 108 M⊙, the number of subhalos is
small and large halo-to-halo scatter may be expected (see
below). However, for lower masses a smooth mass spectrum
is present that is well described by a power law over many
orders of magnitude. Multiplication by M2

sub compresses the
vertical scale drastically, so that the slope of this power-law
and deviations from it can be better studied. This is shown
in the bottom panel of Figure 6. We see that resolution
effects become noticeable as a reduction in the number of
objects at masses below a few hundred particles, but for
sufficiently well resolved subhalos, very good convergence is
reached. There is good evidence from the fully converged
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Figure 3. Projected dark matter density in our six different high-resolution halos at z = 0, at the ‘2’ resolution level. In each panel,
all particles within a cubic box of side length 2.5 × r50 centred on the halo are shown, and the circles mark the radius r50. The image
brightness is proportional to the logarithm of the squared dark matter density, and the colour hue encodes the local particle velocity
dispersion, with the same colour map as in Figure 2.

to make them feasible on today’s supercomputers. We have
carried out our most expensive calculation, the Aq-A-1 run,
on the Altix 4700 supercomputer of the Leibniz Computing
Center (LRZ) in Garching/Germany, using 1024 CPUs and
about 3 TB of main memory. The calculation took more than
3.5 million CPU hours to carry out about 101400 timesteps
that involved 6.72×1013 force calculations in total. We have
stored 128 simulation dumps for this calculation, amounting
to a data volume of about 45 TB. The other simulations of
the Aquarius Project were in part calculated on the LRZ
system, and in part on other supercomputers across Eu-
rope. These were the COSMA computer at Durham Univer-
sity/UK, the Bluegene/L system STELLA of the LOFAR
consortium in Groningen/Netherlands, and a Bluegene/P
system of the Max-Planck Computing Center in Garching.
For all these simulations we also stored at least 128 outputs,
but for Aq-A-2 and Aq-A-4 we kept 1024 dumps, and for
Aq-A-3 half this number. This provides exquisite time reso-
lution for studies of the detailed formation history of halos
and the evolution of their substructure. In the present study,
however, we focus on an analysis of the objects at z = 0.

2.4 A first view of the simulations

In Figures 2 and 3, we show images† of the dark matter
distribution in our 6 high resolution halos at redshift z = 0.
The brightness of each pixel is proportional to the logarithm
of the squared dark matter density projected along the line-
of-sight,

S(x, y) =

∫

ρ2(r) dz, (1)

while the colour hue encodes the mean dark matter velocity
dispersion, weighted as

σ(x, y) =
1

S(x, y)

∫

σloc(r) ρ2(r) dz. (2)

Here the local dark matter density ρ(r) and the local veloc-
ity dispersion σloc(r) of the particles are estimated with an
SPH kernel interpolation scheme based on 64 neighbours.
We use a two-dimensional colour-table (see Fig. 2) in which
the information about the local dark matter ‘temperature’ is

† Further images and videos of the formation process of the halos
are available at http://www.mpa-garching.mpg.de/aquarius
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FIG. 1.—A comparison between the halo mass function offset by a factor of
0.05 (dashed line), the observed galaxy mass function (symbols), our model
without scatter (solid line) and our model including scatter (dotted line).We
see that the halo and the galaxy mass functions are different shapes, implying
that the stellar-to-halo mass ratio m/M is not constant. Our four parameter
model for the halo mass dependent stellar-to-halo mass ratio is in very good
agreement with the observations (both including and neglecting scatter).

SHM ratio is equal to (m/M)0, and two slopes β and γ which
indicate the behavior of m/M at the low and high mass ends
respectively. We use the same parameters for the central and
satellite populations, since – unlike luminosity – the stellar
mass of satellites changes only slightly after they are accreted
by the host halo.
Note that though both β and γ are expected to be positive,

they are not restricted to be so. The SHM relation is therefore
not necessarily monotonic.

3.2. Constraining the free parameters
Having set up the model we now need to constrain the four

free parameters M1, (m/M)0, β and γ. To do this, we pop-
ulate the halos in the simulation with galaxies. The stellar
masses of the galaxies depend on the mass of the halo and are
derived according to our prescription (equation 2). The po-
sitions of the galaxies are given by the halo positions in the
N-body simulation.
Once the simulation box is filled with galaxies, it is straight-

forward to compute the SMF Φmod(m). As we want to fit this
model mass function to the observed mass function Φobs(m)
by Panter et al. (2007), we choose the same stellar mass range
(108.5−1011.85 M⊙) and the same binsize. The observed SMF
was derived using spectra from the Sloan Digital Sky Survey
Data Release 3 (SDSS DR3); see Panter et al. (2004) for a
description of the method.
Furthermore it is possible to determine the stellar mass de-

pendent clustering of galaxies. For this we compute projected
galaxy CFs wp,mod(rp,mi) in several stellar mass bins which
we choose to be the same as in the observed projected galaxy
CFs of Li et al. (2006). These were derived using a sample
of galaxies from the SDSS DR2 with stellar masses estimated
from spectra by Kauffmann et al. (2003).
We first calculate the real space CF ξ(r). In a simulation

this can be done by simply counting pairs in distance bins:

ξ(ri) =
dd(ri)
Np(ri)

−1 (3)

where dd(ri) is the number of pairs counted in a distance bin
and Np(ri) = 2πN2r2i ∆ri/L3box where N is the total number of
galaxies in the box. The projected CF wp(rp) can be derived
by integrating the real space correlation function ξ(r) along
the line of sight:

wp(rp) = 2
∫ ∞

0
dr||ξ(

√

r2|| + r2p) = 2
∫ ∞

rp
dr

r ξ(r)
√

r2 − r2p
, (4)

where the comoving distance (r) has been decomposed into
components parallel (r||) and perpendicular (rp) to the line
of sight. The integration is truncated at 45 Mpc. Due to
the finite size of the simulation box (Lbox = 100 Mpc) the
model correlation function is not reliable beyond scales of
r ∼ 0.1 Lbox ∼ 10 Mpc.
In order to fit the model to the observations we use Powell’s

directions set method in multidimensions (e.g. Press et al.
1992) to find the values ofM1, (m/M)0, β and γ that minimize
either

χ2r = χ2r (Φ) =
χ2(Φ)
NΦ

(mass function fit) or

χ2r = χ2r (Φ)+χ2r (wp) =
χ2(Φ)
NΦ

+
χ2(wp)
Nr Nm

(mass function and projected CF fit) with NΦ and Nr the num-
ber of data points for the SMF and projectedCFs, respectively,
and Nm the number of mass bins for the projected CFs.
In this context χ2(Φ) and χ2(wp) are defined as:

χ2(Φ) =
NΦ
∑

i=1

[

Φmod(mi)−Φobs(mi)
σΦobs(mi)

]2

χ2(wp) =
Nm
∑

i=1

Nr
∑

j=1

[

wp,mod(rp, j,mi)−wp,obs(rp, j,mi)
σwp,obs(rp, j ,mi)

]2

,

with σΦobs and σwp,obs the errors for the SMF and projected CFs,
respectively. Note that for the simultaneous fit, by adding the
reduced χ2r , we give the same weight to both data sets.

3.3. Estimation of parameter errors
In order to obtain estimates of the errors on the parame-

ters, we need their probability distribution prob(A|I), where A
is the parameter under consideration and I is the given back-
ground information. The most likely value of A is then given
by: Abest = max(prob(A|I)).
As we have to assume that all our parameters are coupled,

we can only compute the probability for a given set of param-
eters. This probability is given by:

prob(M1, (m/M)0,β,γ|I)∝ exp(−χ2)

In a system with four free parameters A,B,C and D one can
calculate the probability distribution of one parameter (e.g.
A) if the probability distribution for the set of parameters is
known, using marginalization:

prob(A|I) =
∫ ∞

−∞
prob(A,B|I)dB

=
∫ ∞

−∞
prob(A,B,C,D|I)dBdCdD
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Figure 20. Cumulative subhalo mass function within r250 for our
6 different halos at level 2 resolution, as well as for our highest
resolution run Aq-A-1. Subhalo masses are measured in units of
M250 in each case. The dashed line is a fit to the mean mass
function.

our results for this comparison, both in terms of the count
of all substructures down to the resolution limit, and by just
counting subhalos with a maximum circular velocity larger
then 0.1 V250, which effectively measures the amplitude of
the (sub-)subhalo velocity function. We here used uncontam-
inated field halos found in the high-resolution region around
the main halo in Aq-A-1, and compared them to subhalos
in the outer parts of the main halo (with r > 258 kpc, such
that their tidal radius is larger than r250). Again we find
an offset of about a factor of 2 in the mean substructure
abundance between field halos and genuine subhalos.

We conclude that the (sub-)substructure abundance in
subhalos is not, in general, a scaled version of that in main
halos. Rather, the self-similar expectation provides an upper
limit on the abundance of these second generation substruc-
tures; less (sub-)substructure is typically found. This reflects
the fact that the substructure abundance of a subhalo is not
only diminished by tidal truncation once it falls into a larger
structure; in addition, its retained substructures continue to
lose mass to the main subhalo through tidal effects and, in
strong contrast to the situation for main halos, they are not
continually replenished by infall of new subhalos from the
field. The substructure deficit in subhalos when compared
to main halos at the same mean overdensity is expected to
grow with time as they orbit within their main halos. It
will therefore be more marked in subhalos in the inner halo,
which are typically “older”.

Our results thus caution strongly against the assump-
tion that subhalos typically have mass fractions in substruc-
ture similar to the main halo (as suggested by, e.g., Shaw
et al., 2007; Kuhlen et al., 2008).
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Figure 21. Substructure count in subhalos of Aq-A-1 within r250

(red filled circles) compared with field halos (hollow black circles)
inside r250, as a function of M250. The top panel shows the sub-
structure count down to our resolution limit, while the bottom
panel gives the count above a limiting maximum circular velocity
equal to 0.1 V250, which effectively measures the amplitude of the
subhalo velocity function. The solid lines give averages for inde-
pendent logarithmic mass bins. We see that there is a systematic
offset in the substructure abundance of field halos and genuine
subhalos. The downturn of the count above 0.1 V250 for masses
below ∼ 109 M⊙ is due to resolution limitations.

5 INTERNAL STRUCTURE OF SUBHALOS

In this section we study the structural properties of sub-
halos, and we compare them to the properties of similar
mass isolated halos. We analyze how the density profiles of
individual subhalos converge as numerical resolution is in-
creased, and we measure the concentration of subhalos as a
function of mass, circular velocity and radial distance. We
then compare with the corresponding relations for field ha-
los.

5.1 Density profiles for subhalos

The internal density structure of nonlinear dark matter ha-
los is one of the most important predictions obtained from
numerical simulations of the CDM paradigm. The density
profile directly affects the rotation curves of galaxies, the
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Figure 4. Spherically averaged density profile of the Aq-A halo
at z = 0, at different numerical resolutions. Each of the pro-
files is plotted as a thick line for radii that are expected to be
converged according to the resolution criteria of Power et al.
(2003). These work very well for our simulation set. We continue
the measurements as thin solid lines down to 2 ϵ, where ϵ is the
Plummer-equivalent gravitational softening length in the notation
of Springel et al. (2001b). The dotted vertical lines mark the scale
2.8 ϵ, beyond which the gravitational force law is Newtonian. The
mass resolution changes by a factor of 1835 from the lowest to the
highest resolution simulation in this series. Excellent convergence
is achieved over the entire radial range where it is expected.

√
200
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N(r)
ln N(r)

(

ρ(r)
ρcrit

)−1/2

≥ 1, (3)

where N(r) is the number of particles inside r, and ρ(r)
is the average enclosed density. Note that this form of the
convergence criterion is in principle also applicable to dark
matter subhalos (see below), but in this regime it has not
been empirically validated so far.

We find that there is very good agreement between the
densities and enclosed masses for all radii larger than the
convergence radius estimated in this way. The quality of
this convergence is impressively demonstrated by Figure 5,
where we show the local logarithmic slope of the density
profile, for the radial range where convergence is expected
according to the Power criterion. There are some large fluc-
tuations of the local slope in the outer parts of the halo,
caused by substructures, which are remarkably well repro-
duced at the different resolutions. In the more relaxed inner
regions, the local logarithmic slope varies smoothly with ra-
dius. In particular, it becomes gradually shallower towards
the centre, as suggested by Navarro et al. (2004). In fact,
the local slope becomes clearly shallower than −1 at the in-
nermost converged radius. This has important implications
for the structure of the central cusp which will be analyzed
in full detail in Navarro et al. (2008, in preparation). For
the rest of this paper, we focus on an analysis of the dark
matter substructures.
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Figure 5. Local logarithmic slope of the density profiles as a func-
tion of radius for the Aq-A halo simulated at different numerical
resolution. Only the radial region that should be converged ac-
cording to the criteria of Power et al. (2003) is shown. Note that
the large fluctuations in the outer parts are caused by substruc-
tures but nevertheless reproduce well between simulations. In this
regime, we expect significant halo-to-halo scatter.

3 SUBSTRUCTURE ABUNDANCE AND

SPATIAL DISTRIBUTION

In this section, we investigate the abundance of dark matter
substructures as measured by the SUBFIND algorithm. All
our substructures consist of particle groups that are gravi-
tationally self-bound and are overdense with respect to the
local background. Every simulation particle can be part only
of one subhalo, but we are able to detect substructure within
substructure (see below). We count substructures down to
a minimum of 20 bound particles.

3.1 Subhalo counts and substructure mass

fraction

In Figure 6, we show the differential abundance of subhalos
by mass (i.e. the number of subhalos per unit mass inter-
val) in our ‘A’ halo within r50, and we compare results for
simulations of the same object at different mass resolution.
For masses above ∼ 5 × 108 M⊙, the number of subhalos is
small and large halo-to-halo scatter may be expected (see
below). However, for lower masses a smooth mass spectrum
is present that is well described by a power law over many
orders of magnitude. Multiplication by M2

sub compresses the
vertical scale drastically, so that the slope of this power-law
and deviations from it can be better studied. This is shown
in the bottom panel of Figure 6. We see that resolution
effects become noticeable as a reduction in the number of
objects at masses below a few hundred particles, but for
sufficiently well resolved subhalos, very good convergence is
reached. There is good evidence from the fully converged

c⃝ 0000 RAS, MNRAS 000, 000–000
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Self interacting dark matter  
(SIDM) overview

• Particle interactions between dark matter particles, modelled as 
being elastic with some cross-section 

• Elastic collisions evolve the phase space distribution towards a 
Gaussian (M-B) or the continuum approximation if you’re a fluid 
dynamicist (more on this later) 

• This process is most effective in regions of higher density and 
velocity dispersion, (e.g. centres of halos, higher redshift) 

• Also velocity dependence (e.g. Loeb & Weiner 2011) and 
consequently angular dependent scattering
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Primer on SIDM effects on halos
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SIDM + baryons
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Unexpected diversity on the rotation curves of dwarfs 

Oman et al. 2015 
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Unexpected diversity on the rotation curves of dwarfs 
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Isolated galaxy simulations

• Baryons removed and replaced with static Miyamoto-
Nagai potential (avoid instabilities in baryonic disk with 
Hubble time too may dynamical times for a dwarf) 

• M. Vogelsberger’s SIDM code for 10 Gyr to see what 
happens…

MN disk

Hernquist halo
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SIDM+baryons diversity

σT/m𝜒  =2 cm2 g-1

MN disk

Hernquist halo

σT/m𝜒  =2 cm2 g-1
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SIDM diversity

• DM only 
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SIDM diversity
• Take halos with concentrations 

sampled from mass-conc 
relation (Ludlow 2014) 

• Realistic disk masses 
(abundance matching) in gas 
and stars,  

• Sizes 0.5-6 kpc to span 
observables, (later resampled 
onto observed Shen ’03 
relations) 

• Disk size and halo 
concentration assumed to be 
independent
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SIDM diversity
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Individual dwarfs
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Part II - Old Metal Poor 
Globular Clusters in LCDM



GCs are not observed to have any dark 
matter

• Theoretical equipartition of stellar and dark 
components around 100 pc


• c.f. Conroy, Loeb and Spergel ’11, but also Ibata 
et al. ‘13

174 M. Bellazzini: The surface brightness profile of NGC 2419 (RN)

Fig. 3. Samples used for the star counts (upper panels: sky-projected maps; lower panels CMDs). The stars selected for the analysis are plotted as
heavier dots in the CMDs. The grey circles plotted in the maps marks the boundaries between regions covered by a given dataset and/or the regions
of overlap among the various datasets that have been used to derive the SB profile. In order of increasing radius: r ≤ 21′′: aperture photometry
on ACS images; 21′′ < r ≤ 51′′: star counts on ACS data; 51′′ < r ≤ 140′′: region of overlap between the ACS and the S05 data (star counts);
140′′ < r ≤ 300′′: region of overlap between the S05 data (upper left quadrant) and the SDSS data (star counts); r = 720′′ = 12′: (dashed circle)
outer boundary for the star counts from the SDSS data. The background level was estimated in the area outside of this circle, up to r = 15′.

overall combined profile was well-behaved in the region where
aperture photometry and star counts data have been joined.

The bright magnitude threshold adopted for the S05, and to
a lesser extent the SDSS sample (see Fig. 3), implies that in the
outer low-density regions of the cluster covered by these samples
the uncertainty of the derived SB can be quite large, in some
cases. The accurate tracing of these parts of the profile would
require much deeper wide-field photometry than what is publi-
cily available (see, for example, Ripepi et al. 2007). Moreover I
excluded from the final profile all the annuli where the number of
selected cluster stars was < 10, hence the SB estimates of Table 1
are not necessarily regularly spaced. Nevertheless, (a) the re-
ported SBs for r ≤ 51′′ are, by far, the most accurate estimates
presently available, (b) the new profile covers a much larger ra-
dial range with respect to previously available ones (TKD), i.e.,
r ≃ 8′ ≃ 1rt ≃ 25rc, and (c) it is obtained from datasets never
used before for this purpose, thus providing observational con-
straints on the structure of NGC 2419 that are fully independent
from what was already available in the literature.

3. Structural parameters for NGC 2419

In Fig. 4 we compare the profile of Table 1 with the theoreti-
cal profiles of isotropic single-mass K66 models, and with the
combination of observed profiles adopted by TKD. In the upper
panel, we adopt the central surface brightness and the HWHM
values obtained in Sect. 2. The overall profile is best-fitted by
a model with C = 1.35, in good agreement with the results by
TKD and MvdM. Adopting this model, the resulting core ra-
dius is rc = 1.07 HWHM = 19.2′′, and the half-mass radius is
rhm ≃ 3.0rc = 57.6′′. Since the relaxation time of NGC 2419 is
much larger than one Hubble time (Djorgovski 1993, MvdM),
the effects of mass segregation should be very small in this clus-
ter, hence the half-mass radius should be a good proxy for the
half-light radius; for this reason I assume rh = rhm = 57.6′′.

It is very interesting to note that the newly (and indepen-
dently) derived profile is in excellent agreement with the TKD
profile for r ≥ 4′′, with perhaps the exception of a small wig-
gle at log(r)= 1.4 in the region covered by ACS star counts.

Bellazzini 2007 (HST & S05) NGC2419
91 kpc away (1” = 0.44 pc)



Interest in GC DM -> Implications for 
formation of old metal-poor GCs

Late

Early

Form early at centres of their 
own halos (e.g. age~z_reion, 
Peebles ’84, fall into galaxies, 

now mostly subhalos)


Form late in some 
galactic process, 
not associated to 

DM

Age

• MGC ~= 4x10-5 M200


• or for metal poor 
only ~= 2.5-3x10-5 
M200


• (see also MBK ’17, El 
Badry, Quataert et al. 
’18)

Hudson, Harris & Harris ‘14
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Figure 1. Total mass of all globular clusters in a galaxy (MGCS) compared with total stellar and halo mass of the galaxy. Semi-transparent squares are for GC data with
uncertainties larger than 0.1 dex, while solid circles are GC data with uncertainties !0.1 dex. Red points denote BCGs, blue points are non-BCGs (some of which
may nonetheless be “central” galaxies in small groups). In the upper two panels, the dashed lines have unit slope. The small black arrow is attached to the point for
M87 in Virgo; it shows the effect of adding all intracluster GCs in Virgo to those clustered around M87. The larger black arrow is attached to the point for NGC 4874,
the central cD in the Coma cluster, and shows the same effect. The green line is a broken power-law fit to the data with small uncertainties in MGCS. The dashed green
line shows the effect of correcting the high-mass power-law fit for IGCs, based on the observed correction in Coma.
(A color version of this figure is available in the online journal.)

deep photometry, but they have been estimated usefully for two
nearby clusters, Virgo and Coma. Peng et al. (2011) estimated
that there were 47,000 IGCs within the central 520 kpc of the
Coma cluster, in contrast to the 23,000 around NGC 4874 itself.
Thus the true mass of the GCS in the Coma cluster may be
three times larger than the NGC 4874 GCS. Similarly, the
IGC population found in the Virgo cluster (Lee et al. 2010)
may roughly double the GC total assigned to M87, the central
cD. The corrections for M87 and NGC 4874 are indicated by
the arrows in Figure 1. In short, the evidence suggests that η
may be nearly constant over almost five orders of magnitude in
halo mass.

4. DISCUSSION

The residual scatter in η is 0.3 dex when galaxies with the best-
estimated GC counts (uncertainties σ (log MGCS) < 0.1 dex) are
used. Because the halo masses Mh are not direct measurements
but are inferred from the stellar mass and the mean SHMR,
the scatter in the SHMR cannot be calculated directly from
weak lensing, but by other methods, σ (Mh) has been estimated

at 0.15–0.2 dex (Behroozi et al. 2010). Subtracting 0.2 dex
in quadrature then suggests that the intrinsic scatter in the
MGCS–Mh relation is a remarkably low ∼0.2 dex. Among several
potential sources for the scatter about the mean MGCS–Mh
relation, we discuss two such sources: tidal stripping of the
GC system as a whole, and the red and blue GC subpopulations.

4.1. Environmental Dependence and Tidal Stripping of the
Globular Cluster System

At large stellar or halo masses, the data are suggestive of
an environmental dependence in the sense that non-BCGs have
slightly lower η than BCGs. One obvious interpretation is that
the GC system has been partially stripped in galaxies which
are “satellites,” as opposed to “centrals” in their host halo
(Spitler & Forbes 2009). The Coma cluster may again provide
a good illustration: the two supergiants NGC 4874 and 4889
dominate the Coma center and have comparable stellar mass.
However, from dynamical and X-ray studies (Colless & Dunn
1996; Arnaud et al. 2001), the presence of a cD halo, and the
spatial distribution of IGCs (Peng et al. 2011), it is clear that

3
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Creasey, Sales, et al. in prep., see also Diemand & 
Moore ’05, Bekki ’05, Boylan Kolchin ‘17

• Paint in GCs


• Halos around 10^8 Msun at z~10 
give you the right number density

Clustering of halos at high z



Infalling halos not compact enough at 
z=0?

• Median GC radius vs stellar mass


• baryonic contraction reduces tension, stripping increases it



Intergalactic GCs?
• How many GCs in the LG 

(say <1 Mpc of the MW) 
not associated with a 
galaxy?


• (given in SDSS we see 
none, e.g. di Tullio Zinn & 
Zinn ’15)
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Figure 20. Variation of the anisotropy parameters as a function of the 3D radius. The profiles for UCDs, blue GCs, and red GCs are represented as black, blue, and
red solid curves respectively. Following the same color code, the hatched regions of different styles mark the 68% confidence intervals for blue GCs and red GCs. The
gray shaded region marks the 68% confidence interval for the UCDs. The short dashed curves (black for UCDs, blue for blue GCs) represent the anisotropy profiles
predicted by a universal relation between the number density slope and β for relic high-σ density peaks as found in cosmological simulations by Diemand et al. (2005).

where β0, β∞, and rβ are the three free parameters defining the
radial profile. Specifically, β0 and β∞ are the anisotropies at r =
0 and ∞, respectively, and rβ represents the scale radius of the
βr profile. This function form of βr allows for either a radially
increasing or decreasing profile.

The GC (the blue plus red) anisotropy profile as determined
by Zhu et al. (2014) shows a non-monotonic behavior, in
the sense that βr gradually increases toward the intermediate
radii (∼40 kpc) and then falls off at larger radii. Therefore,
we also considered a two-part piecewise radial dependence of
anisotropies by allowing the inner and outer radii to follow dif-
ferent profiles as defined by Equation (11), with the “transition”
radius rtr being left as a free parameter.

To constrain the radial anisotropy profiles for each of the
different samples, we first created a library of model σlos,R
profiles for each of them by allowing the free parameters that
define the inner and outer anisotropy profiles to uniformly
(linearly for β0, β∞, and rtr, logarithmically for rβ) vary. Then
a maximum likelihood method was used to fit the models to
the observed line-of-sight velocities as a function of projected
radii. In particular, by assuming that the observed line-of-
sight velocities vi (±∆vi) at a given geometric average radius
R follow a Gaussian distribution with σ 2

i = (∆vi)2 + σ 2
los,R and

µ =
∑

i((1/σ 2
i )vi)/

∑
i(1/σ 2

i ), we calculated a joint probability
(similar to Equation (5) in form) of each model profile for a given
population. The most probable model profile is taken as the
fiducial one, and the 68% confidence intervals are determined
by randomly resampling the real data sets, with ∼10% of data
points being left out for each resample.

9.2. Results

The derived anisotropy profiles for the full samples of UCDs
and GCs within the central 35′ of M87 are shown in Figure 20.
Following Zhu et al. (2014), we reduced the weight of the
data points (by increasing the uncertainties) that are located
in the puzzlingly “hot” radius range from Rav = 4′ to 12′ in
the Jeans modeling. Since our Jeans analysis relies on the Zhu
et al. mass profile, which was determined with made-to-measure
modeling of nearly the same GC data set that is used in this

work, we should obtain an anisotropy profile that is at least
qualitatively consistent with Zhu et al. Comparing our Figure 20
to the Figure 12 of Zhu et al. (2014), one can see that, although
based on different methods, our anisotropy profile for the blue
GCs, which dominate the spectroscopic samples of M87 GCs,
is in reasonably good agreement with Zhu et al. within the
uncertainties.

The UCD system has an anisotropy profile that becomes more
radial with radius, with βr being negative (tangentially biased)
within the inner ∼20–40 kpc and being positive (radially biased)
beyond. We note that a radially biased orbital structure for UCDs
at larger radii is in line with a peaky velocity distribution shown
in Section 7. The blue GC system has a radially increasing βr

profile in the inner ∼40 kpc but a radially decreasing profile
at larger radii. Among the three samples, the red GCs exhibit
the largest radially biased velocity dispersion tensor across the
explored radius range, which may be surprising but nevertheless
in line with their relatively large velocity kurtosis (Figure 10;
Table 3). We note that, although being based on different mass
models of M87, a highly radially biased anisotropy (β ∼ 0.8 at
∼150 kpc) was also found in the outer stellar halo of M87 by
Doherty et al. (2009) based on the integrated stellar absorption-
line data at small radii and planetary nebulae (PNe; trace the
stellar diffuse light, Coccato et al. 2009) kinematics at large
radii (!150 kpc), and this is in agreement with our finding for
red GCs.23

23 Agnello et al. (2014) recently determined the anisotropies for 354 GCs
within ∼100 kpc of M87 by dividing the GC system into three kinematically
distinct subpopulations of different colors, i.e., blue, intermediate-color, and
red GCs, with intermediate GCs mostly being separated out from the classic
red GCs. Agnello et al. found a mildly radially biased anisotropy (∼0.3) for
their intermediate GCs and a slightly tangentially biased anisotropy (∼− 0.2)
for their red GCs. Nevertheless, a tripartition of M87 GCs may be still
oversimplified. As was shown by S11 (cf. their Figure 8), there is a complex
color dependence of velocity dispersion of the classic red GCs, in the sense
that the “intermediate” red GCs have a significantly higher dispersion than
both the “bluer” and “redder” red GCs. So, there may be at least three
kinematically distinct subpopulations for the classic red GCs alone, and the red
GC system has not completely mixed dynamically. A complete understanding
of the dynamics of the red GCs would have to wait for larger samples of radial
velocities across the M87 system, in order to explore the full color dependence
of their dynamics.
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Figure 11. Line-of-sight velocity distribution of the subsamples of bright (lower panels) and faint (upper panels) UCDs (left), blue GCs (middle), and red GCs (right).
The histograms have a bin width of 50 km s−1. The red solid curve overplotted on each histogram is the kernel density estimation of the observed distribution, and
the blue dashed curve represents a Gaussian distribution, with the Gaussian σ being equal to the standard deviation of the velocity distribution. Note that the Gaussian
distributions have been scaled by the area under the histograms. The standard deviation σ , skewness G1, kurtosis G2, and T parameter were also listed on the top of
each panel.

description of the shape properties of a distribution should in-
volve both the tailedness and peakedness. An outlier-insensitive,
quantile-based alternative for the standard kurtosis, i.e., the T
parameter, was introduced by Moors (1988), and this alternative
definition is expected to be more sensitive to the peakedness than
G2. A detailed introduction about T is given in the Appendix.
The T parameter is defined such that a Normal distribution has
a T equal to 0, and a positive T indicates heavier tails and
(especially) a sharper peak than a Normal distribution.

The σ , G1, and G2 reported below were calculated based
on outlier-rejected samples. The 68% confidence intervals for
all the above mentioned shape parameters, including the T
parameter, were determined with by randomly resampling the
real data sets. The estimated G2 and T for some specified radial
bins are listed in Tables 3–5.

7.1. The Full Samples

The UCDs and blue GCs have similarly higher dispersion
in the velocity distribution than the red GCs. The velocity
distribution of UCDs is skewed toward the higher velocity tail,
as quantified by a positive skewness, whereas the distribution of
red GCs is skewed toward the lower velocity tail, as quantified
by a negative skewness. The skewness difference between the
three populations is partly reflected in their different systemic
velocities Vsys (Table 3). The velocity distribution of UCDs
is noticeably sharper than a Gaussian (blue dashed curves in
Figure 10), whereas the velocity distributions of GCs are only
marginally sharper than a Gaussian. The different sharpness
of the three distributions is well reflected in their different T
parameters. In addition, the UCDs and blue GCs have a similarly
negative G2, suggesting slightly lighter tails than a Gaussian. As
we will show later (Section 9), the peaky velocity distribution
of UCDs is consistent with a radially biased velocity dispersion
tensor at large galactocentric distances, whereas the lighter tails
are in line with a tangentially biased velocity dispersion tensor
at small distances.

7.2. Bright and Faint Subsamples

Since there are only 11 UCDs at i0 > 20.5 mag, the calculation
of skewness and kurtosis for these faint UCDs is subject to large
uncertainties and bias and will not be discussed further. For the
blue GCs, the bright and faint subsamples have similar velocity
dispersion. Nevertheless, the bright blue GCs have much more
negative G2 and marginally lower T than the faint ones. For the
red GCs, the bright subsample has a significantly smaller (by
∼70 km s−1) velocity dispersion and larger G2 than the faint
subsample.

Most of the confirmed GCs with i0 ! 21.5 mag were observed
by S11 with the Low Resolution Spectrometer (LRIS) on
Keck. The Keck/LRIS survey of S11 only covered the central
∼1.′5–5.′5 of M87, and as a result the confirmed faint GCs are
primarily located in the central region (Figure 5). To check if
the velocity distribution differences between the bright and faint
GCs are driven by the observational bias in spatial coverage for
the sample of faint GCs, we derived the shape parameters of
the velocity distribution for the bright and faint GCs within the
central 5′. It turns out similar differences between the bright and
faint subsamples still exist for both the blue and red GCs.

Furthermore, previous studies (S11; Agnello et al. 2014)
found that the M87 GCs of different colors may exhibit different
kinematical properties. So we also checked for any possible
color bias for the bright and faint subsamples. The median
(g−i)0 colors of the bright and faint blue GCs are 0.76 and 0.74,
respectively, suggesting that there is no significant color bias for
the bright and faint subsamples. For the red GCs, the median
(g − i)0 colors of the bright and faint subsamples are 0.95 and
1.00, respectively. When we divide the red GCs into two (g−i)0
color groups with a division color of 0.97, the abovementioned
difference still exists for subsamples in each color group,
although there is a systematic difference between the “bluer”
and “redder” groups, in the sense that the corresponding
subsamples in the “bluer” group have about ∼70 km s−1

lower velocity dispersion than those in the “redder” group.
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Conclusions:

• Metal poor GC formation in their own DM halos poorly constrained by 
intergalactic GC counts (field density)


• Median GC distance from the MW seems to exclude *all* metal poor 
GCs forming in this mechanism (a fraction still possible)


• Velocity anisotropies curious, seems hard to explain with GCs in halos 
or outside

• Dwarfs also have quite diverse rotation curves (some more core-like, but some cusp-
like also).


• Significant scatter in the central (2kpc) densities of dwarfs seems hard to achieve in 
hydro sims of LCDM (requires moving DM out of cusp)


• SIDM systematically turns cusps into cores. SIDM + baryons can make cores *and* 
cusps. Works very well at 100 km/s, struggles a bit at 60 km/s.

Dwarf galaxy cores & cusps

Globular clusters in their own halos


