

erc

Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high-z

Pier Stefano Corasaniti

CNRS & Observatoire de Paris

Collaborators:

Shankar Agarwal (AIMS, Cape Town) Doddy Marsh (Univ. Gottingen) Subinoy Das (IIA, Bangalore) Isabella Carucci (UCL)

Publications:

PSC et al. (2017), arXiv:1611.05892 Carucci & PSC, in preparation Carucci & PSC (2017), arXiv:1706.09462

Mainz, ``Tensions in the LCDM paradigm'', 14-18 May 2018

Observatoire de Paris – Meudon Campus

Outline

- Motivations
- High-z Galaxy Luminosity Function
- N-body Simulations & Numerical Systematics
- Statistical Halo-Galaxy Model
- DM Model Constraints & Astrophysical Implications

Standard DM paradigm

Dark Matter:

- Foster matter clustering
- Resides in virialized clumps

Halos:

- Building blocks of cosmic structure formation
- Shape baryon distribution

Large Scales:

- Successful Description CMB spectra
- Clustering of Matter from galaxy surveys
- Bottom-Up Evolution -> Certainly no HDM

Cold Dark Matter Paradigm

- WIMP miracle

Small Scales & Beyond CDM

CDM Anomalies:

- Core vs Cusp Profiles
- Missing Satellites
- Too-big-too fail

Non-DM Physics Explanations:

- Baryonic Feedback
- Observational Selection Effects
- Uncertainties of Milky-Way Mass

DM Direct Searches:

- Negative or Contrasting Results
- No signal at LHC

Pontzen & Governato 2014

Boylan-Kolchin et al. 2012

Non-CDM Candidates

Warm Dark Matter

- Thermal Relic , $m_{WDM} \approx keV$
- Free-Stream ≤ 100 kpc
- Small-Scale Power Spectrum Cut-off

Self-Interacting DM Spergel & Steinhardt 2000

- DM scattering cross-section (velocity in/dependent)
- Interaction with radiation

Ultra-Light Axions and Late-Forming DM

- ULA: Axion field transition from vacuum to matter (w=-1 -> w=0) see review Marsh (2015)
- LFDM: Before matter/radiation equality, decay of scalar field coupled to radiation (w $\approx 1/3 \rightarrow$ w=0) Fardon, Nelson, Weiner 2006; Das & Weiner 2011

Non-CDM Observational Consequences

Warm Dark Matter

- m_{WDM} < 0.1 keV to core the DM profiles e.g. Maccio et al. 2012
- 1.5 < m_{WDM} [keV] < 2 to solve too-big-to-fail Lowell et al. 2012, 2014
- m_{WDM} > 3.3 keV from Lyman- α power spectrum a z>2 Viel et al. 2012

Self-Interacting DM

- Lower density sub-halos and core profiles Vogelsberger et al. 2012; Zavala et al. 2013
- Low mass halo abundances unaltered

Axion DM

- CMB anisotropy and large scale galaxy clustering analysis: $m > 10^{-24} eV$

Hlozek et al. 2015

High-z Galaxy Luminosity Function

- Test for galaxy formation models
- Linked to Cosmic Reionization Scenarios
- Probe low-mass end HMF evolution

Fast evolving field

- Deep surveys (Hubble Deep Field)
- Cluster Gravitational Lensing (Hubble Frontier Fields)

High-z LF vs DM

Galaxy Number Density:

0.1 z=40.01 z = 7 10^{-3} (^nW)\$ 10-4 10-5 henker et al. (2013) cLure et al. (2013) 10-6 -22 -20 -18 -16-24-14M_{UV}

- m_{WDM} > 1 keV (CLASH at z = 10)

Pacucci, Mesinger & Haiman (2013)

- m_{WDM}> 2.9 keV (HFF at z =6) Menci et al. (2016)

Does not need to specify $\rm M_{\rm UV}\mathchar`-M_{\rm h}$ but not free of other caveats

- m_{WDM} > 0.8 keV (at mag limit HUDF data) using HAM of LCDM Schultz et al. (2014)

Luminosity Function:

- $m_{\psi} > 10^{-22}$ eV from HAM assuming parametrized $L_{UV}(M)$ relation

Schive et al. (2016)

N-body Simulations

Models:

- **WDM**: m_{WDM} = 0.7, 1.0, 1.5, 2.0, 2.4 keV

- **LFDM**: $z_t = 5, 8, 15 \times 10^5$

- **ULADM**: m_{ULA} = 1.6, 4.2, 15.4 × 10⁻²² eV

Runs:

- RAMSES
- $L_{box} = 27.5 Mpc/h$

- N_p = 1024³ (m_p = 1.6 × 10⁶ M_{$$\odot$$}/h)

Why can we use N-body?

pFoF Halo Finder

Knebe et al. (2011)

DM model halo catalogs

Initial Catalogs:

- FoF halos
- N_h > 100
- lots of spurious halos

Selections:

- N_h > 300 - only halos with 0 < η=2K/E < 1.5

Artificial Halos

Discretization Effect

- Sampling Poisson Noise (k > k_{cut-off})
- Spurious Numerical Halos
 Gotz & Sommer-Larsen 2002, 2003; Wang & White 2007

Example

RAMSES	- N _p =512 ³	- m _p ~ 10 ⁷ M _{sun} h⁻¹
AMR	- L _{box} = 27.5 Mpc h ⁻¹	- dx _{coarse} ~ 54 kpc ł

Spurious Halo Contamination

Halo Mass Function

- $N_{h-particles} > 100$
- Upturn at M<M*
- Simulation Dependent Slope

Proposed Cures

- Mass Cut: M_{min} = 10.1 ρ d k_p^{-2} Wang & White 2007
- Select Unflatten Proto-Halos in Initial Lagrangian Patch & Apply Mass Cut Lowell et al. 2012
- Visual Inspection Angulo, Hahn, Abel 2013
- Tessellation 6-d phase-space folding (reduce but dosn't solve)

Hahn, Abel, Kaehler 2013

-
$$N_p = 1024^3$$
 - $m_p \sim 10^6 M_{sun} h^{-1}$
- $L_{box} = 27.5 Mpc h^{-1}$ - $dx_{coarse} \sim 26 kpc h^{-1}$

Structural Properties of Halos

Agarwal & Corasaniti 2015

Halo Spin

- Spin parameter $\lambda' = \frac{J}{\sqrt{2}MVR}$
- -V = V(GM/R)
- 8 bins: $4 < M[10^9 M_{sun} h^{-1}] < 8$
- CDM: log-normal & mass independent
- non-CDM: deviations from lognormality/bimodality and mass dependent
- spurious halos have large spins

Structural Properties of Halos

Halo Shape

Symmetric Mass
 Distribution Tensor

$$M_{\alpha\beta} = \frac{m_p}{M} \sum_{i=1}^{N_h} (r_{\alpha,i} - r_{\alpha,c}) (r_{\beta,i} - r_{\beta,c})$$

- sphericity, ellipticity & prolatness
- CDM: mass independent & elliptical halos
- non-CDM: mass dependent
 highly non-spherical
 (elliptical & prolate, i.e.
 alignment with filaments)

Halo Dynamical State

Virial Condition

- proxy: η=2 K/|E|
- correlation λ' - η for η >1

Virial State Selection

Removing Spurious Halos

- $-0 < \eta = 2 \text{ K} / |\text{E}| < 1.5$
- recover halo triaxial distribution
- recover spin log-normality
- recover suppressed mass
 function at low mass (mass
 resolution convergence)
- spurious halos still present with simple mass-cut at $M_{\rm min}$
- mass range larger than mass cut

Evolution of HMF in NDM models

Calibrated Analytical Formula

$$\frac{dn}{dM_{\rm h}} = 10^{\alpha + \beta \frac{M_{\star}}{M_{\rm h}}} \left(1 - e^{-\frac{M_{\rm h}}{M_{\star}}}\right)^{\gamma} \frac{dn}{dM_{\rm h}}\Big|_{\rm CDM}$$

Predicting LF at z > 5

From HMF to GLF:

What can we do to..

- Infer from ensemble averaging using HAM (e.g. Mashian et al. 2016)

- Calibrate SFR(M) model using single dataset at given z (e.g. Mason et al. 2015)

Parametrize and derive parameters from
 LF data fitting (e.g. Schive et al. 2016)

- Account for z-evolution of $M_{UV} M_h$ due dust extinction
- Infer such relation from the data
- Deduce information on galaxy properties e.g.
 SFR(M_h)
- Learn about DM model dependencies

Empirical Approach

HAM & SFR

UV-Luminosity to SFR

- Account for dust extinction
- Convert M_{UV} corrected to SFR (Kennicut relation)
- Derive SFR-density functions (see Mashian, Oesch, Loeb 2015 for LCDM)

Extinction Correction $\left\langle A_{UV} \right\rangle = 4.43 + 0.79 \ln 10 \sigma_{\beta}^{2} + 1.99 \left\langle \beta \right\rangle$ Meurer et al. (1999) $\left\langle \beta(M_{UV}, z) \right\rangle = \begin{cases} \left[\beta_{M_{0}}(z) - C \right] e^{\beta'(z) \frac{M_{UV} - M_{0}}{\beta_{M_{0}}(z) - C}} M_{UV} \ge M_{0} \\ \beta'(z) \left[M_{UV} - M_{0} \right] + \beta_{M_{0}}(z) \end{cases}$ Tacchella et al. (2013), Mason, Trenti & Treu (2015)

- Changes UV-mag bin size
- Shift toward higher luminosities Smit et al. (2012)

Template Function SFR – M_h relation

Modeling Luminosity Function at z > 5

Average amplitude and intrinsic scatter SFR-M_h relation

- Compute

$$\phi(SFR,z) = \frac{1}{\sigma_{\text{int}}^2 \sqrt{2\pi} SFR} \int dM_h \frac{dn}{dM_h} (M_h,z) \ e^{-\frac{\log_{10}^2 \left[SFR/(\varepsilon \langle SFR(M_h) \rangle \right]}{2\sigma_{\text{int}}^2}}$$

- Convert to UV luminosities
- Add extinction effect
- Estimate Φ (M_{UV})
- Fit against the data $\epsilon,\,\sigma_{_{int}}$

High-z LF data

Bright-end side of LF

Bouwens et al. (2015):

- 10,000 galaxies HST data
- subsample for dust model

Faint-end Slope

HFF observations: Atek et al. (2015) Livermore et al. (2016) Bouwens et al. (2016)

Our selected dataset

26 points at z=6 (B15+B16) 31 points at z=7 (B15+A15+L16) 22 points at z=8 (B15+A15+L16)

Sensitivity to lens model magnification systematics

DM models goodness-of-fit

Model	$\log_{10} \varepsilon_{\rm SFR}^{z=6}$	$\log_{10} \sigma_{\rm SFR}^{z=6}$	$\chi^2_{z=6}$	$\log_{10} \varepsilon_{\rm SFR}^{z=7}$	$\log_{10} \sigma_{\rm SFR}^{z=7}$	$\chi^2_{z=7}$	$\log_{10} \varepsilon_{\rm SFR}^{z=8}$	$\log_{10} \sigma_{\rm SFR}^{z=8}$	$\chi^2_{z=8}$	$\chi^2_{\rm tot}$
CDM	-0.80	-0.23	21.5	-0.52	-0.23	27.6	-0.18	-0.39	15.8	64.9
WDM-1	-0.78	-0.26	87.7	-0.60	-0.25	57.4	-0.58	-0.24	23.8	168.9
WDM-2	-0.79	-0.25	22.4	-0.53	-0.24	31.6	-0.12	-0.47	17.5	71.5
WDM-3	-0.83	-0.22	20.5	-0.54	-0.23	28.1	-0.23	-0.37	15.7	64.3
WDM-4	-0.90	-0.20	21.7	-0.60	-0.21	27.8	-0.28	-0.35	15.9	65.4
WDM-5	-0.85	-0.21	22.0	-0.60	-0.21	27.1	-0.26	-0.36	15.8	64.9
LFDM-1	-0.92	-0.17	37.2	-0.73	-0.14	45.0	-0.29	-0.50	16.6	98.8
LFDM-2	-0.83	-0.23	20.1	-0.53	-0.23	28.3	-0.22	-0.38	15.6	64.0
LFDM-3	-0.85	-0.22	21.7	-0.73	-0.20	30.5	-0.49	-0.29	16.2	68.4
ULADM-1	-0.91	-0.24	21.3	-0.69	-0.24	33.6	-0.48	-0.36	14.9	69.8
ULADM-2	-0.89	-0.20	21.5	-0.78	-0.19	31.4	-0.59	-0.26	16.5	69.4
ULADM-3	-0.81	-0.23	21.9	-0.60	-0.21	27.3	-0.29	-0.34	15.9	65.1

WDM: m_{WDM} ≥ 1.5 keV

LFDM:

 $z_t \ge 8 \times 10^5$

ULADM:

 $m_{ULA} \ge 1.6 \times 10^{-22} \text{ eV}$

LCDM comparison to Sphinx Simulations

• Consistent LF "predictions"

Rosdahl et al. (2018)

• Disagreement on the choice of x-axis orientation

Star-Formation Rate Halo Mass Relation

LCDM "prediction" consistency check

If you like tensions: results from L16 at z=6

Cosmic Reionization Model

Kuhlen & Faucher-Giguere (2012)

Ionizing Emissivity Model

$$\dot{n}_{ion}^{com} = f_{esc} \int_{M_{lim}}^{\infty} dM_{UV} \phi(M_{UV}) \gamma_{ion}(M_{UV})$$

Ionizing Luminosity

$$\gamma_{ion}(M_{UV}) = 2 \cdot 10^{25} \cdot 10^{0.4(51.63 - M_{UV})} \zeta_{ion} [s^{-1}]$$

Volume Average Ionized Hydrogen Fraction

$$\frac{dQ_{HII}}{dt} = \frac{\dot{n}_{ion}^{com}}{\overline{n}_H} - \frac{Q_{HII}}{\overline{t}_{rec}} \qquad \qquad \overline{t}_{rec} = 0.93 \left(\frac{C_{HII}}{3}\right)^{-1} \left(\frac{T_0}{2 \times 10^4 K}\right)^{0.7} \left(\frac{1+z}{7}\right)^{-3} \quad [Gyr]$$

Optical Depth $au_{\rm e} = \int_0^\infty dz \frac{c(1+z)^2}{H(z)} Q_{\rm HII}(z) \,\sigma_{\rm T} \,\bar{n}_{\rm H} \,(1+\eta Y/4X),$

Planck Limits: f_{esc} vs M_{lim} DM Model Degeneracy

Carucci & PSC (in preparation)

Ionized Hydrogen Fraction

Carucci & PSC (in preparation)

Impact of f_{esc}(z)

Carucci & PSC (in preparation)

WDM – Reionization Simulations

We have shown that the lack of small scale power in WDM cosmology (relative to the equivalent CDM case) due to the non-negligible free-streaming length of WDM particle considerably delays the reionization processes. However, a higher star formation efficiency (or, equivalently, a lower gas depletion time) compensates for the WDM-suppressed small-scale structure, leading to nearly identical (within the currently observationally constrained range) galaxy luminosity functions in the CDM and WDM cases. 10⁻²

Villanueva-Domingo, Gnedin, Mena (2017)

Conclusions

 Galaxy formation cannot occur in the same way in CDM and non-standard DM models if they reproduce LF data

- Testing SFR-halo mass relation at low halo masses can provide key insights on DM models
- Faint-end LF sensitive to DM halo abundance, location of turnover signature of DM physics (or minimum mass star forming halo?)
- Implications for reionization models degenerate with astrophysical processes
- What's next?

Alternative Cosmology Baryon Astrophysics Runs (ACBAR)