Tensions in the LCDM paradigm

Constraints on cosmological parameters from galaxy clusters:

tSZ cluster counts and power spectrum combined with CMB

in collaboration with Nabila Aghanim and Marian Douspis

Introduction

Measurements of tSZ effect from Planck Satellite

tSZ Number counts + tSZ Power spectrum

Constraints on:

- standard LCDM scenario
- mass of neutrinos
- DE equation of state

Theoretical assumptions:

 discuss the effect on cosmological parameters

TLCDM 2018

new parametrisation

Model

tSZ Number counts

Laura Salvati

Model

Model

Dataset - Methods

arXiv: 1708.00697 A&A, in press

LCDM Results

arXiv: 1708.00697 A&A, in press

$\simeq 1.5 \sigma$ discrepancy								
Cosmological parameters	CL + BAO	NC + BAO	CL + NC + BAO	СМВ	CMB + CL + NC + BAO			
$\Omega_{ m m}$	$0.352\substack{+0.047\\-0.038}$	$0.314\substack{+0.020\\-0.024}$	$0.322\substack{+0.020\\-0.022}$	$0.321\substack{+0.012\\-0.014}$	0.311 ± 0.007			
σ_8	$0.721\substack{+0.039\\-0.053}$	$0.768\substack{+0.028\\-0.035}$	$0.762\substack{+0.027\\-0.034}$	0.817 ± 0.010	0.810 ± 0.008			
$\simeq 1.8 \sigma \text{ discrepancy}$								
Laura Salvati			6		TLCDM 2018			

LCDM Results

arXiv: 1708.00697 A&A, in press

Massive neutrinos Results

arXiv: 1708.00697 A&A, in press

Cosmological parameters	NC + BAO	CL + NC + BAO	СМВ	CMB + CL + NC + BAO
$\Omega_{ m m}$	$0.337\substack{+0.027\\-0.031}$	$0.335\substack{+0.023\\-0.024}$	$0.353\substack{+0.020\\-0.037}$	0.315 ± 0.008
σ_8	$0.728\substack{+0.032\\-0.038}$	$0.737\substack{+0.028\\-0.037}$	$0.772\substack{+0.049\\-0.024}$	$0.792\substack{+0.020\\-0.013}$
$\sum m_{ u}$	$< 2.84\mathrm{eV}$	$< 1.88\mathrm{eV}$	$< 0.68 {\rm eV}$	$< 0.23\mathrm{eV}$
				$(1-b) = 0.67 \pm 0.04$

arXiv: 1708.00697 A&A, in press

DE equation of state **Results**

Cosmological parameters	NC + BAO	CL + NC + BAO	СМВ	CMB + CL + NC + BAO
$\Omega_{ m m}$	$0.315\substack{+0.025\\-0.028}$	$0.321\substack{+0.024\\-0.027}$	$0.209\substack{+0.023\\-0.071}$	0.306 ± 0.013
σ_8	$0.769\substack{+0.032\\-0.041}$	$0.766\substack{+0.031\\-0.042}$	$0.969\substack{+0.109\\-0.057}$	$0.820\substack{+0.023\\-0.027}$
w	$-1.01\substack{+0.20\\-0.17}$	$-1.04\substack{+0.20\\-0.17}$	$-1.56\substack{+0.21\\-0.40}$	$-1.03\substack{+0.08\\-0.06}$
·				

 $(1-b) = 0.63 \pm 0.04$

Discussion

Constraints on cosmological parameters from tSZ observations

 improvement in constraining power
 able in constraining extensions to LCDM
 reduced discrepancy wrt CMB primary anisotropie

TLCDM 2018

Laura Salvati

Mass bias

mass-bias varying wrt MASS and REDSHIFT

$$(1-b)_{\rm var} = (1-b) \left(\frac{M}{M_*}\right)^{\alpha_b} \left(\frac{z}{z_*}\right)^{\beta_b}$$

$$M_* = 6 \cdot 10^{14} M_{\odot} \longrightarrow \text{ consistent with scaling relations}$$

$$z_* = 0.22 \longrightarrow \text{ median value of the P15 catalog}$$

Bins in redshift, with different bias values

Β.

PRELIMINARY

Mass bias: A Number Counts

Laura Salvati

Laura Salvati

Datasets	Ω_m	σ_8	$S_8 = \sigma_8 (\Omega_m/0.3)^{1/3}$	(1-b)	α_b	β_b	χ^2	
NC+BAO	$0.314\substack{+0.020\\-0.024}$	$0.768\substack{+0.028\\-0.035}$	$0.780\substack{+0.028\\-0.042}$	0.752 ± 0.093	0	0	142	
NC+BAO+(1-b)+a	$0.336\substack{+0.031\\-0.038}$	$0.773\substack{+0.027\\-0.035}$	$0.801\substack{+0.038\\-0.050}$	0.68 ± 0.12	$0.076\substack{+0.078\\-0.104}$	0	142	
NC+BAO+(1-b)+b	$0.381\substack{+0.037\\-0.030}$	$0.721\substack{+0.029\\-0.040}$	$0.780\substack{+0.029\\-0.041}$	0.748 ± 0.091	0	$0.085\substack{+0.037\\-0.028}$	138	
NC+BAO+(1-b)+a+b	$0.396\substack{+0.040\\-0.027}$	$0.731\substack{+0.030\\-0.036}$	$0.801\substack{+0.039\\-0.044}$	$0.67\substack{+0.11 \\ -0.12}$	$0.092\substack{+0.077\\-0.091}$	$0.085\substack{+0.036\\-0.029}$	136	
NC+BAO+a	$0.322\substack{+0.022\\-0.027}$	0.758 ± 0.020	0.775 ± 0.010	0.75	0.032 ± 0.059	0	142	
NC+BAO+b	$0.375\substack{+0.040\\-0.025}$	$0.721\substack{+0.017\\-0.027}$	0.775 ± 0.010	0.75	0	$0.082\substack{+0.039\\-0.029}$	138	
NC+BAO+a+b	$0.380\substack{+0.040\\-0.022}$	$0.718\substack{+0.017\\-0.028}$	0.772 ± 0.010	0.75	$0.087\substack{+0.079\\-0.095}$	$0.086\substack{+0.036\\-0.031}$	137	

PRELIMINARY

Mass bias: A CMB + Number Counts

PRELIMINARY

	Datasets	Ω_m	σ_8	$S_8 = \sigma_8 (\Omega_m/0.3)^{1/3}$	(1 - b)	$lpha_b$	eta_b	χ^2			
	CMB+NC	0.321 ± 0.012	0.817 ± 0.009	0.836 ± 0.018	0.616 ± 0.066	0	0	923			
	CMB+NC+(1-b)+a	$0.321\substack{+0.012\\-0.014}$	0.816 ± 0.009	0.835 ± 0.018	0.598 ± 0.055	$0.012\substack{+0.060\\-0.071}$	0	925			
	CMB+NC+(1-b)+b	0.324 ± 0.013	0.818 ± 0.010	0.839 ± 0.018	$0.587\substack{+0.042\\-0.051}$	0	0.023 ± 0.026	923			
CMB+NC+(1-b)+a+b		$0.323\substack{+0.013\\-0.014}$	0.818 ± 0.010	0.838 ± 0.019	0.593 ± 0.055	$0.007\substack{+0.066\\-0.080}$	$0.023\substack{+0.030\\-0.027}$	924			
	CMB+NC+a	0.296 ± 0.007	0.798 ± 0.007	0.794 ± 0.010	0.75	$-0.064\substack{+0.049\\-0.059}$	0	932	X		
	CMB+NC+b	0.292 ± 0.007	0.795 ± 0.006	0.788 ± 0.008	0.75	0	-0.004 ± 0.024	934	X		
	CMB+NC+a+b	0.296 ± 0.007	0.798 ± 0.007	0.795 ± 0.010	0.75	$-0.078\substack{+0.056\\-0.067}$	$0.012\substack{+0.029\\-0.025}$	932	X		
	$\mathbf{CMB} + \mathbf{NC}^{\mathrm{tSZ}} : (1-\mathrm{b}), \alpha_{\mathrm{b}}, \beta_{\mathrm{b}} \qquad \mathbf{CMB} + \mathbf{NC}^{\mathrm{tSZ}} : (1-\mathrm{b}), \beta_{\mathrm{b}}$			$0.85 \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $							
	$0.85 \begin{bmatrix} CMB + NC^{tSZ} : (1-b), \alpha_b \end{bmatrix}$	5			$0.84 \begin{bmatrix} 0.84 \end{bmatrix}$						
0.84				0.83							
				0.82							
ь С	x 0.82			b [∞] 0.81							
	0.81				0.80						
	0.80										
	0.79				0.78						
	0.78	0.34) 36	0.77	<u> </u>	0.32	0.34 0.34				
	0.28 0.30 0.32 0.34 0.36 Ω_m			0.20	, 0.50	Ω_m	0.50	,			

Laura Salvati

TLCDM 2018

Mass bias: B CMB and NC

Datasets	Ω_m	σ_8	$S_8 = \sigma_8 (\Omega_m / 0.3)^{1/3}$	$(1-b)_1$	$(1-b)_2$	$(1-b)_{3}$	χ^2
NC+BAO+(1-b) ₂ +(1-b) ₃	$0.349\substack{+0.039\\-0.025}$	$0.673\substack{+0.019\\-0.031}$	0.706 ± 0.012	0.9	$1.081\substack{+0.056\\-0.049}$	$0.983\substack{+0.091\\-0.078}$	128
CMB+NC+(1-b) ₂ +(1-b) ₃	0.270 ± 0.006	0.777 ± 0.006	0.751 ± 0.009	0.9	0.920 ± 0.034	0.766 ± 0.046	942
CMB+NC+(1-b) ₁ +(1-b) ₂ +(1-b) ₃	0.320 ± 0.013	0.816 ± 0.010	0.833 ± 0.019	$0.565\substack{+0.047\\-0.058}$	$0.638\substack{+0.048\\-0.055}$	$0.545\substack{+0.047\\-0.053}$	912

Laura Salvati

PRELIMINARY

Conclusions

Varying mass bias wrt (M,z)

Hint for redshift dependence — Need for further investigation
 when considering Number Counts

How to improve cosmological constraints from galaxy clusters

- better knowledge of cluster physics
 - better description of the mass bias
 - break degeneracy between scaling relations and cosmological parameters
- different modelling of mass function
 - e.g. Despali: free parametrisation of amplitude, shape Despali et al, MNRAS 456 (2016) no.3, 2486

Back up

Scaling Relations

1. Baseline for mass - proxy relation

$$M_{500}^{Y_X} = 10^{\pm \sigma_A/\alpha} \left[(1-b) M_{500} \right]^{1\pm \sigma_\alpha/\alpha}$$

Scaling Relations

2. Relation
$$Y_{500} - M_{500}^{Y_X}$$

from 71 Planck clusters with Xray follow-up from XMM-Newton

$$E^{-2/3}(z) \left[\frac{D_A^2 Y_{500}}{10^{-4} \,\mathrm{Mpc}^2} \right] = 10^{-0.19 \pm 0.01} \left[\frac{M_{500}^{Y_X}}{6 \cdot 10^{14} \,M_{\odot}} \right]^{1.79 \pm 0.06}$$

corrected for Malmquist bias

3. Combining everything

$$E^{-2/3}(z) \left[\frac{D_A^2 Y_{500}}{10^{-4} \,\mathrm{Mpc}^2} \right] = 10^{-0.19 \pm 0.02} \left[\frac{(1-b) M_{500}}{6 \cdot 10^{14} \,M_{\odot}} \right]^{1.79 \pm 0.08}$$

Mass bias

$$M_{500}^{\rm HE} = (1-b)M_{500}$$

 $Y_{500} - M_{500}$ Comparison between observations and numerical simulations

TLCDM 2018

Mass dependance: $b = b \left(M_{500}^{\text{true}} \right)$ $M_{500}^{\text{obs}} = \left[1 - b \left(M_{500}^{\text{true}} \right) \right] M_{500}^{\text{true}}$ $R_{500}^{\text{obs}} = \left[1 - b \left(M_{500}^{\text{true}} \right) \right]^{1/3} R_{500}^{\text{true}}$ $Y(< R_{500}^{\text{obs}}) = A_{\text{obs}} \left[M_{500}^{\text{obs}} \right]^{\alpha}$ $Y(< R_{500}^{\text{obs}}) = A_{\text{obs}} \left[M_{500}^{\text{obs}} \right]^{\alpha}$ $\left[1 - b \left(M_{500}^{\text{true}} \right) \right] = \left[\frac{A_{\text{true}} \left(M_{500}^{\text{true}} \right)^{\beta}}{A_{\text{obs}} \left(M_{500}^{\text{obs}} \right)^{\alpha}} \right]^{-1/4 + \alpha}$ $Y(< R_{500}^{\text{true}}) / Y(< R_{500}^{\text{obs}}) \propto (1 - b)^{-1/4}$

mass-dependent bias implies different slopes for observed and simulated relations

Mass bias

Mass function

Tinker 2008

Tinker et al., Astrophys. J. 688 (2008) 709

Despali 2016

Despali et al, MNRAS 456 (2016) no.3, 2486

$$f(\sigma) = A_1(z) \cdot \left[\left(\frac{\sigma(R, z)}{b(z)} \right)^{-a_2(z)} \right] \cdot \exp\left(-\frac{c}{\sigma^2(R, z)} \right)$$

$$\frac{dn}{dM} = -\frac{\rho_0}{M} \frac{d\sigma(R,z)}{dM} f(\sigma) \frac{h}{\sigma(R,z)}$$

$$A_1(z) = A_{1,0}(1+z)^{-0.14}$$
$$a_2(z) = a_{2,0}(1+z)^{-0.06}$$
$$b(z) = b_0(1+z)^{-\alpha}$$
$$c = c_0$$

Laura Salvati

$$\nu f(\nu) = A \left[1 + (a\nu)^{-p} \right] \left(\frac{a\nu}{2\pi} \right)^{1/2} \exp\left(-\frac{a\nu}{2} \right)$$

$$\frac{dn}{dM} = -\frac{\rho_0}{M} \frac{2}{\sigma(R,z)} \nu f(\nu) \frac{d\sigma(R,z)}{dM} h$$

$$A = -0.1362 x + 0.3292$$

$$a = 0.4332 x^{2} + 0.2263 x + 0.7655$$

$$p = -0.1151 x^{2} + 0.2554 x + 0.2488$$

$$x = \text{Log}_{10} \left(\frac{500}{\Delta_{\text{vir}}}\right)$$

Mass function

Laura Salvati

IV

Laura Salvati

Datasets comparison

