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intrinsic ellipticity as a Gaussian random variable with zero mean
and dispersion σε = 0.38. The latter is calculated as σ2

ε =
∑

i εiε
∗
i ,

where the sum goes over all CFHTLenS galaxies in our redshift
range. Therefore, the covariance between the 184 Clone lines of
sight gives us the total covariance D+M+V. Contrary to the case
of the 2PCFs (previous section), this covariance stems from a pure
ML estimate, and therefore the inverse needs to be de-biased by
the Anderson-Hartlap factor α. With a typical number of angular
scales of p = 10 to 15 the corresponding α is of order 0.9. We
show that our cosmological results are independent of the number
of realisations in Sect. 6.2. Note that for the all derived estimators,
the cosmology-dependence of the covariance is neglected.

For upcoming and future tomographic surveys such as KiDS5,
DES6, HSC7, Euclid8 (Laureijs et al. 2011) or LSST9, a much
larger suite of simulations will be necessary. The number of re-
alisations n has to be substantially larger than the number of bins
p (Hartlap et al. 2007). For a multi-bin tomographic shear survey,
p can easily be of the order of several hundreds or more if other
probes are jointly measured such as galaxy clustering or magnifi-
cation. This necessitates on the order of a thousand and more inde-
pendent lines of sight. This number has to be multiplied by many
if a proper treatment of the cosmology-dependence is to be taken
into account. Moreover, a simple up-scaling of smaller simulated
fields to full survey size might not be easy because of the different
area-scaling of the HSV term.

3.4 Ellipticity calibration corrections

We apply the shear calibration as described in Heymans et al.
(2012), which accounts for a potential additive shear bias c and
multiplicative bias m,

εobs = (1 +m) εtrue + c. (13)

The additive bias is found to be consistent with zero for ε1. The sec-
ond ellipticity component ε2 shows a signal-to-noise ratio (S/N )
and size-dependent bias which we subtract for each galaxy. This
represents a correction which is on average at the level of 2×10−3.
The multiplicative bias m is modelled as a function of the galaxy
S/N and size r. It is fit simultaneously in 20 bins of S/N and r,
see Miller et al. (2013). We use the best-fitting function m(S/N, r)
and perform the global correction to the shear 2PCFs, see eqs. (19)
and (20) of Miller et al. (2013). Accordingly, we calculate the cali-
bration factor 1+K as the weighted correlation function of 1+m,

1 +K(ϑ) =

∑

ij wiwj(1 +mi)(1 +mj)
∑

ij wiwj
. (14)

The final calibrated 2PCFs are obtained by dividing ξ+ and ξ− by
1 + K. The amplitude of 1 + K is around 0.91 on all scales. The
errors on the correlation function from the fit uncertainty are negli-
gible compared to our statistical errors. Furthermore, we calculate
the covariance matrix Cm for the correlation function from this un-
certainty, and show in Sect. 6.2 that the cosmological results remain
unchanged by adding this term to the analysis.

Figure 6 shows the combined and corrected 2PCFs, which are
the weighted averages over the four Wide patches with the number

5 kids.strw.leidenuniv.nl
6 www.darkenergysurvey.org
7 http://www.naoj.org/Projects/HSC/HSCProject.html
8 www.euclid-ec.org
9 http://www.lsst.org/lsst

10-7

10-6

10-5

10-4

 1  10  100

Sh
ea

r c
or

re
la

tio
n

ϑ [arcmin]

ξ+(ϑ)
ξ−(ϑ)

Figure 6. The measured shear correlation functions ξ+ (black squares) and
ξ− (blue circles), combined from all four Wide patches. The error bars cor-
respond to the total covariance diagonal. Negative values are shown as thin
points with dotted error bars. The lines are the theoretical prediction using
the WMAP7 best-fitting cosmology and the non-linear model described in
Sect. 4.3. The data points and error bars are listed in Table B1.
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

of pairs as weights. Note that the data points are strongly corre-
lated, in particular ξ+ on scales larger than about 10 arcmin. Cos-
mological results using this data will be presented in Sect. 5. The
correlation signal split up into the contributions from the four Wide
patches is plotted in Fig. 7. There is no apparent outlier field. The
scatter is larger than suggested by the Poisson noise on large scales,
in agreement with the expected cosmic variance.

c⃝ 2009 RAS, MNRAS 000, 1–18

Kilbinger et al. (2013)
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γ̂(ℓ) =

(
ℓ21 − ℓ22 + 2iℓ1ℓ2

|ℓ|2

)
κ̂(ℓ) = e2iβ κ̂(ℓ) , (12.19)

where β is the polar angle of the vector ℓ; this follows directly from (6.11) and (6.16). Eq. (12.19) implies that

〈
γ̂(ℓ)γ̂∗(ℓ′)

〉
= (2π)2 δD(ℓ − ℓ′)Pκ(ℓ). (12.20)

Hence, the power spectrum of the shear is the same as that of the surface mass density.

12.3.1 Shear correlation functions

Consider a pair of points (i.e., galaxy images); their separation direction ϕ (i.e. the polar angle of the separation
vector θ) is used to define the tangential and cross-component of the shear at these positions for this pair,
γt = −Re

(
γ e−2iϕ

)
, γ× = −Im

(
γ e−2iϕ

)
, as in (7.18). Using these two shear components, one can then define

the correlation functions ⟨γtγt⟩ (θ) and ⟨γ×γ×⟩ (θ), as well as the mixed correlator. However, it turns out to be
more convenient to define the following combinations,

ξ±(θ) = ⟨γtγt⟩ (θ) ± ⟨γ×γ×⟩ (θ) , ξ×(θ) = ⟨γtγ×⟩ (θ) . (12.21)

Due to parity symmetry, ξ×(θ) is expected to vanish, since under such a transformation, γt → γt, but γ× →
−γ×. Next we relate the shear correlation functions to the power spectrum Pκ: Using the definition of ξ±,
replacing γ in terms of γ̂, and making use of relation between γ̂ and κ̂, one finds

ξ+(θ) =

∫ ∞

0

dℓ ℓ

2π
J0(ℓθ)Pκ(ℓ) ; ξ−(θ) =

∫ ∞

0

dℓ ℓ

2π
J4(ℓθ)Pκ(ℓ) , (12.22)

where Jn(x) is the n-th order Bessel function of first kind. ξ± can be measured as follows: on a data field,
select all pairs of faint galaxies with separation within ∆θ of θ and then take the average ⟨ϵti ϵtj⟩ over all these

pairs; since ϵi = ϵ(s)i + γ(θi), the expectation value of ⟨ϵti ϵtj⟩ is ⟨γtγt⟩ (θ), provided source ellipticities are
uncorrelated. Similarly, the correlation for the cross-components is obtained.

12.3.2 The shear dispersion

Consider a circular aperture of radius θ; the mean shear in this aperture is γ̄. Averaging over many such
apertures, one defines the shear dispersion

〈
|γ̄|2

〉
(θ). It is related to the power spectrum through

〈
|γ̄|2

〉
(θ) =

1

2π

∫
dℓ ℓPκ(ℓ)WTH(ℓθ) , where WTH(η) =

4J2
1(η)

η2
(12.23)

is the top-hat filter function. A practical unbiased estimator of the mean shear in the aperture is ˆ̄γ =
N−1

∑N
i=1 ϵi, where N is the number of galaxies in the aperture. However, the square of this expression is

not an unbiased estimator of
〈
|γ̄|2

〉
, since the diagonal terms of the resulting double sum yield additional

terms, since E (ϵiϵ∗i ) = |γ(θi)|2 +σ2
ϵ . An unbiased estimate for the shear dispersion is obtained by omitting the

diagonal terms,

̂〈
|γ̄|2

〉
=

1

N(N − 1)

N∑

i≠j

ϵi ϵ∗j . (12.24)

This expression is then averaged over many aperture placed on the data field. Again, the generalization to allow
for weighting of galaxy images is obvious. Note in particular that this estimator is not positive semi-definite.

12.3.3 The aperture mass

Consider a circular aperture of radius θ; for a point inside the aperture, define the tangential and cross-
components of the shear relative to the center of the aperture (as before); then define

Map(θ) =

∫
d2ϑ Q(|ϑ|) γt(ϑ) , (12.25)

where Q is a weight function with support ϑ ∈ [0, θ]. If we use the function

Observation -> theory
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1. To obtain κ = ∇2ψ/2, take the 2-D Laplacian of ψ, and add the term Φ,33 in the resulting integrand; this
latter term vanishes in the line-of-sight integration, as can be seen by integration by parts.

2. We make use of the 3-D Poisson equation in comoving coordinates (8.18) to obtain

κ(θ,χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′ fK(χ′)fK(χ − χ′)

fK(χ)

δ (fK(χ′)θ,χ′)

a(χ′)
. (12.9)

Note that κ is proportional to Ωm, since lensing is sensitive to ∆ρ ∝ Ωm δ, not just to the density contrast
δ = ∆ρ/ρ̄ itself.

3. For a redshift distribution of sources with pz(z) dz = pχ(χ) dχ, the effective surface mass density becomes

κ(θ) =

∫
dχ pχ(χ)κ(θ,χ)

=
3H2

0Ωm

2c2

∫ χh

0
dχ g(χ) fK(χ)

δ (fK(χ)θ,χ)

a(χ)
, (12.10)

with

g(χ) =

∫ χh

χ
dχ′ pχ(χ′)

fK(χ′ − χ)

fK(χ′)
, (12.11)

which is the source-redshift weighted lens efficiency factor Dds/Ds for a density fluctuation at distance χ,
and χh is the comoving horizon distance, obtained from χ(a) by letting a → 0.

The expression (12.9) for the effective surface mass density can be interpreted in a very simple way. Consider
a redshift interval of width dz around z, corresponding to the proper radial distance interval dDprop = |cdt| =
H−1(z)(1 + z)−1 cdz. The surface mass density in this interval is ∆ρ dDprop, where only the density contrast
∆ρ = ρ− ρ̄ acts as a lens (the ‘lensing effect’ of the mean matter density of the Universe is accounted for by the
relations between angular diameter distance and redshift; see Schneider & Weiss 1988a). Dividing this surface
mass density by the corresponding critical surface mass density, and integrating along the line-of-sight to the
sources, one finds

κ =

∫ zs

0
dz

4πG

c2

DdDds

Ds

dDprop

dz
∆ρ . (12.12)

This expression is equivalent to (12.9); see Problem 12.1.

12.2.2 Limber’s equation

Since the projected density κ is a projection of δ, which is a homogeneous, isotropic random field, so is κ. The
power spectrum of κ is then related to that of δ, in a similar way as encountered already in Sect. 9.4.5 for the
projected galaxy distribution. More generally, the projections

gi(θ) =

∫
dχ qi(χ) δ (fK(χ)θ,χ) (12.13)

are (2-D) homogeneous and isotropic random fields, where the qi are weight functions. In particular, the
correlation function

C12 = ⟨g1(ϕ1) g2(ϕ2)⟩ ≡ C12(|ϕ1 − ϕ2|) (12.14)

depends only on the modulus of the separation vector. The original form of the Limber (1953) equation relates
C12 to the correlation function of δ which is a line-of-sight projection. Alternatively, one can consider the
Fourier-space analogy of this relation: The power spectrum P12(ℓ) – the Fourier transform of C12(θ) – depends
linearly on Pδ(k) (Kaiser 1992, 1998),

P12(ℓ) =

∫
dχ

q1(χ) q2(χ)

f2
K(χ)

Pδ

(
ℓ

fK(χ)
,χ

)
, (12.15)

if the largest-scale structures in δ are much smaller than the effective range ∆χ of the projection. Hence, we
obtain the (very reasonable) result that the 2-D power at angular scale 1/ℓ is obtained from the 3-D power at
length scale fK(χ) (1/ℓ), integrated over χ.

Comparing (12.10) with (12.15), one sees that κ(θ) is such a projection of δ with the weights q1(χ) =
q2(χ) = (3/2)(H0/c)2Ωmg(χ)fK(χ)/a(χ), so that

Pκ(ℓ) =
9H4

0Ω2
m

4c4

∫ χh

0
dχ

g2(χ)

a2(χ)
Pδ

(
ℓ

fK(χ)
,χ

)
. (12.16)
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of clustered 
matter 

• S8 = σ8 (Ωm/0.3)0.5



S8 results over the years

Kilbinger (2015)
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Figure 7. Mean and 68% error bars for the parameter �8 (⌦m/0.3)
↵, for various cosmic shear

observations, plotted as function of their publication date (first arXiv submission). All parameter
values are given in Table 7.1. Di↵erent surveys are distinguished by colour as indicated in the
figure. Data points are shown for second-order statistics (circles), third-order (diamonds), 3D lensing
(pentagons), galaxy-galaxy lensing (+ galaxy clustering; triangle), and CMB (squares).

et al. 2000, Van Waerbeke et al. 2000, Wittman et al. 2000). The observations were taken with

di↵erent cameras and telescopes — the Prime Focus Imaging Camera (PFIC) on the William-Herschel

Telescope (WHT), UH8K and CFH12K on the Canada-France Hawaii Telscope (CFHT), and the

Big Throughput Camera (BTC) on Blanco — and covered sky areas between 0.5 and 1.5 deg2. These

early analyses measured correlations of galaxy ellipticities that were larger than the expected residual

systematics. Limits on ⌦m and �8 could be obtained.

Those exploratory results were very soon followed by other surveys from a wide range of

telescopes, for example CFH12K/CFHT with the Red-sequence Cluster Survey (RCS) and VIRMOS-

DESCART (Van Waerbeke et al. 2001, Van Waerbeke et al. 2002, Hoekstra et al. 2002b, Hoekstra

et al. 2002c, van Waerbeke et al. 2005), FORS1 (FOcal Reducer and Spectrograph)/VLT (Very Large

Telescope; Maoli et al. 2001), the 75-deg2 survey with BTC/Blanco-CTIO (Jarvis et al. 2003, Jarvis

et al. 2006), PFIC/WHT (Massey et al. 2005), ESI (Echelle Spectrograph and Imager)/Keck II

(Bacon et al. 2003), WFI at MPG/ESO 2.2m with the Garching-Bonn Deep Survey (GaBoDS;

Hetterscheidt et al. 2007), and Suprime-Cam/Subaru (Hamana et al. 2003).

Cosmic shear then was measured using MegaCam/CFHT on the Canada-France Hawaii Legacy

Survey (CFHTLS). During five years this large program observed 170 square degrees in five optical

bands. First results from the first data release were published over 22 deg2 of the wide part (Hoekstra

et al. 2006) and the 3 out of the 4 deg2 of the deep part (Semboloni et al. 2005).

Apart from those ground-based observations, cosmic shear was successfully detected with the
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Fig. 2. Illustration of the forward problem. The upper panels show how the original galaxy
image is sheared, blurred, pixelised and made noisy. The lower panels show the equivalent
process for (point-like) stars. We only have access to the right hand images.

Stars are far enough away from us to appear point-like. They therefore
provide noisy and pixelised images of the convolution kernel (lower panels of
Figure 2). The convolution kernel is typically of a similar size to the galaxies

Fig. 3. Illustration of the inverse problem. We begin on the right with a set of galaxy and
star images. The full inverse problem would be to derive both the shears and the intrinsic
galaxy shapes. However shear is the quantity of interest for cosmologists.

Shape measurements

Bridle et al. (2009)



Photometric redshifts

Hildebrandt et al. (2012)

Map this error 
distribution with 
spectroscopic 

calibration data.


Requires re-
weighting.



Systematic errors
• Shapes measurement systematics:


• PSF residuals

• B modes

• Multiplicative and additive biases


• Photo-z systematics:

• Calibration sample and technique

• Inhomogeneous multi-band data


• Theoretical systematics:

• Intrinsic alignments

• Baryon feedback

• Covariance estimate


• Psychological systematics:  
• Blinding



KiDS:  Kilo Degree Survey DES: Dark Energy Survey

HSC:  Hyper-Suprime Cam Survey



KiDS vs. HSC vs. DES
KiDS(+VIKING) HSC DES

Mirror [m] 2.6 8.2 4.0

Focus Cassegrain Prime Prime

FOV [deg2] 1.0 1.8 3.0

Area [deg2] 1350 1400 5000

Filters ugri(+ZYJHKs) grizy griz(y)

Seeing [arcsec] 0.68 0.58 0.94
Source density 
[gal/arcmin2] ~8 ~22 ~5-7

Depth r~24 i~24.5 r~23-24

spec-z GAMA, SDSS, 2dFLenS, 
WiggleZ, deep fields

GAMA, SDSS, 2dFLenS, 
WiggleZ, deep fields deep fields, (SDSS)

WL Team >30 >30 >130





2001



2002



Hildebrandt et al. (2017)

-450

4-bin (0.1<zphot < 0.9) tomographic cosmic shear analysis



DIR
CrossCorr
BOR
BPZ

Hildebrandt et al. (2017)

Redshift distributions



Result

• Still tension with Planck!


• 2.3σ discrepancy in full parameter space


• Fully public -> “Problems with KiDS”, Efstathiou & Lemos

σ8√(Ωm/0.3)=0.745±0.039

Hildebrandt et al. (2017)
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Figure 6. Marginalized posterior contours (inner 68% CL, outer 95% CL) in the ⌦m-�8 plane (left) and ⌦m-S8 plane (right) from the
present work (green), CFHTLenS (grey), pre-Planck CMB measurements (blue), and Planck 2015 (orange). Note that the horizontal
extent of the confidence contours of the lensing measurements is sensitive to the choice of the prior on the scalar spectrum amplitude As.
The CFHTLenS results are based on a more informative prior on As artificially shortening the contour along the degeneracy direction.

For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while
larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the ⌦m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��

2

e↵ ' �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR
methods. For future cosmic shear surveys, with considerably
larger datasets, it will be essential to reduce the statistical
uncertainty in the redshift calibration in order to not com-
promise the statistical power of the shear measurement. For
KiDS-450 the uncertainty for our favoured DIR calibration
scheme is still subdominant.

In summary, we find that the four possible choices for

the photometric redshift calibration technique yield consis-
tent cosmological parameters.

6.4 Impact of analytical and numerical covariance
matrices

For our primary analysis we choose to adopt the analytical
estimate of the covariance matrix described in Section 5.3,
as it yields the most reliable estimate of large-scale sample
variance (including super-sample contributions), is free from
noise, and is broadly consistent with the N -body covariance
(see Section 5.4). In this section we compare the cosmo-
logical parameter constraints obtained with the analytical
covariance matrix to the alternative numerical estimate as
described in Section 5.2. For this test, we set all astrophysi-
cal and data-related systematics to zero: this applies to the
intrinsic alignment amplitude, the baryon feedback ampli-
tude, the errors on the shear calibration, and the errors on
the redshift distributions. Fixing these parameters allows us
to focus on the e↵ect of the di↵erent covariance matrices on
the cosmological parameters.

We correct for noise bias in the inverse of the numerical
covariance matrix estimate using the method proposed by
Sellentin & Heavens (2016). As we have a significant num-
ber of N-body simulations, however, we note that the con-
straints derived using our numerical covariance matrix are
unchanged if we use the less precise but alternative Hartlap
et al. (2007) bias correction scheme.

We find consistency between the results for the di↵erent
covariance matrices given the statistical errors of KiDS-450.
There are however small shifts in the central values of the
best-fit parameters; most notably the S8 constraints for the
analytical and numerical covariances which di↵er by ⇠ 1�.
We attribute these shifts to super-sample-covariance terms
that are correctly included only in the analytical estimate
(which is also the reason why we adopt it as our preferred
covariance). The SSC reduces the significance of the large
angular ⇠± measurements (see Fig. 4) where our measured
signal is rather low in comparison to the best-fit model (see

MNRAS 000, 1–49 (2016)

Systematics error as 
big as statistical error 

(0.027)

S8=



Systematic error budget

• Sample variance in DIR calibration unaccounted for.

• Survey inhomogeneities in DIR unaccounted for.

• Need to improve a lot on CC.

Scenario Relative error on S8

Total error 5.2 %
Statistical error 3.7 %

Systematic error 3.6 %
Shear calibration 1.65 %

Intrinsic alignments 1.67 %
Baryon feedback 2.63 %

Photo-z errors (DIR) 0.84 %
Photo-z errors (CC) 16.1 %



S8 results over the years

Kilbinger (private communication)

KiDS
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Figure 1. Summary of recent LSS constraints in the σ8−Ωm plane, compared with Planck 2015 primary CMB constraints (TT+lowTEB,
closed contour repeated in each panel). Top left: Cosmic shear results from CFHTLenS, DES, and KiDS. Top right: Various tSZ effect
tests, including Planck cluster number counts, angular power spectrum, 1-point PDF, and a combined analysis of the skewness and
bi-spectrum of Planck Compton y map, a 1-point PDF constraints from the Atacama Cosmology Telescope (ACT), and tSZ cluster
count constraints from the South Pole Telescope (SPT). Bottom left: Combined galaxy clustering plus galaxy-galaxy lensing constraints
from SDSS main galaxy catalog (M13), SDSS main galaxy catalog plus Luminous Red Galaxies (C13), SDSS BOSS galaxy clustering
plus CFHTLenS lensing (M15), and SDSS BOSS galaxy clustering plus CFHTLenS and CS82 weak lensing data (L17). Bottom right:

Constraints from the Planck CMB lensing autocorrelation function and from the cross-correlation function between Planck CMB lensing
and Planck Sunyaev-Zel’dovich effect maps. The curves represent the derived 1-sigma uncertainties on the amplitudes of the best-fit
power laws describing the degeneracy between σ8 and Ωm in the different tests. To help compare the different LSS tests, we show in
each panel, as the black dashed curve, a power law of the form S8 ≡ σ8(Ωm/0.3)1/2 = 0.77. The various LSS constraints consistently
(at the ≈1-3 sigma level) point to lower values of σ8 at fixed Ωm (or lower values of Ωm at fixed σ8) compared to that derived from the
primary CMB alone.

that for some of the tSZ effect tests (data points with er-
rors), Ωm was held fixed at the primary CMB best-fit value
and only σ8 was constrained by the data.

The various LSS constraints consistently, at the ≈1-3
sigma level, prefer lower values of σ8 at fixed Ωm (or lower
values of Ωm at fixed σ8) compared to that derived from the
primary CMB alone. The consistency amongst the different
LSS tests is rather remarkable, given the very different na-
ture of the tests involved, which probe different aspects of
the matter distribution (i.e., galaxies vs. hot gas vs. total
matter) at different redshifts and on different scales, each
with their own differing sets of systematic errors. And note
that the constraints shown in Fig. 1 do not form an exhaus-
tive list. For example, other recent LSS tests, such as those
based on the cross-correlations between CMB lensing and

galaxy overdensity (Giannantonio et al. 2016), CMB lens-
ing and cosmic shear (Liu & Hill 2015; Harnois-Déraps et al.
2017), and cosmic shear and the tSZ effect (Hojjati et al.
2015, 2017), also find qualitative evidence for tension (and
in the same sense), but we do not plot them in Fig. 1 since
they have not formerly quantified their best-fit cosmological
parameter values and their uncertainties.

The role that remaining systematics in either the anal-
ysis of the CMB (e.g., Spergel, Flauger, & Hložek 2015;
Addison et al. 2016) or that of LSS (such as the neglect of
important baryon physics, which we will consider here) plays
in this tension has yet to be fully understood. In spite of this,
various extensions of the standard model have already been
proposed to try to reconcile the apparent tension. One of
the most interesting and well-motivated proposed solutions

c⃝ 2016 RAS, MNRAS 000, 1–32

McCarthy et al. (2017)



Extended cosmologies

• Massive neutrinos


• Non-zero curvature


• Evolving dark energy


• Modified gravity


• Running spectral index

Joudaki et al. (2017b)



Evolving dark energy
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Figure 10. Left: Marginalized posterior contours in the �8 � ⌦m plane (inner 68% CL, outer 95% CL) in a universe with a time-dependent dark energy
equation of state for KiDS in green and Planck in red. For comparison, dashed contours assume fiducial ⇤CDM. Right: Marginalized posterior contours in the
w0 �wa plane for KiDS in green, Planck in red, JLA SNe in purple, KiDS+Planck in blue, and KiDS+Planck with informative H0 prior in grey (from Riess
et al. 2016). The dashed lines denote the ⇤CDM prediction.

direction. The realignment of the CMB contour along the lensing
degeneracy direction was also found for CFHTLenS and WMAP7
in Kilbinger et al. (2013), and the extension of the Planck contour
along the ⌦m axis is due to the same geometric degeneracy as in
the case of a nonzero curvature. As a result, the respective KiDS
and Planck S8 constraints agree at 1� (despite seemingly being
in tension in the w � S8 plane). Accounting for the full parame-
ter space, we find log I = 0.99, which effectively corresponds to
‘strong concordance’ between the KiDS and Planck datasets. In ad-
dition to removing the tension between these datasets, the Planck
constraint on the Hubble constant is now also wider than in ⇤CDM
(0.66 < h < 1.0 at 95% CL, where the upper bound is hitting
against the prior) and in agreement with the Riess et al. (2016) di-
rect measurement of H0.

In the w � S8 plane, KiDS and Planck are both in agree-
ment with a cosmological constant, while the combined analysis
of KiDS+Planck seems to favor a 2.6� deviation from ⇤CDM
(marginalized constraint of �1.93 < w < �1.06 at 99% CL). As
noted in Ade et al. (2016a), deviations from a cosmological con-
stant seem to be preferred by large values of the Hubble constant
(that are arguably ruled out), and so we also consider a ±5� uni-
form Riess et al. (2016) prior on H0. While the KiDS+Planck+H0

contour tightens and moves towards w = �1, we still find an ap-
proximately 2� deviation from a cosmological constant (marginal-
ized constraint of �1.42 < w < �1.01 at 95% CL). As in other
extended cosmologies, the intrinsic alignment amplitude remains
robustly determined when allowing w to vary, with 95% confidence
levels at �0.50 < AIA < 2.9 for KiDS, 0.27 < AIA < 3.0 for
KiDS+Planck, and 0.38 < AIA < 2.4 for KiDS+Planck+H0.

We have shown that the introduction of a constant dark en-
ergy equation of state seems to remove the discordance between
KiDS and Planck, and between local Hubble constant measure-
ments and Planck, while moreover deviating from a cosmologi-
cal constant when these measurements are combined. However,
we also want to know to what extent the constant w model is fa-
vored or disfavored by the data. We find that KiDS and Planck on
their own show no preference for w 6= �1, with �DIC = 2.3
for KiDS and �DIC = �0.20 for Planck (respectively degraded
from ��

2
e↵ = 0.074 and ��

2
e↵ = �3.1 due to the increased

Bayesian complexity). However, the combination of KiDS+Planck
seems to prefer the constant dark energy equation of state model
with �DIC = �5.4 (with near identical Bayesian complexity to
⇤CDM), while this preference reduces to �DIC = �2.9 when
further considering KiDS+Planck+H0 (marginally degraded from
��

2
e↵ = �3.4). Thus, from the point of model selection, we only

find weak preference in favor of a constant dark energy equation of
state model as compared to standard ⇤CDM.

3.5 Dark energy (w0-wa)

Although a constant dark energy equation of state as a free param-
eter constitutes the simplest deviation from a w = �1 model, there
is no strong theoretical motivation to keep the equation of state con-
stant once one has moved away from the cosmological constant
scenario. We therefore also consider a time-dependent parameter-
ization to the equation of state, in the form of a first-order Taylor
expansion with two free parameters:

w(a) = w0 + (1 � a)wa, (5)

where a is the cosmic scale factor, w0 is the dark energy equation
of state at present, and wa = �dw/da|a=1 (which can also be
expressed as wa = �2dw/d ln a|a=1/2; Linder 2003).

In Figure 1, we show the impact of a time dependence of the
equation of state on the shear correlation functions. Since a neg-
ative wa makes the overall equation of state more negative with
time, it has the opposite impact on the matter power spectrum and
lensing kernel (and thereby shear correlation functions) to the case
where w > �1 discussed in Section 3.4. Clearly the benefit of
two degrees of freedom to describe the dark energy is that more
complex behavior of the shear correlation functions is allowed than
when only a constant equation of state is considered, enhancing the
ability of the theoretical model to describe the data. Meanwhile,
the extra degree of freedom from nonzero wa further adds to the
geometric degeneracy of the CMB measurements.

Along with the case where the dark energy equation of state is
constant, HMCODE accurately accounts for the impact of w0 � wa

models on the nonlinear matter power spectrum, as demonstrated
by the N-body simulations in Mead et al. (2016), covering �1.0 <

c� 2016 RAS, MNRAS 000, 000–000

• Resolves tension between KiDS and Planck.

• Only extension that is moderately favoured by the data.

• Resolves tension between Riess et al. (2016) and Planck.

Joudaki et al. (2017b)

p = w ρ c2,   w(a) = w0 + (1-a)wa,   a=1/(1+z)



Combined probes
• Cosmic shear <γγ>


• Galaxy clustering <δδ> (e.g. galaxy redshift survey)


• Galaxy-galaxy lensing <δγ>


• Break degeneracies


• Increase precision


• Lose some of the benefits of cosmic shear



KiDS + 2dFLenS/BOSS

Joudaki et al. (2018)
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Figure 7. Marginalized posterior contours in the �8 – ⌦m plane (inner 68% CL, outer 95% CL) from observations of cosmic shear, galaxy-galaxy lensing, and
redshift-space multipole power spectra for KiDS overlapping with 2dFLenS and BOSS. We show constraints from {⇠+, ⇠�} in green, {⇠+, ⇠�, �t, P0, P2}
in purple, and {⇠+, ⇠�, �t, P0, P2} with conservative data cuts in pink. For comparison, we show the constraints from Planck 2015 in red.

ever, they constrain the galaxy biases more strongly than galaxy-
galaxy lensing (further discussed in Section 5.4). The baryonic
feedback and shot noise parameters are unconstrained within
their prior ranges. For fiducial cuts to the P0/2 measurements,
the 2dFLenS velocity dispersion parameters are bounded from
above, such that {�v,2dFLOZ, �v,2dFHIZ} < {5.6, 5.7} h

�1Mpc.
For BOSS, the bounds are two-sided: {�v,LOWZ, �v,CMASS} =
{3.4+1.4

�0.8, 5.5
+1.1
�0.8} h

�1Mpc. For conservative cuts, the velocity
dispersion parameters are unconstrained within their prior ranges,
with the exception of �v,CMASS < 7.6 h

�1Mpc. Our CMASS
constraints agree with those given for the full survey in Beutler
et al. (2014). The constraints can be converted to units of km s�1

by multiplying with the Hubble constant, and correspond to veloc-
ities of hundreds of km s�1 as expected.

5.4 Cosmic shear, galaxy-galaxy lensing, and redshift-space
galaxy clustering {⇠+, ⇠�, �t, P0, P2}

5.4.1 Cosmological constraints

We show the key cosmological parameter constraints in the �8 –
⌦m plane in Fig. 7. Analogous to the {⇠±, P0/2} data combina-
tion, the {high-�8, low-⌦m} end of the underlying cosmic shear
contour is seemingly disfavored (following an improvement on �8

by {60, 40}% and on ⌦m by {50, 10}% for {fiducial, conser-
vative} data cuts10). Perpendicular to the lensing degeneracy di-
rection, there is a minor narrowing of the contours, reflected in
S8 = 0.742+0.035

�0.035 for fiducial data cuts, and S8 = 0.721+0.036
�0.036

with conservative cuts. The {⇠±, �t, P0/2} constraints on S8 are
8-9% stronger than the respective constraints from {⇠±, P0/2},
9-13% stronger than the constraints from {⇠±, �t}, and 19-22%
stronger than the constraint from ⇠±. These improvements are rel-
atively modest due in part to the currently incomplete overlap of
KiDS with 2dFLenS and BOSS, the careful selection of scales
for �t and P0/2, and the large number of nuisance parameters

10 The real impact is larger given the dependence of the ‘cosmic shear
only’ results along the lensing degeneracy direction on the cosmological
priors (Joudaki et al. 2017a).

that are simultaneously varied in the analysis (19 parameters for
{⇠±, �t, P0/2} compared to 7 parameters for cosmic shear alone).

The fully combined fiducial and conservative S8 constraints
are in complete agreement relative to one another, and with the
earlier sub-vector constraints (visualized in Fig 8). However, the
fully combined S8 constraints are discordant with Planck at the
level of 2.6� and 3.0� in the fiducial and conservative cases, re-
spectively. In Appendices A and C, we show that these discor-
dances are largely unaffected by the new Planck HFI measurement
of the reionization optical depth (Aghanim et al. 2016) and by an
extended treatment of the astrophysical systematics. We moreover
evaluated the log I diagnostic, which accounts for the discordance
over the full parameter space. As shown in Table 5, log I = �3.1
for fiducial cuts to the data, which indicates ‘decisive’ discordance
with Planck, and log I = �1.3 with conservative cuts indicating
‘strong’ discordance. Hence, despite the similar level of discor-
dance with Planck as quantified by S8, the discordance between
the probes is larger in the fiducial scenario given the stronger con-
straints on the underlying parameter space (as can be seen in Fig 7).

5.4.2 Shot noise prior dependence

The constraints are subject to an important caveat predominantly
along the lensing degeneracy direction. As discussed in Section 4.3,
our fiducial shot noise prior 0 < Nshot < 2300 h

�3Mpc3 is mo-
tivated by the analysis of Beutler et al. (2014) for BOSS. While
we expect Nshot on the order of 1000, our data is unable to con-
strain the shot noise on its own, and our results along the lensing
degeneracy direction are sensitive to the choice of prior on this pa-
rameter (to lesser extent when employing conservative data cuts).
Given the anti-correlation between Nshot and ⌦m, a lower bound
on the shot noise prior shifts the constraints along the lensing de-
generacy direction towards larger matter density (and smaller �8),
while a higher upper bound shifts the constraints toward smaller
matter density (and larger �8).

The prior dependence of the cosmological constraints along
the lensing degeneracy direction was illustrated for cosmic shear
alone in Joudaki et al. (2017a). We now further advise caution in the
interpretation of cosmological constraints along the lensing degen-

c� 2017 RAS, MNRAS 000, 000–000

Includes RSD
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Figure 10. Constraints on Ωm - σ8 and Ωm - S8 from this work for different combinations of power spectra. Also shown are the fiducial
results for KiDS-450 (H+17; Hildebrandt et al. 2017) and Planck (P+16; Planck Collaboration et al. 2016).

Figure 11. Reduced χ2 values of the best-fitting models, corresponding p-values of the fit, and constraints on the amplitude of the
intrinsic alignment model AIA and effective biases of the two foreground samples, bz1 and bz2, for the different combinations of power
spectra. The lower points show the results of the conservative run, where we excluded the lowest ℓ bin from PE (c1) and the highest ℓ

bin from P gm and P gg (c2) in the fit. The red, vertical dashed line in the second panel indicates a p-value of 0.05, the 2σ discrepancy
line.

constrained in the combined fit, with AIA = 1.30 ± 0.40.
Most of the constraining power on AIA comes from P gm,
as the redshift distributions of the foreground samples
and the shape samples partly overlap; fitting only PE,
AIA = 0.89+0.79

−0.59 and is therefore only inconclusively de-
tected. In an analysis of cosmic shear data from CFHTLenS
combined with WMAP7 results, Heymans et al. (2013) re-
ported AIA = −1.18+0.96

−1.17 . Joudaki et al. (2017) analysed
CFHTLenS data and found AIA = −3.6 ± 1.6, while the
correlation function analysis of KiDS (Hildebrandt et al.
2017) reported AIA = 1.10 ± 0.64. Hence, similar to
Hildebrandt et al. (2017), our results prefer a positive intrin-
sic alignment amplitude, but we detect it with a larger sig-
nificance. The preference for negative values in CFHTLenS

but positive values in KiDS suggests that AIA is not simply
a measure of the amount of intrinsic alignments of galaxies,
but that in fact it accounts for systematic effects that might
differ between surveys. Further evidence for this scenario is
that the amplitude we obtain is larger than what is expected
based on results from previous dedicated intrinsic alignment
studies; although intrinsic alignments have been detected for
luminous red galaxies (e.g. Joachimi et al. 2011; Singh et al.
2015), the constraints for less luminous red galaxies and blue
galaxies are consistent with zero (Mandelbaum et al. 2006;
Hirata et al. 2007; Mandelbaum et al. 2011). We provide ev-
idence that AIA effectively accounts for uncertainty in the
redshift distributions in Sect. 4.3.

The effective biases of the foreground samples are con-

MNRAS 000, 000–000 (2017)

van Uitert et al. (2017)



VIKING@VISTA
• Same footprint as KiDS.


• Already finished (1350deg2).


• ZYJHKs images.


• 5σ depths of 21.2 (Ks) to 23.1 (Z).

12 VIRCAM/VISTA User Manual VIS-MAN-ESO-06000-0002

Figure 5: VIRCAM detector plane looking “down” on it from “above”. On the sky the detectors are
placed in a mirror image with detector No. 1 in the top right. The numbers in brackets at each science
detector indicate the number of the IRACE controller used to run the corresponding detector. The
wavefront sensors are also shown. The gaps between the detectors are ∼10.4 and ∼4.9 arcmin,
along the X and Y axis, respectively. Each detector covers ∼11.6×11.6 arcmin on the sky. North is
up, and East is to the right, for rotator offset 0.0.

0.339 arcsec px−1 on the sky, and each detector covers a ∼694×694arcsec2 area of sky. The 16
detectors cover 274.432 mm×216.064mm on the focal plane, which gives a nominal field of view of
1.292×1.017deg on the sky. To ensure the flatness of the focal plane assembly (FPA), all pixels are
enclosed between two planes, separated by 25µm, measured along the optical axis of the camera.
In other words, the distance between the most deviating pixels, measured along the optical axis is
≤25µm.

The Nyquist sampling suggests an image quality of ∼0.68 arcsec but it is expected to gain a factor
of ∼0.7 (yielding FWHM ∼0.5 arcsec) in resolution because of the sub-pixel sampling. The science
detectors are sensitive over the wavelength range 0.85–2.4µm. The detector readout time is ∼1 sec
and the size of a single file is ∼256.7 MB.

The mean quantum efficiencies of all 16 detectors are: (Z,Y ,J ,H,KS )=(70,80,90,96,92)%. A plot of
the quantum efficiency as function of wavelength for this type of the detectors in shown in Figure 6.
In addition, the combined losses due to reflection off all VIRCAM lens surfaces are 3-5%.

The science detectors are read out simultaneously by four enhanced ESO IRACE IR controllers, with
a total of 256 simultaneous readout channels, so each detector is read into 16 stripes of 2048×128
pixels. The minimum detector integration time is 1.0011 sec.

All detectors but one are linear to ≤4.6% for illumination levels below 10000 ADU, and for the worst
one the non-linearity at this level is ∼10% (Table 3). There is also a small non-linearity of 1-2%
at low illumination levels (<1000 ADU) that affects all detectors. It can not be measured with the
calibration plan linearity monitoring but the effect is neglegible. These values may change with time,
check the VIRCAM web page for more up to date information. The linearity is correctable for up
to ∼25000ADU (the number varies for the different detectors). The stability of the non-linearity



Benefits of NIR

Wright et al. in preparation



KiDS-VIKING 450
• Add VIKING ZYJHKs-bands to KiDS-450 ugri-bands.


• Improved photo-z.


• Define five new tomographic bins (0.1 < zphot < 1.2).


• Include a lot of lessons learned in the last couple of years.


• Expectation: More precise (~20%) and more 
systematically robust cosmological results.


• Leverage large-area spec-z surveys for CC.



KV450 other improvements

• Covariance with more realistic shape noise -> better χ2


• More realistic image simulations


• New priors for IA and baryon feedback


• Pre-defined data splits



Summary & Outlook
• Cosmic shear measures S8 with CMB-like precision.


• Tension between Planck and some cosmic shear 
measurements (KiDS-450). Systematics? New physics??


• Very exciting times:

• KiDS+VIKING ~1100deg2 now, 1350deg2 in early 2019.

• DES has tripled area and doubled depth.

• Waiting for first HSC cosmic shear results.


• Prepare with today’s surveys for Euclid / LSST / WFIRST.


