Improved cosmological constraints from KiDS+VIKING

Hendrik Hildebrandt - AlfA Bonn

Argelander-Institut für Astronomie

Cosmic shear

Sensitive to:

- Matter distribution
- Geometry

Observables:

- Ellipticities
- Photo-z

Statistical measurement of many galaxies

Wittman et al. (2000)

2pt shear correlation functions

Kilbinger et al. (2013)

Observation -> theory

 $\left(\xi_{\pm}(\theta) = \left\langle \gamma_{t}\gamma_{t}\right\rangle(\theta) \pm \left\langle \gamma_{X}\gamma_{X}\right\rangle(\theta)\right)$

$$\begin{aligned} \xi_{+}(\theta) &= \int_{0}^{\infty} \frac{\mathrm{d}\ell\,\ell}{2\pi} \,\mathrm{J}_{0}(\ell\theta) \,P_{\kappa}(\ell) \;; \; \; \xi_{-}(\theta) = \int_{0}^{\infty} \frac{\mathrm{d}\ell\,\ell}{2\pi} \,\mathrm{J}_{4}(\ell\theta) \,P_{\kappa}(\ell) \\ P_{\kappa}(\ell) &= \frac{9H_{0}^{4}\Omega_{\mathrm{m}}^{2}}{4c^{4}} \,\int_{0}^{\chi_{\mathrm{h}}} \mathrm{d}\chi \frac{g^{2}(\chi)}{a^{2}(\chi)} P_{\delta}\left(\frac{\ell}{f_{K}(\chi)},\chi\right) \\ g(\chi) &= \int_{\chi}^{\chi_{\mathrm{h}}} \mathrm{d}\chi' \left(p_{\chi}(\chi') \frac{f_{K}(\chi'-\chi)}{f_{K}(\chi')}\right) \end{aligned}$$

Cosmological constraints

flat ΛCDM

 Measure amount of clustered matter

$$S_8 = \sigma_8 (\Omega_m / 0.3)^{0.5}$$

S₈ results over the years

Shape measurements

Galaxies: Intrinsic galaxy shapes to measured image:

Intrinsic galaxy (shape unknown)

Gravitational lensing causes a **shear (g)**

Atmosphere and telescope cause a convolution

a pixelated image

Image also contains noise

Stars: Point sources to star images:

Intrinsic star (point source)

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also contains noise

Bridle et al. (2009)

Photometric redshifts

Map this error distribution with spectroscopic calibration data.

> Requires reweighting.

Systematic errors

- Shapes measurement systematics:
 - PSF residuals
 - B modes
 - Multiplicative and additive biases
- Photo-z systematics:
 - Calibration sample and technique
 - Inhomogeneous multi-band data
- Theoretical systematics:
 - Intrinsic alignments
 - Baryon feedback
 - Covariance estimate
- Psychological systematics:
 - Blinding

HSC: Hyper-Suprime Cam Survey

KiDS: Kilo Degree Survey

DES: Dark Energy Survey

KIDS vs. HSC vs. DES

	KiDS(+VIKING)	HSC	DES
Mirror [m]	2.6	8.2	4.0
Focus	Cassegrain	Prime	Prime
FOV [deg ²]	1.0	1.8	3.0
Area [deg ²]	1350	1400	5000
Filters	ugri(+ZY JHK s)	grizy	griz(y)
Seeing [arcsec]	0.68	0.58	0.94
Source density [gal/arcmin ²]	~8	~22	~5-7
Depth	<i>r</i> ~24	<i>i</i> ∼24.5	r~23-24
spec-z	GAMA, SDSS, 2dFLenS, WiggleZ, deep fields	GAMA, SDSS, 2dFLenS, WiggleZ, deep fields	deep fields, (SDSS)
WL Team	>30	>30	>130

Distant i

KiDS-450

4-bin (0.1<z_{phot} < 0.9) tomographic cosmic shear analysis

Hildebrandt et al. (2017)

Redshift distributions

• Still tension with Planck!

- 2.3σ discrepancy in full parameter space
- Fully public -> "Problems with KiDS", Efstathiou & Lemos

Hildebrandt et al. (2017)

Systematic error budget

Scenario	Relative error on S ₈	
Total error	5.2 %	
Statistical error	3.7 %	
Systematic error	3.6 %	
Shear calibration	1.65 %	
Intrinsic alignments	1.67 %	
Baryon feedback	2.63 %	
Photo-z errors (DIR)	0.84 %	
Photo-z errors (CC)	16.1 %	

- Sample variance in DIR calibration unaccounted for.
- Survey inhomogeneities in DIR unaccounted for.
- Need to improve a lot on CC.

S₈ results over the years

Kilbinger (private communication)

Other probes

Extended cosmologies

- Massive neutrinos
- Non-zero curvature
- Evolving dark energy
- Modified gravity
- Running spectral index

Evolving dark energy $p = w \rho c^2$, $w(a) = w_0 + (1-a)w_a$, a=1/(1+z)

- Resolves tension between KiDS and Planck.
- Only extension that is moderately favoured by the data.
- Resolves tension between Riess et al. (2016) and Planck.

Combined probes

- Cosmic shear <\u03c8\u03c8
- Galaxy clustering $<\delta\delta>$ (e.g. galaxy redshift survey)
- Galaxy-galaxy lensing $<\delta\gamma>$
- Break degeneracies
- Increase precision
- Lose some of the benefits of cosmic shear

KiDS + 2dFLenS/BOSS

KiDS + GAMA clustering

VIKING@VISTA

- Same footprint as KiDS.
- Already finished (1350deg²).
- ZYJHKs images.

• 5σ depths of 21.2 (*K*_s) to 23.1 (*Z*).

Benefits of NIR

KiDS-VIKING 450

- Add VIKING *ZYJHK*_s-bands to KiDS-450 *ugri*-bands.
- Improved photo-*z*.
- Define five new tomographic bins ($0.1 < z_{phot} < 1.2$).
- Include a lot of lessons learned in the last couple of years.
- Expectation: More precise (~20%) and more systematically robust cosmological results.
- Leverage large-area spec-z surveys for CC.

KV450 other improvements

- Covariance with more realistic shape noise -> better χ^2
- More realistic image simulations
- New priors for IA and baryon feedback
- Pre-defined data splits

Summary & Outlook

- Cosmic shear measures S_8 with CMB-like precision.
- Tension between Planck and some cosmic shear measurements (KiDS-450). Systematics? New physics??
- Very exciting times:
 - KiDS+VIKING ~1100deg² now, 1350deg² in early 2019.
 - DES has tripled area and doubled depth.
 - Waiting for first HSC cosmic shear results.
 - Prepare with today's surveys for Euclid / LSST / WFIRST.