# SUM RULES FOR LIGHT-LIGHT INTERACTION

#### Vladimir Pascalutsa

PRISMA Cluster of Excellence Institute for Nuclear Physics University of Mainz, Germany







#### CAUSALITY

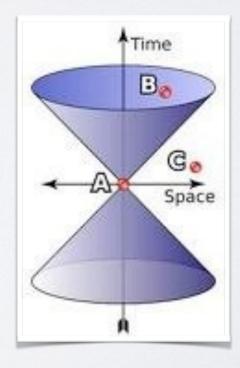
$$B(t) = \int dt' G(t - t') A(t')$$
$$G(t - t') = 0, \quad t < t'$$



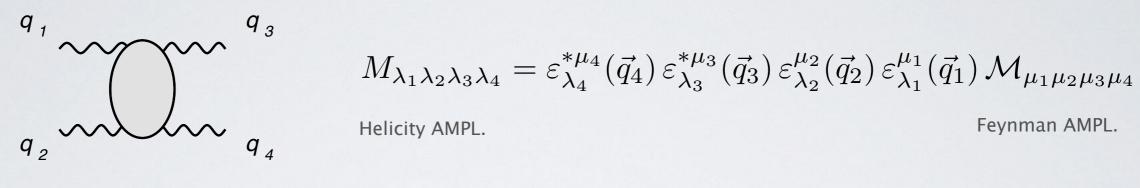
# implies analyticity in Energy

#### relativistic version:

$$B(x) = \int dx' G(x - x') A(x')$$
$$G(x - x') = 0, \quad (x - x')^2 < 0$$



#### DERIVATION OF SUM RULES FOR LIGHT-BY-LIGHT [V.P. & VANDERHAEGHEN, PRL 105 (2010)]



In the forward direction ( t = 0,  $s = 4\omega^2$ , u = -s. ):  $\mathcal{M}_{\mu_1\mu_2\mu_3\mu_4} = A(s) g_{\mu_4\mu_2} g_{\mu_3\mu_1} + B(s) g_{\mu_4\mu_1} g_{\mu_3\mu_2} + C(s) g_{\mu_4\mu_3} g_{\mu_2\mu_1} ,$ 

> $M_{++++}(s) = A(s) + C(s),$  $M_{+-+-}(s) = A(s) + B(s),$  $M_{++--}(s) = B(s) + C(s).$

1) Crossing symmetry (1 < -> 3, 2 < -> 4):

$$M_{+-+-}(s) = M_{++++}(-s), \quad M_{++--}(s) = M_{++--}(-s)$$

### SUM RULES FOR LIGHT-BY-LIGHT (DERIVATION CONTD)

Amplitudes with definite parity under Crossing:

$$f^{(\pm)}(s) = M_{++++}(s) \pm M_{+-+-}(s)$$
$$g(s) = M_{++--}(s)$$

2) Causality => Analyticity => dispersion relations:

$$\operatorname{Re}\left\{\begin{array}{c}f^{(\pm)}(s)\\g(s)\end{array}\right\} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{ds'}{s'-s} \operatorname{Im}\left\{\begin{array}{c}f^{(\pm)}(s')\\g(s')\end{array}\right\},$$

3) Optical theorem (unitarity):

Im 
$$f^{(\pm)}(s) = -\frac{s}{8} [\sigma_0(s) \pm \sigma_2(s)],$$
  
Im  $g(s) = -\frac{s}{8} [\sigma_{||}(s) - \sigma_{\perp}(s)].$ 

 $\sigma_{0,2}(\sigma_{||,\perp})$  Are circularly (linearly) polarized Photon-Photon Fusion cross-sections

### SUM RULES FOR LIGHT-BY-LIGHT (DERIVATION CONTD)

#### Sum rules:

$$\operatorname{Re} f^{(+)}(s) = -\frac{1}{2\pi} \int_{0}^{\infty} ds' \, s'^2 \, \frac{\sigma(s')}{s'^2 - s^2} \,, \qquad \sigma = (\sigma_0 + \sigma_2)/2 = (\sigma_{||} + \sigma_{\perp})/2$$
$$\operatorname{Re} f^{(-)}(s) = -\frac{s}{4\pi} \int_{0}^{\infty} ds' \, \frac{s' \, \Delta \sigma(s')}{s'^2 - s^2} \,, \qquad \Delta \sigma = \sigma_2 - \sigma_0$$
$$\operatorname{Re} g(s) = -\frac{1}{4\pi} \int_{0}^{\infty} ds' \, s'^2 \, \frac{\sigma_{||}(s') - \sigma_{\perp}(s')}{s'^2 - s^2} \,,$$

4) "Low-energy Theorem":  $\mathcal{L}_{EH} = c_1 (F_{\mu\nu} F^{\mu\nu})^2 + c_2 (F_{\mu\nu} \tilde{F}^{\mu\nu})^2$ ,

Low-energy expansion

$$f^{(+)}(s) = -2(c_1 + c_2)s^2 + O(s^4)$$
$$f^{(-)}(s) = O(s^5)$$
$$g(s) = -2(c_1 - c_2)s^2 + O(s^4)$$

### SUM RULES FOR LIGHT-BY-LIGHT

$$O(s^{1}): \qquad \qquad 0 = \int_{0}^{\infty} \frac{\mathrm{d}s}{s} \left[ \sigma_{2}(s) - \sigma_{0}(s) \right]$$

Gerasimov & Moulin (1976) Brodsky & Schmidt (1995)

 $O(s^2)$ :

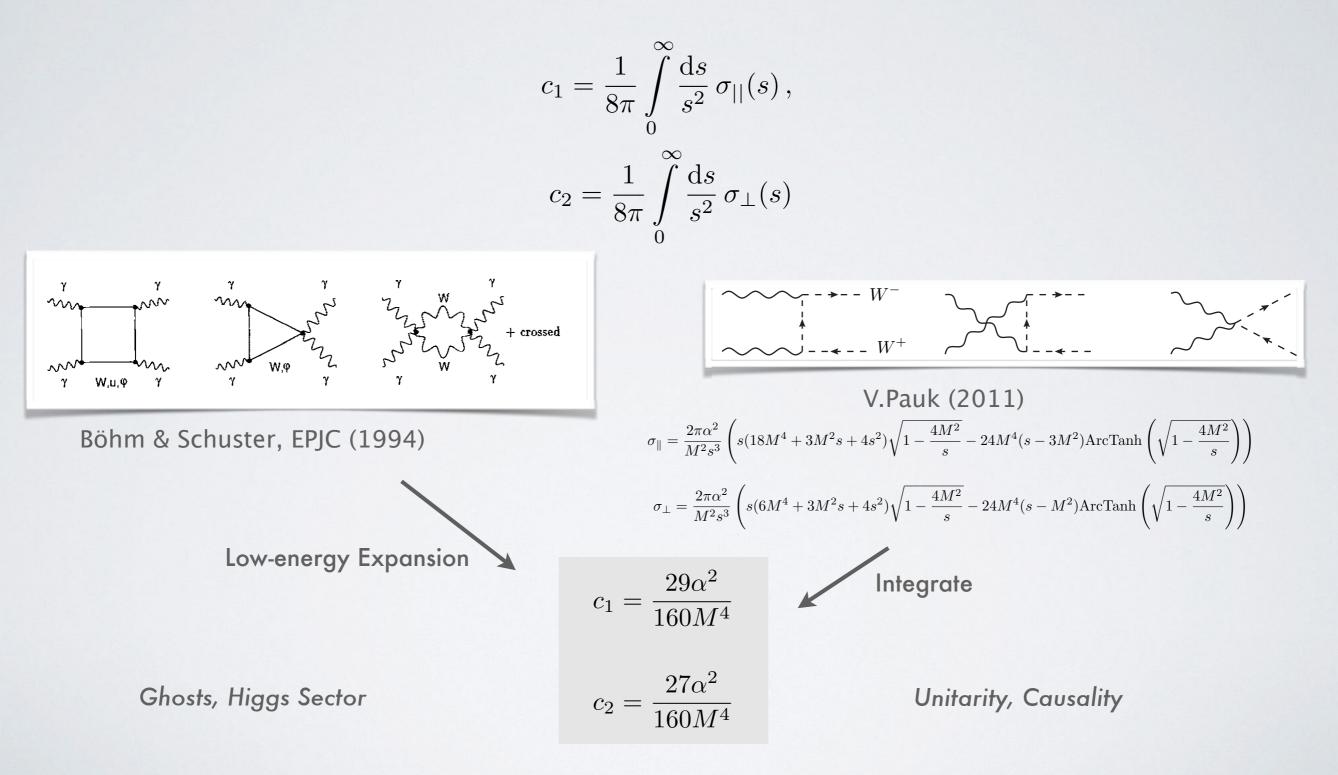
$$c_1 = \frac{1}{8\pi} \int_0^\infty \frac{\mathrm{d}s}{s^2} \,\sigma_{||}(s) \,,$$
$$c_2 = \frac{1}{8\pi} \int_0^\infty \frac{\mathrm{d}s}{s^2} \,\sigma_{\perp}(s)$$

LECs are positive Photons attract!  $Q^2 [GeV^2]$ 

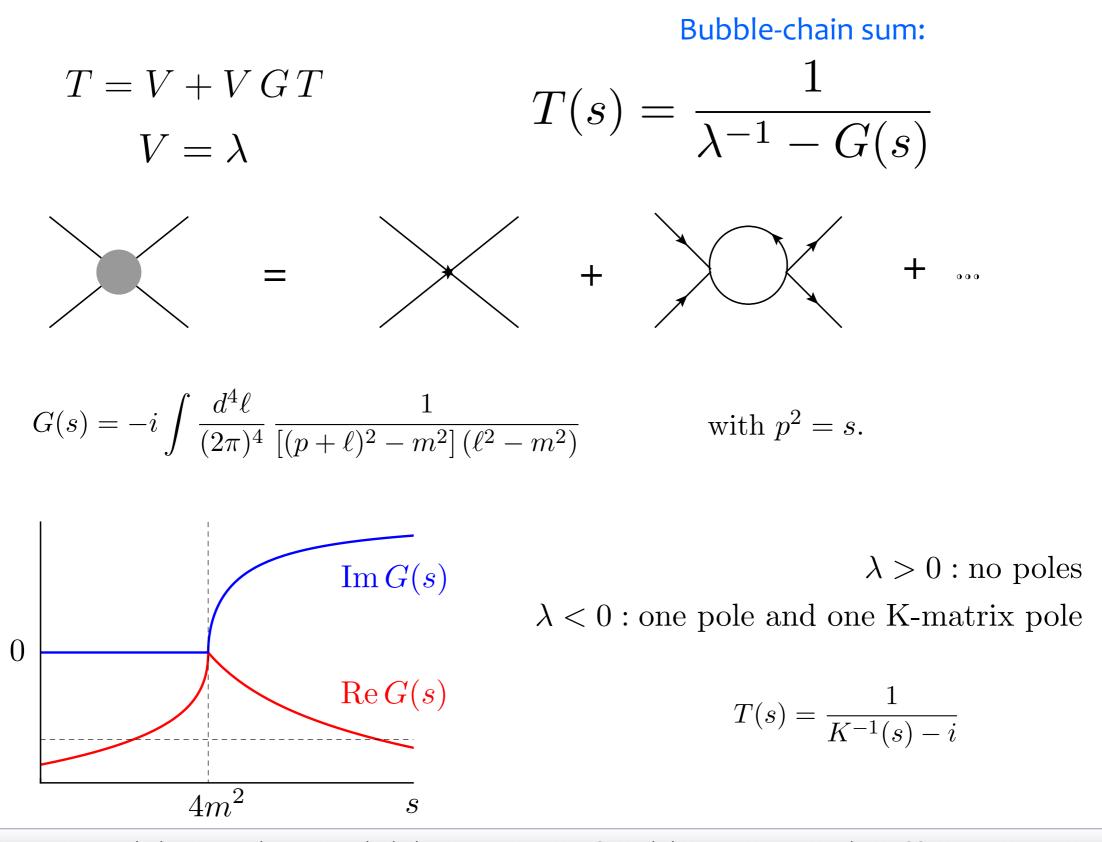
#### GENERALIZATION TO VIRTUAL PHOTONS [V.P., PAUK & VANDERHAEGHEN, PRD (2012)]

$$\begin{aligned} 0 &= \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)} \left[ \sigma_0 - \sigma_2 \right]_{Q_2^2 = 0}, \\ 0 &= \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)^2} \left[ \sigma_{\parallel} + \sigma_{LT} + \frac{(s+Q_1^2)}{Q_1 Q_2} \tau_{TL}^a \right]_{Q_2^2 = 0}, \\ 0 &= \int_{s_0}^{\infty} ds \left[ \frac{\tau_{TL}}{Q_1 Q_2} \right]_{Q_2^2 = 0}. \end{aligned}$$

### PERTURBATIVE VERIFICATION OF SUM RULES FOR LIGHT-BY-LIGHT

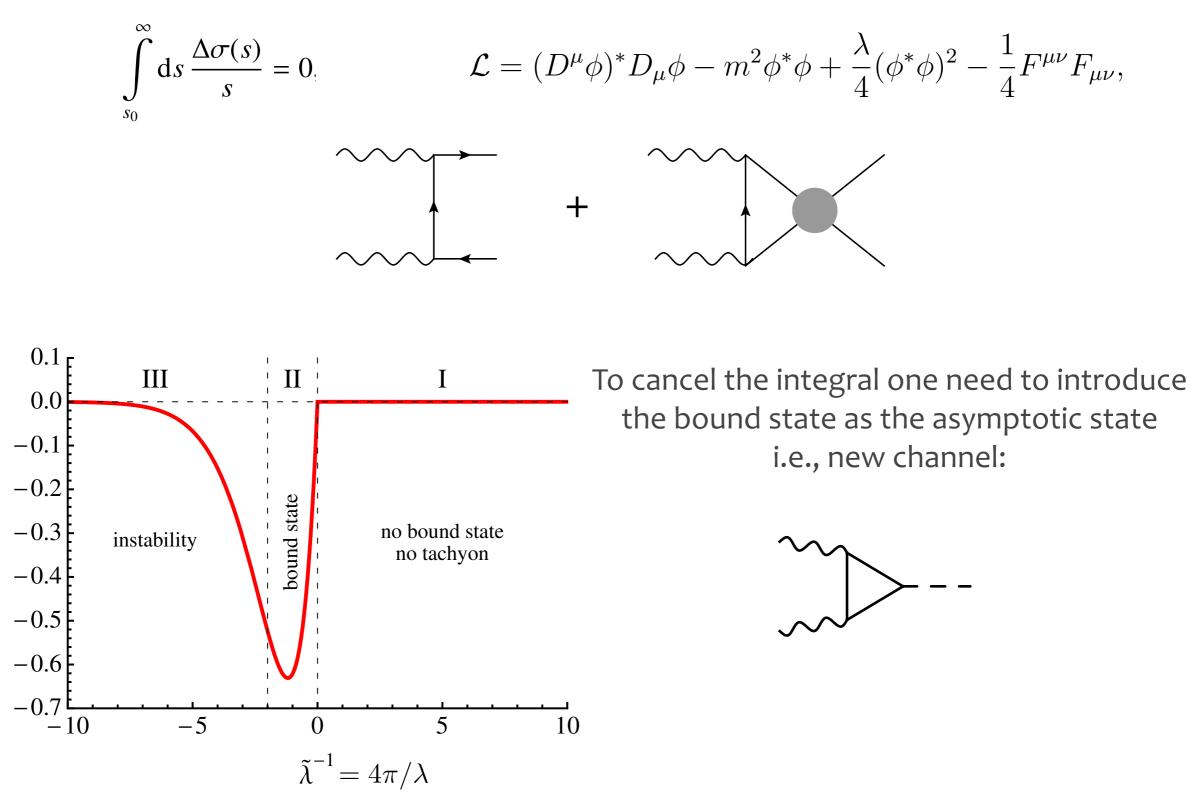


### Relativistic O-range Scattering



### Causality criterion

#### PAUK, V.P. & VANDERHAEGHEN, PLB (2013)



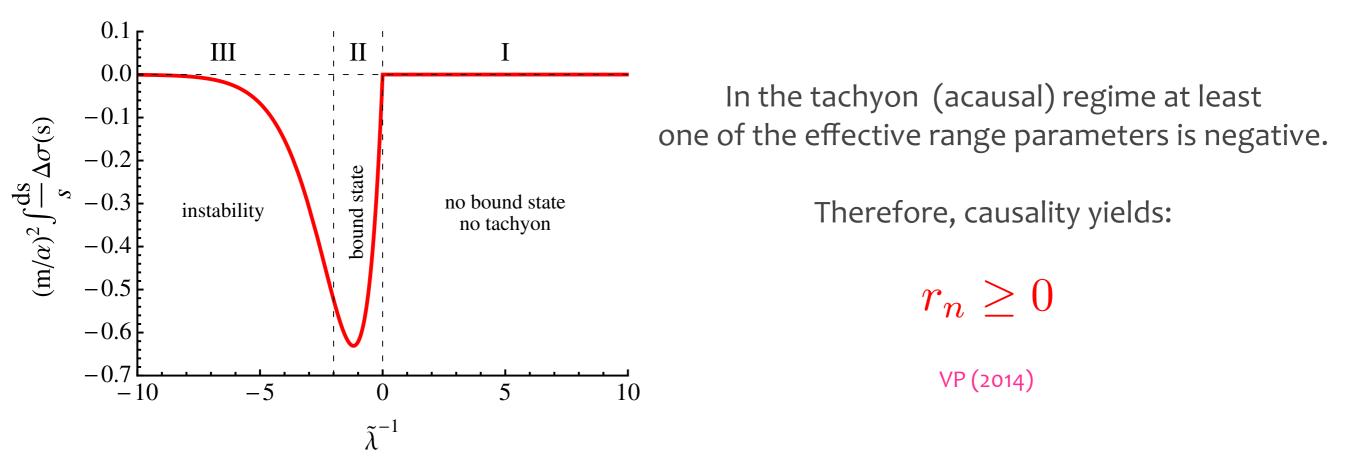
 $(m/\alpha)^2 \int \frac{ds}{s} \Delta \sigma(s)$ 

Surpassing Wigner's causality bound for NR scattering

$$|\mathbf{k}| \cot \delta(s) = -\frac{1}{a} + \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n+1} r_n |\mathbf{k}|^{2n}$$

Wigner's bound: effective range is non-positive! WIGNER, PHYS REV (1955)

PHILLIPS & COHEN, PLB (1997), HAMMER & DEAN LEE, ANN PHYS (2010), ...



11

## LO phase shift, crosses 90 degrees!

Levinson's theorem:  $\delta(0) = \pi N_{\text{bound states}}$ 

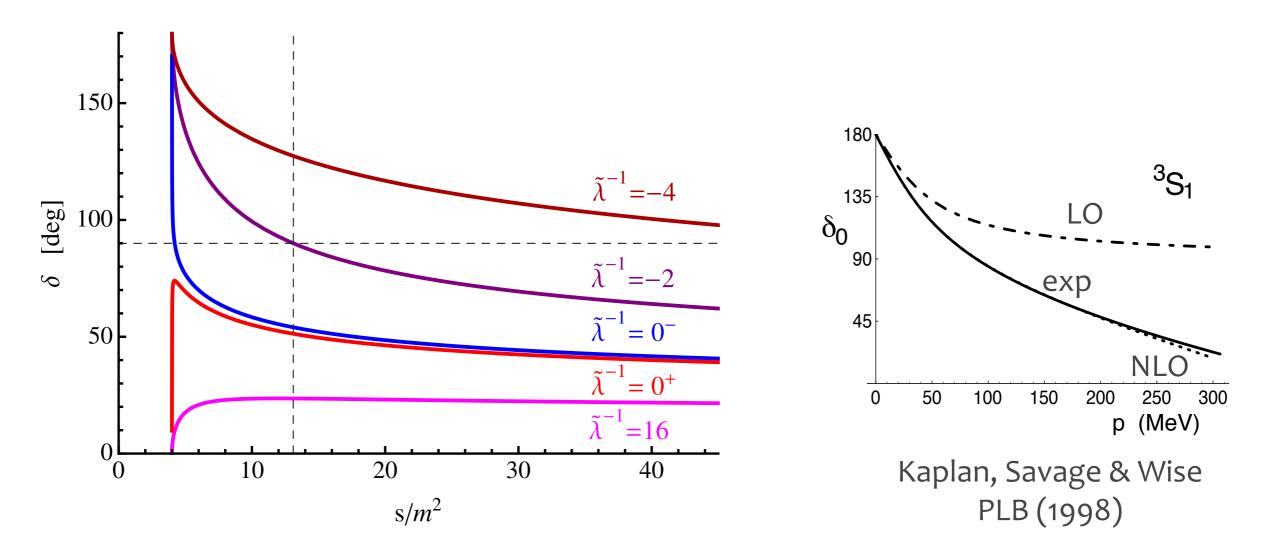
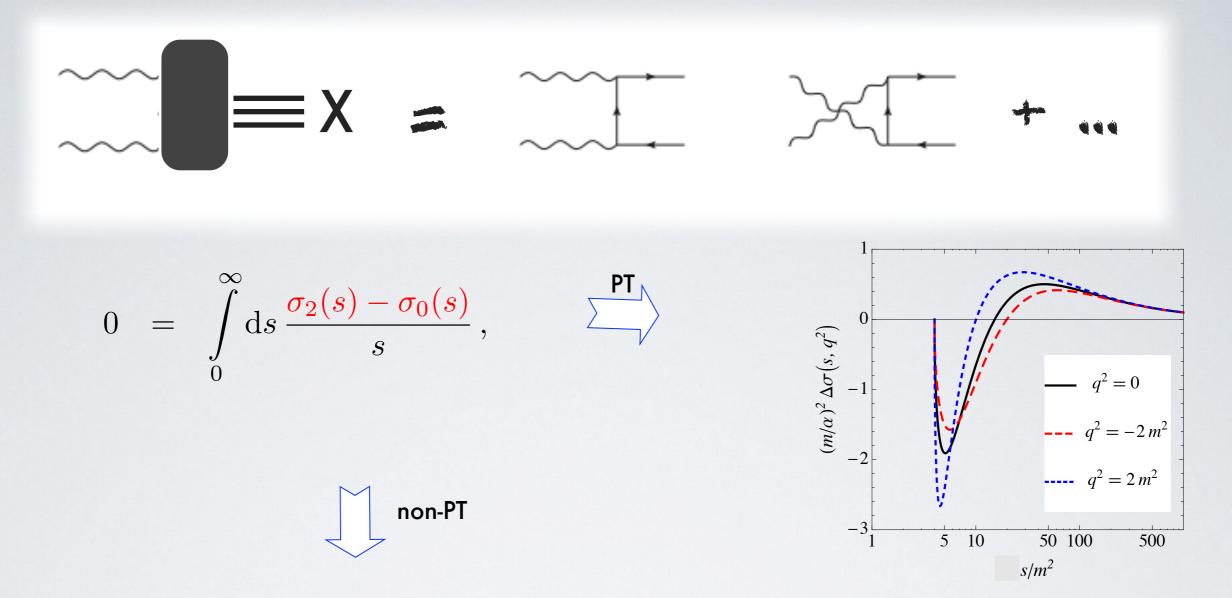


Figure 7: Phase shift for different values of  $\tilde{\lambda}$ .

Bound state is accompanied by the 90 degree crossing, i.e. a Kmatrix pole, which does not correspond here to any S-matrix pole



#### cancellation of (pseudo)scalar and tensor meson contributions

|                 | $m_M$  | $\Gamma_{\gamma\gamma}$ | $\int ds \; \Delta \sigma / s$ | $\int ds \; \Delta \sigma / s$ |
|-----------------|--------|-------------------------|--------------------------------|--------------------------------|
|                 |        |                         | narrow res.                    | Breit-Wigner                   |
|                 | [MeV]  | $[\mathrm{keV}]$        | [nb]                           | [nb]                           |
| $a_2(1320)$     | 1318.3 | $1.00\pm0.06$           | $134\pm8$                      | $137\pm8$                      |
| $f_2(1270)$     | 1275.1 | $3.03\pm0.35$           | $448 \pm 52$                   | $479 \pm 56$                   |
| $f_2'(1525)$    | 1525   | $0.081 \pm 0.009$       | $7\pm1$                        | $7\pm1$                        |
| Sum $f_2, f'_2$ |        |                         | $455\pm53$                     | $486 \pm 57$                   |

|                   | $m_M$ [MeV] | $\Gamma_{\gamma\gamma} \ [{ m keV}]$ | $\int ds \ \Delta \sigma / s$ [nb] |
|-------------------|-------------|--------------------------------------|------------------------------------|
| $\pi^0$           | 134.98      | $(7.8 \pm 0.6) \times 10^{-3}$       | $-195.0\pm15.0$                    |
| $\eta$            | 547.85      | $0.51\pm0.03$                        | $-190.7\pm11.2$                    |
| $\eta'$           | 957.66      | $4.30\pm0.15$                        | $-301.0\pm10.5$                    |
| Sum $\eta, \eta'$ |             |                                      | $-492 \pm 22$                      |