Using analytical continuation for $a_{\mu}^{\rm hvp}$

Karl Jansen

in collaboration with

Xu Feng, Shoji Hashimoto, Grit Hotzel, Marcus Petschlies, Dru Renner

- Status of standard a_{μ}^{hvp} calculation
- Analytical continuation
- Example of $a_{\mu}^{\rm hvp}$
- Conclusion

• fit function:

$$a_{\mu}(m_{\rm PS}, a) = A + B \ m_{PS}^2 + C \ a^2$$

- maximal twist: only $O(a^2)$ effects
- full analysis of short distance singularities $\rightarrow O(a)$ -improvement not spoiled

• VMD and polynomial fit

Light contribution at the physical point

- VMD and polynomial fit
- compare to Padé fit

Light contribution all leptons

 $a_{\mu}(m_{\rm PS}, a) = A + B \ m_{PS}^2 + C \ a^2$

Alternative method: analytic continuation

Compute HVP function via analytic continuation

 $\bar{\Pi}(K^2)(K_{\mu}K_{\nu} - \delta_{\mu\nu}K^2) = \int dt \ e^{\omega t} \int d^3\vec{x} \ e^{i\vec{k}\vec{x}} \ \langle \Omega | T\{J^E_{\mu}(\vec{x},t)J^E_{\nu}(\vec{0},0)\} | \Omega \rangle$

- $J^E_{\mu}(X)$ electromagentic current
- $K = (\vec{k}, -i\omega)$, \vec{k} spatial momentum, ω the photon energy (input)

Advantage

- vary $\omega \rightarrow$ smooth values for $K^2 = -\omega^2 + \vec{k}^2$
- can cover space-like and time-like momentum regions
- can reach small momenta and even zero momentum
- important condition:

$$-K^2 = \omega^2 - \vec{k}^2 < M_V^2$$
, or $\omega < E_{
m vector}$

make use of ideas: (Ji; Meyer; X. Feng, S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko, J. Noaki, E. Shintani; G. de Divitiis, R. Petronzio, N. Tantalo)

Fourier Transformation

• spatial transformation

$$C_{\mu\nu}(\vec{k},t) = \sum_{\vec{x}} e^{-i\vec{k}(\vec{x}+a\hat{\mu}/2-a\hat{\nu}/2)} \left\langle J^E_{\mu}(\vec{x},t) J^E_{\nu}(\vec{0},0) \right\rangle \,,$$

• discrete momenta

$$\vec{k} = (2\pi/L)\vec{n}$$

• transformation in time

$$\bar{\Pi}_{\mu\nu}(\vec{k},\omega;T) = \sum_{t=-T/2}^{T/2} e^{\omega(t+a(\delta_{\mu,t}-\delta_{\nu,t})/2)} C_{\mu\nu}(\vec{k},t)$$
$$\bar{\Pi}(K^2;T) \left(K_{\mu}K_{\nu} - \delta_{\mu\nu}K^2 \right) = \bar{\Pi}_{\mu\nu}(\vec{k},\omega;T)$$

Correlators for different polarization

- very different behaviour for different μ, ν
- all lead to the same result eventually

Truncating of timeline transformation: introducing a finite size effect

• problem for large t: correlator very noisy

• truncate time summation: $t_{\rm max} = \eta T/2$

$$\bar{\Pi}(K^2; t_{\max}) \left(K_{\mu} K_{\nu} - \delta_{\mu\nu} K^2 \right) = \bar{\Pi}_{\mu\nu}(\vec{k}, \omega; t_{\max})$$
$$\bar{\Pi}_{\mu\nu}(\vec{k}, \omega; t_{\max}) = \sum_{t=-t_{\max}}^{t_{\max}-a(\delta_{\mu,t}-\delta_{\nu,t})} e^{\omega(t+a(\delta_{\mu,t}-\delta_{\nu,t})/2)} C_{\mu\nu}(\vec{k}, t)$$

- for each fixed η method correct for $T\to\infty$
- for $\eta \neq 1$ introduce a finite size effect
- for $t > t_{max}$: describe data by model
- Here:
 - choice of $\eta = 3/4$
 - assume ground state dominance for large t (ρ -mass)

• increasing error for larger \vec{n}^2

HVP from analytical continuation

- different \vec{n} lead to consistent results
- agreement with standard calculation
- however, larger errors for $|\vec{n}| > 0$

Direct application to vacuum polarization function

parameters: $(a \approx 0.078 \,\text{fm}, V = (2.5 \,\text{fm})^3)$

renormalized HVP dispersion relation (Jegerlehner, 2011)

Adlerfunction

Mixed time-momentum representation

(A. Francis, B. Jäger, H. Meyer, H. Wittig)

renormalized HVP

Adlerfunction

Application to $a_{\mu}^{
m hvp}$

split in three pieces

• $a_{\bar{\mu}}^{(1)}$ directly calculable from lattice data

$$a_{\bar{\mu}}^{(1)} = \alpha^2 \int_0^{K_{\text{max}}^2} dK^2 \, \frac{1}{K^2} f\left(\frac{K^2}{m_{\mu}^2} \frac{m_{\rho}^2}{m_V^2}\right) \left(\Pi(K^2) - \Pi(0)\right)$$

• $a_{\bar{\mu}}^{(2)}$ only large momentum region: model dependence

$$a_{\bar{\mu}}^{(2)} = \alpha^2 \int_{K_{\max}^2}^{\infty} dK^2 \, \frac{1}{K^2} f\left(\frac{K^2}{m_{\mu}^2} \frac{m_{\rho}^2}{m_V^2}\right) \left(\Pi(K^2) - \Pi(K_{\max}^2)\right)$$

• $a^{(3)}_{\bar{\mu}}$ correction term

$$a_{\bar{\mu}}^{(2)} = \alpha^2 \int_{K_{\max}^2}^{\infty} dK^2 \, \frac{1}{K^2} f\left(\frac{K^2}{m_{\mu}^2} \frac{m_{\rho}^2}{m_V^2}\right) \left(\Pi(K_{\max}^2) - \Pi(0)\right)$$

- open symbols: analytic continuation
- filled symbols: standard calculation of $a_{\bar{\mu}}$
- averaged over different polarizations

Summary

- Tested idea of analytical continuation method for computing vacuum polarisation function
 - validity of method demonstrated in 1305.5878
 - method works in practise
- difficulties
 - had to truncate time summation \rightarrow induce finite size effect
 - method only applicable for momenta $K < K_{\max}$ with $-K^2 = \omega^2 = k^2 < M_V^2$ (or, $\omega < E_V$)
 - larger errors than standard method for $|ec{n}|>0$
- my present view on analytical continuation method:
 - it is clearly an alternative for cross-checking, e.g. $a_{\mu}^{\rm hvp}$
 - it allows a direct comparison to the hvp function from phenomenological analysis of data
 - maybe method of choice at physical pion mass?
- can it be applied to describe momentum dependence where value at $Q^2 = 0$ is not available?