

Summary: Hadronic light-by-light contribution to $(g-2)_{\mu}$

Marc Vanderhaeghen (JGU Mainz)

MITP (g-2)_u workshop: Schloss Waldthausen, Mainz, April 1-5, 2014

Aim: constraining the hadronic corrections to $(g-2)_{\mu}$

$$a_{\mu}^{exp} - a_{\mu}^{SM} = (24.9 \pm 8.7) \cdot 10^{-10} (3 \sigma)$$

New FNAL (g-2)_µ expt. (2016):
 $\delta a_{\mu}^{exp} = 1.6 \times 10^{-10}$

hadronic vacuum polarization

cross section measurements of e⁺ e⁻ -> hadrons

hadronic light-by-light scattering

meson transition FF measurements and theory developments

dispersive analysis of $\pi^0 \rightarrow \gamma^* \gamma^*$ transition FF

B. Kubis

isovector photon: 2 pions

 \propto pion vector form factor $\times \gamma \pi \rightarrow \pi \pi$ all determined in terms of pion–pion P-wave phase shift

+ Wess-Zumino-Witten anomaly for normalisation

▷ isoscalar photon: 3 pions dominated by narrow resonances ω , ϕ

comparision to $e^+e^- \rightarrow \pi^0 \gamma$ data Hoferichter, Kubis, Leupold, Niecknig, Schneider

enters the $\pi^0 \rightarrow e^+e^-$ rare decay P. Sanchez Puertas

Allows for parameter free prediction for isovector part of slope

- A bare π -loop (sQED) give about $-4 \cdot 10^{-10}$
- The $\pi\pi\gamma^*$ vertex is always done using VMD
- $\pi\pi\gamma^*\gamma^*$ vertex two choices:
 - Hidden local symmetry model: only one γ has VMD
 - Full VMD
 - Both are chirally symmetric
 - $\pi\pi\gamma^*\gamma^*$ for $q_1^2 = q_2^2$ has a short-distance constraint from the OPE as well.
 - HLS does not satisfy it
 - full VMD does: so probably better estimate
- ${\scriptstyle \bullet}$ For BPP stopped at 1 GeV but within 10% of higher Λ

H. Bijnens

- $L_9 + L_{10} \neq 0$ gives an enhancement of 10-15% Bijnens, Zahiri Abyaneh
- To do it fully need to get a model: include a_1
- But all models with reasonable L_9 and L_{10} fall way inside the error quoted earlier $(-1.9 \pm 1.3) \ 10^{-10}$
- Tentative conclusion: Use hadrons only below about 1 GeV: $a_{\mu}^{\pi-\text{loop}} = (-2.0 \pm 0.5) \ 10^{-10}$

Contribution	HKS	BPP	KN	MV	PdRV	N/JN
π^0,η,η^\prime	82.7 ± 6.4	85±13	83±12	114 ± 10	114±13	99±16
π, K loops	-4.5 ± 8.1	-19 ± 13	-	0 ± 10	-19 ± 19	-19±13
axial vectors	1.7 ± 1.7	2.5 ± 1.0	_	22 ± 5	15 ± 10	22 ± 5
scalars	_	-6.8 ± 2.0	_	_	-7 ± 7	-7 ± 2
quark loops	9.7±11.1	21 ± 3	-	-	2.3	21±3
total	89.6±15.4	83±32	80 ± 40	136±25	105 ± 26	116±39

axial-vector, scalar, tensor meson contributions

Axial vector meson contribution re-evaluated V. Pauk, F. Jegerlehner Landau-Yang theorem constraint built in correctly Use available data on $f_1(1285)$, $f_1(1420)$

$$a_{\mu}[f'_{1}, f_{1}] \sim (6.4 = [5.0 + 1.4] \pm 2.0) \times 10^{-11}$$
 Pauk, Vdh (2013)

 $a_{\mu}[a_1, f'_1, f_1] \sim (7.55 = [1.89 + 5.19 + 0.47] \pm 2.71) \times 10^{-11}$

Jegerlehner

Tensor meson contributions evaluated

$$a_{\mu}[f'_{2}, f_{2}, a'_{2}, a_{2}] \sim (1.1 = [0.79 + 0.07 + 0.22 + 0.02] \pm 0.1) \times 10^{-11}$$

 $a_{\mu}[a_{0}, f'_{0}, f_{0}] \sim (-3.1 = [-0.63 - 1.84 - 0.61] \pm 0.8) \times 10^{-11}$

2-meson channels:

Input discontinuity into dispersion relations: $\gamma\gamma \rightarrow \pi\pi$, ...

Unusual feature: large D-waves near threshold, I=2 as large as I=0

constraints from forward LbL sum rules

Pascalutsa, Pauk, Vdh (2011,2012)

$$\begin{aligned} 0 &= \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)} \left[\sigma_0 - \sigma_2 \right]_{Q_2^2 = 0}, \\ 0 &= \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)^2} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s+Q_1^2)}{Q_1 Q_2} \tau_{TL}^a \right]_{Q_2^2 = 0}, \\ 0 &= \int_{s_0}^{\infty} ds \left[\frac{\tau_{TL}}{Q_1 Q_2} \right]_{Q_2^2 = 0}. \end{aligned}$$

cancellation of (pseudo)scalar and tensor meson contributions

	m_M	$\Gamma_{\gamma\gamma}$	$\int ds \Delta \sigma/s$
π ⁰	134.98	[KeV] $(7.8 \pm 0.6) \times 10^{-3}$	-195.0 ± 15.0
η	547.85	0.51 ± 0.03	-190.7 ± 11.2
η' Sum n, n'	957.66	4.30 ± 0.15	-301.0 ± 10.5 -492 ± 22

	m_M	$\Gamma_{\gamma\gamma}$	$\int ds \Delta \sigma / s$	$\int ds \Delta\sigma/s$
			narrow res.	Breit-Wigner
	$[\mathrm{MeV}]$	[keV]	[nb]	[nb]
$a_2(1320)$	1318.3	1.00 ± 0.06	134 ± 8	137 ± 8
$f_2(1270)$	1275.1	3.03 ± 0.35	448 ± 52	479 ± 56
$f_2'(1525)$	1525	0.081 ± 0.009	7 ± 1	7 ± 1
Sum f_2, f'_2			455 ± 53	486 ± 57

Sum rules: may be used as a consistency test on models !

 Allow to constrain so-far unmeasured contributions, e.g. tensor mesons for virtual photons

Dispersive approach to HLbL

G. Colangelo, M. Hoferichter, M. Procura, P. Stoffer

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^{0}\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\text{FsQED}}_{\mu\nu\lambda\sigma} + \overline{\Pi}_{\mu\nu\lambda\sigma} + \cdots$$

Master formula for a_{μ}

$$a_{\mu}^{\pi\pi} = e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \int \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{l^{\pi\pi}}{q_{1}^{2}q_{2}^{2}s((p+q_{1})^{2}-m^{2})((p-q_{2})^{2}-m^{2})},$$

$$l^{\pi\pi} = \sum_{i \in \{1,2,3,6,14\}} \left(T_{i,s}l_{i,s} + 2T_{i,u}l_{i,u} \right) + 2T_{9,s}l_{9,s} + 2T_{9,u}l_{9,u} + 2T_{12,u}l_{12,u} \right),$$

with $I_{i,(s,u)}$ dispersive integrals and $T_{i,(s,u)}$ integration kernels

$$\begin{split} &I_{1,s} = \frac{1}{\pi} \int\limits_{4m_{\pi}^2}^{\infty} \frac{\mathrm{d}s'}{s'-s} \left(\frac{1}{s'-s} - \frac{s'-q_1^2-q_2^2}{\lambda(s',q_1^2,q_2^2)} \right) \mathrm{Im}\bar{h}_{++,++}^0(s';q_1^2,q_2^2;s,0), \\ &I_{6,s} = \frac{1}{\pi} \int\limits_{4m_{\pi}^2}^{\infty} \frac{\mathrm{d}s'}{(s'-q_1^2-q_2^2)(s'-s)^2} \mathrm{Im}\bar{h}_{+-,+-}^2(s';q_1^2,q_2^2;s,0) \left(\frac{75}{8} \right) \end{split}$$

Helicity amplitudes contribute up to J = 2 (*S* and *D* waves)

Dyson-Schwinger approach Ch. Fischer

- calculations at present with effective model for qqg vertex
- comparison for HVP: at 5 10%
- for HLbL: potentially large quark loop contribution (10 x 10⁻¹⁰)

vs 2 x 10⁻¹⁰ in ENJL

Comparable ?

- Roadmap: cross-check the four-point correlator for specific values of virtualities with lattice results
 - Check consistency constraints:
 e.g. sum rules for LbL

Phenomenology: transition FFs

HLbL: Outlook

- Goal: realistic error estimate / reduce to **2 x 10**⁻¹⁰ (20% of HLbL)
- Important issue: study radiative corrections in γγ physics , make MC tools available for experiment
 H. Czyz
- **DR tools become available for PS TFF,** $\gamma^* \gamma^* \rightarrow \pi \pi$,..., a_μ require close collaboration with experiment
- Outcome of workshop would be to draft a roadmap for HLbL (document which can be referred to)

Status

Strategy of analysis (describe tools available)

What is needed most (data input, quantify required precision)