Lattice QCD: Summary and Perspective

Tom Blum (UConn / RIKEN BNL Research Center)

MITP Workshop on Hadronic contributions to muon g-2 Waldthausen Castle, Mainz

April 1-5, 2014

Tom Blum (UConn / RIKEN BNL Research Center) Lattice QCD: Summary and Perspective

Hadronic Vacuum Polarization

Hadronic Light-by-Light

Summary/Outlook

Tom Blum (UConn / RIKEN BNL Research Center) Lattice QCD: Summary and Perspective

・ロト ・回ト ・ヨト ・ヨト

æ

Hadronic vacuum polarization (HVP)

The blobs, which represent all possible intermediate hadronic states, are not calculable in perturbation theory, but can be calculated from

- ► dispersion relation + experimental cross-section for $e^+e^-(\text{and }\tau) \rightarrow \text{hadrons } a_{\mu}^{\text{had}(2)} = \frac{1}{4\pi^2} \int_{4m^2_{-}}^{\infty} \mathrm{d}s \, \mathcal{K}(s) \sigma_{\text{total}}(s)$
- ► first principles using lattice QCD, $a_{\mu}^{(2)\text{had}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^{\infty} dQ^2 f(Q^2) \Pi(Q^2)$ [Lautrup and de Rafael 1969, Blum 2002]

イロン イヨン イヨン イヨン

$a_{\mu}(\text{HVP})$ published lattice results

Lattice: \sim 3-10% quoted errors, but incomplete, Experiment: 0.6% errors

Plot from Laurent Lellouch

Tom Blum (UConn / RIKEN BNL Research Center) Lattice QCD: Summary and Perspective

Talks this week

- Santi Peris: Fits and related systematics for the Hadronic Vacuum Polarization
- ► Laurent Lellouch: Leading-order Hadronic Contribution to g-2
- Harvey Meyer: The Hadronic Vacuum Polarization from Lattice QCD: the Role of Quark Disconnected Contributions
- Karl Jansen: The Hadronic Vacuum Polarization Contribution Using Analytic Continuation
- Taku Izubuchi: Hadronic Light-by-Light: What can lattice QCD achieve?
- > plus afternoon contributions by E. Shintani and G. Herdoiza

S. Peris (fitting systematics)

Fits and Related Systematics for the

Hadronic Vacuum Polarization on the Lattice

Santi Peris (U.A. Barcelona)

Based on coll. with Christopher Aubin (Fordham U.), Tom Blum (Connecticut U.), Maarten Golterman (SFSU) & Kim Maltman (York U. & U. Adelaide)

Fits and Related Systematics for the Hadronic Vacuum Polarization on the Lattice - p.1/16

S. Peris (fitting systematics)

Introduction

if no good data in region of curvature \implies possibly wrong results !

(even with good χ^2)

Lautrup-de Rafael '69

Need reliable fitting function !

how to test this theoretical error?

Tom Blum (UConn / RIKEN BNL Research Center)

Lattice QCD: Summary and Perspective

Related Systematics for the Hadronic Vacuum Polarization on the Lattice - p.3/16

S. Peris (fitting systematics)

Fitting functions

Aubin, Blum, Golterman, SP '12

★ Padés, model independent, they enjoy a convergence theorem for $N \to \infty$:

$$\Pi(Q^2) = \Pi(0) + Q^2 \underbrace{\left(a_0 + \sum_{r=1}^N \frac{a_r}{Q^2 + b_r}\right)}_{\text{Pade}}$$

 $\Pi(0), a's$ and b's are fitting parameters.

★ VMD is not a Pade, since you fix $b_1 = M_{\rho}^2$. (true $\Pi(Q^2)$ has cut starting at $4m_{\pi}^2$...)

We have: $a_0 \neq 0 \Longrightarrow [N, N]$ Pade; $a_0 = 0 \Longrightarrow [N - 1, N]$ Pade.

For instance:

•
$$\frac{a_1}{Q^2+b_1}$$
 is a [0,1] Pade $\Longrightarrow \Pi(Q^2) = \Pi(0) + Q^2 \left(\frac{a_1}{Q^2+b_1}\right)$
• $a_0 + \frac{a_1}{Q^2+b_1}$ is a [1,1] Pade $\Longrightarrow \Pi(Q^2) = \Pi(0) + Q^2 \left(a_0 + \frac{a_1}{Q^2+b_1}\right)$

etc...

S. Peris (fitting systematics)

Model Fits

Golterman, Maltman, SP '13

"Exact result": $(g-2)^{HVP}_{\mu}|_{Q^2 < 1 \text{ GeV}^2} = 1.2059 \times 10^{-7}$.

Fit interval $0 < Q^2 \le 1 \text{ GeV}^2$, (49 points).

Pull = (exact - fit) / error

	$(g - 2)_{\mu} \times 10^7$	Error×107	χ^2/dof	Pull
VMD	1.3201	0.0052	2189/47	-
VMD+	1.0658	0.0076	67.4/46	18
[0, 1]	0.8703	0.0095	285/46	-
[1, 1]	1.116	0.022	61.4/45	4
[1, 2]	1.182	0.043	55.0/44	0.5
[2, 2]	1.177	0.058	54.6/43	0.5

- VMD has a bad χ² and (g − 2).
- VMD+ also gets it wrong although the χ^2 is good \Longrightarrow DANGER !
- Pades [1,2] and [2,2] get it right, but the error is ~ 4%.

Fits and Related Systematics for the Hadronic Vacuum Polarization on the Lattice - p.7/16

L. Lellouch

Leading hadronic contribution to g_{μ} – 2 and lattice QCD

Laurent Lellouch

CPT Marseille CNRS/INP & Aix-Marseille U.

Budapest-Marseille-Wuppertal collaboration (BMWc) Special thanks to E. Gregory, R. Malak & C. McNeile

(work in progress)

Laurent Lellouch Tom Blum (UConn / RIKEN BNL Research Center)

MITP g_{μ} = 2 workshop, April 1-5, 2014 Lattice QCD: Summary and Perspective

L. Lellouch

Zero-momentum moments and Padé's of $\hat{\Pi}(Q^2)$

HPQCD propose to compute on lattice (arXiv:1403.1778):

$$G_{2n} = a^4 \sum_{x_{\mu}} x_0^{2n} \langle J_i^{\mathrm{EM}}(x) J_i^{\mathrm{EM}}(0) \rangle$$

which give coefficients of Taylor expansion

$$\hat{\Pi}(Q^2) = \sum_{n=1}^{\infty} \Pi_n Q^{2n}, \qquad \Pi_n \equiv (-1)^{n+1} \frac{G_{2n+2}}{(2n+2)!}$$

Use to obtain Padé

$$\hat{\Pi}_{[N/D]}(Q^2) \equiv rac{\sum_{n=0}^{N} a_n Q^{2n}}{1 + \sum_{n=1}^{D} b_n Q^{2n}}$$

by matching term-by-term to Taylor expansion up to order N + D

Perform calculation for connected s and c quark contributions

L. Lellouch

Convergence and residual errors of Padé's (cont'd)

🗄 🔊 ९ ୯

Working Group Discussion (fitting systematics)

- Many methods to get to small q²/large Euclidean time. No clear best approach, should pursue all for now
 - Large volume, twisted b.c.'s, analytic continuation, mixed (time-mom) representation
- Model independent (e.g., Padé) fits desirable
- Good chi-sq is not enough if extrapolating to q = 0
- Covariance matrix can be ill-conditioned

Working Group Discussion (fitting systematics)

Plots from Maarten Golterman. Huge improvement from AMA and twisting, but still an extrapolation!

Working Group Discussion

- Lowest moments useful for Π(0)
- How does it compare to Rome method for Π(0) (formally based on twisting)? In practice need 4 point function
- HPQCD used successfully for strange, charm, but higher moments very noisy for light quarks
- Error reduction: subtract Nⁿ_t contribution?

- 4 回 ト 4 ヨ ト 4 ヨ ト

H. Meyer (disconnected quark diagrams)

On the disconnected diagram contribution to $a_{\mu}^{\rm HLO}$

MITP "g-2" workshop, Mainz April 4, 2014

Thanks to members of Mainz lattice group, Anthony Francis, Vera Gülpers, Gregorio Herdoiza, Georg von Hippel, Hanno Horch, Benjamin Jäger, Hartmut Wittig

H. Meyer (disconnected quark diagrams)

Lattice data (Vera Gülpers et al.)

NB. \sim 1000 configurations, time-diluted stochastic sources, 3 per time-slice

H. Meyer (disconnected quark diagrams)

Estimate of the disconnected diagram contribution to a_{μ}^{HLO}

H. Meyer (disconnected quark diagrams)

Outlook

- disconnected diagram contributions are very small compared to the connected diagrams up to fairly long distances
- \blacktriangleright however, the ratio becomes -1/9 of the isovector part at long distances.
- ▶ for the time being, the transition between the two regimes can be studied by combining lattice and experimental data
- \blacktriangleright it appears very unlikely that the disconnected diagram contribution to $a_{\mu}^{\rm HLO}$ is more than 3%.

Working Group Discussion (disconnected diagrams)

- ▶ Difficult! Mainz group: 1000 configs * 64 time slices * 3 hits ≈ 200,000 measurements, no signal, but (absolute) error is also very small.
- Contribution is small. HM: conservatively less than 3%. We are comfortable with this estimate
- Discussion of noise reduction ideas: link smearing?

K. Jansen (analytic continuation)

Using analytical continuation for $a_{\mu}^{\rm hvp}$

Karl Jansen

向下 イヨト イヨト

in collaboration with

NIC

Xu Feng, Shoji Hashimoto, Grit Hotzel, Marcus Petschlies, Dru Renner

- Status of standard $a_{\mu}^{\rm hvp}$ calculation
- Analytical continuation
- Example of a_{μ}^{hvp}
- Conclusion

Tom Blum (UConn / RIKEN BNL Research Center) Lattice QCD: Summary and Perspective

K. Jansen (analytic continuation)

Alternative method: analytic continuation

Compute HVP function via analytic continuation

 $\bar{\Pi}(K^2)(K_{\mu}K_{\nu} - \delta_{\mu\nu}K^2) = \int dt \ e^{\omega t} \int d^3\vec{x} \ e^{i\vec{k}\vec{x}} \ \langle \Omega | T\{J^E_{\mu}(\vec{x},t)J^E_{\nu}(\vec{0},0)\} | \Omega \rangle$

- J^E_μ(X) electromagentic current
- $K = (\vec{k}, -i\omega)$, \vec{k} spatial momentum, ω the photon energy (input)

Advantage

- vary $\omega \rightarrow$ smooth values for $K^2 = -\omega^2 + \vec{k}^2$
- · can cover space-like and time-like momentum regions
- can reach small momenta and even zero momentum
- important condition:

$$-K^2 = \omega^2 - \vec{k}^2 < M_V^2 \;, \quad \text{or} \quad \omega < E_{\text{vector}}$$

 make use of ideas: (Ji; Meyer; X. Feng, S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko, J. Noaki, E. Shintani; G. de Divitiis, R. Petronzio, N. Tantalo)

Tom Blum (UConn / RIKEN BNL Research Center)

Lattice QCD: Summary and Perspective

æ

K. Jansen (analytic continuation)

HVP from analytical continuation

- different \vec{n} lead to consistent results
- · agreement with standard calculation
- however, larger errors for $|\vec{n}| > 0$

イロト イヨト イヨト イヨト

Working Group Discussion (analytic continuation)

- \blacktriangleright Difficulty: must integrate time to ∞ but correlator at large time is noisy
- impose cut-off, leads to model dependence (small q² problem again)

- 4 回 ト 4 ヨ ト 4 ヨ ト

• Analytic continuation problematic for $a \neq 0$?

Working Group Discussion (compare intermediate results)

 $\operatorname{Pi}(\operatorname{Q2})\operatorname{-}\operatorname{Pi}(\operatorname{Q2}{\sim}0.25~\operatorname{GeV}^2)$

Tom Blum (UConn / RIKEN BNL Research Center)

Pi(Q2) - Pi(Q2~0.25 GeV2)

Plots from T. Izubuchi

Talk by Gregorio Herdoiza: Adler function, $\Pi(Q^2) - \Pi(Q^2_{\rm ref})$

<ロ> <同> <同> <三> < 回> < 回> < 三>

Ξ.

Lattice QCD: Summary and Perspective

Outline

Hadronic Vacuum Polarization

Hadronic Light-by-Light

Summary/Outlook

Tom Blum (UConn / RIKEN BNL Research Center) Lattice QCD: Summary and Perspective

・ロン ・回と ・ヨン・

æ

HLbL

Model estimates put this $O(\alpha^3)$ contribution at about $(10 - 12) \times 10^{-10}$ with a 25-40% uncertainty

"No dispersion relation" *a'la* vacuum polarization (but see talk by G. Colangelo!)

Dominated by pion pole

Lattice regulator: model independent, approximations systematically improvable

Tom Blum (UConn / RIKEN BNL Research Center) Lattice QCD: Summary and Perspective

∃ >

T. Izubuchi (hadronic light-by-light)

Hadronic Light-by-Light: What can Lattice QCD achieve ?

Taku Izubuchi

Tom Blum, Masashi Hayakawa

Hadronic contributions to the muon anomalous magnetic moment: strategies for improvements of the accuracy of the theoretical prediction, April 02, 2014, Waldthausen Castle near

Tom Blum (UConn / RIKEN BNL Research Center) Lattice QCD: Summary and Perspective

T. Izubuchi (hadronic light-by-light)

Unwanted diagrams

The subtraction works for diagram by diagram and config-by-config. This is also important for noise reduction.

T. Izubuchi (hadronic light-by-light)

Tom Blum (UConn / RIKEN BNL Research Center) Lattice QCD: Summary and Perspective

T. Izubuchi (hadronic light-by-light)

Tom Blum (UConn / RIKEN BNL Research Center)

Lattice QCD: Summary and Perspective

T. Izubuchi (hadronic light-by-light)

Tom Blum (UConn / RIKEN BNL Research Center) Lattice QCD: Summary and Perspective

. nac

T. Izubuchi (hadronic light-by-light)

Disconnected diagrams

Similar strategy

イロン イヨン イヨン イヨン

Working Group Discussion (hadronic light-by-light)

- Still only one group calculating (FNAL, ...?)
- Potentially large finite volume effects for QCD+QED (massless photon) of concern
- Calculate 4 point function in QCD
- Calculate simpler quantities to check models (E. Shintani) and QCD+QED lattice calculations (VVA diagram (M. Knecht and others), mass splittings,...)

イロト イポト イヨト イヨト

Outline

Hadronic Vacuum Polarization

Hadronic Light-by-Light

Summary/Outlook

Tom Blum (UConn / RIKEN BNL Research Center) Lattice QCD: Summary and Perspective

・ロン ・回と ・ヨン・

æ

Summary/Outlook

- ▶ Lots of interest, work on hadronic contributions, esp. HVP
 - Statistical errors (sub) 1%
 - Several groups done/doing physical m_{π} $(m_{
 m quark})$ simulations
 - Much effort on understanding systematics
 - Workshop very helpful, encouraging cooperation!
 - 2-3% total error on connected HVP in 2 years possible (my opinion)
 - May be achievable for disconnected too
- ▶ HLbL: QCD+QED promising (my opinion), but significant systematics. We are now running with $m_{\pi} = 170$ MeV and investigating excited state contamination
- Dynamical QED+QCD is coming too
- need more groups working on it (FNAL, ...)!
- ▶ Interest in 4pt function, $\pi \to \gamma^* \gamma^*$, other simpler quantities