Hadronic Vacuum Polarization (Experiment)

Simon Eidelman

Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk, Russia

Outline

1. General

2. VEPP-2000

3. Results from CMD-3 and SND

4. Results from KEDR

5. Conclusions

 $\hat{K}(s) \text{ grows from } 0.63 \text{ at } s = 4m_{\pi}^2 \text{ to } 1 \text{ at } s \to \infty,$ $1/s^2 \text{ emphasizes low energies, particularly } e^+e^- \to \pi^+\pi^- (72\%)$ $\text{ The } \sqrt{s} \text{ range from threshold to } 2 \text{ GeV} - \text{ about } 93\%$ $a_{\mu}^{\text{had,LO}} \sim 700 \cdot 10^{-10} \Rightarrow \text{ accuracy better than } 1\% \text{ needed}$

Contribution of Various Energy Ranges

\sqrt{s}, GeV	$\Delta a_{\mu}^{ m had,LO}$
$\pi^+\pi^-$	507.80 ± 2.84
$\pi^+\pi^-\pi^0$	46.00 ± 1.73
K^+K^-	21.63 ± 0.73
$K^0_S K^0_L$	12.96 ± 0.39
m/h < 1.8	45.50 ± 3.44
1.8 - 3.7	$33.45 \pm 0.28 (2.00)$
> 3.7	17.16 ± 0.31
Total	692.3 ± 4.2

may suffer from more complicated radiative effects, all neutrals hardly possible

Impressive achievements of CMD-2, SND (scan at $\sqrt{s} < 1.4 \text{ GeV}$) and KLOE (ISR at $\sqrt{s} < 1.0 \text{ GeV}$) and BaBar (ISR at $\sqrt{s} < 3.0 \text{ GeV}$), Belle and BESIII may contribute as well to ISR measurements

VEPP-2000 - II

VEPP-2000 - III

Performance of VEPP-2000 and Detectors

- The maximum luminosity is $2 \cdot 10^{31} \text{ cm}^{-1} \text{s}^{-1}$ at 1.7-1.8 GeV, falling much slower with decreasing energy than before the round beams
- The integrated luminosity is about 60 pb⁻¹ per detector, a factor of 6 higher than before from ϕ to 2 GeV, the number of multihadronic events per 1 pb⁻¹ ~ 50k
- In 2013 we reached 2 \times 160 MeV, the smallest \sqrt{s} ever
- At high energies lumi is limited by a deficit of positrons and maximum energy of the booster (825 MeV now)
- A long shutdown until 2015 to increase the booster energy to 1 GeV and commission the new injection complex to reach 10^{32} cm⁻¹s⁻¹
- Both detectors perform reasonably well

Statistical precision better than that of BaBar

S.Eidelman, BINP

p.12/34

BaBar data higher than CMD-3, CMD-2 and CMD-3 agree

S.Eidelman, BINP

p.13/34

Very preliminary SND data agree with BaBar

April 1-5, 2014 $e^+e^- \rightarrow K^0_S K^0_L$ at CMD-3 Cross section (nb) 0 CMD3 2011 CMD3 2012 10

1800 2000 Ec.m. (MeV)

Fair agreement between different seasons

1600

1400

10-2

1000

1200

It's interesting to disentangle the $\rho\pi$ and direct 3π modes

S.Eidelman, BINP

p.17/34

p.18/34

A ρ^0 is always present, $a_1^{\pm}(1260)\pi^{\mp}(a_2^{\pm}(1320)\pi^{\mp})$ significant, at higher \sqrt{s} other mechanisms like $\rho^0 f_0$, $\rho^0 f_2(1270)$ appear

S.Eidelman, BINP

p.19/34

$e^+e^- \rightarrow 3\pi^+3\pi^-$ at CMD-3 – I

- 1. $\int Ldt = 22 \text{ pb}^{-1}$ from 1.5 to 2.0 GeV, 25 MeV step
- 2. About 8k five- (5069) and six-track (2887) events selected
- 3. We study dynamics, pure phase space doesn't work, three models with $J^{PC} = 1^{--}$, each with one ρ^0 /event:
 - $\rho(1450)(\pi^+\pi^-)_{\mathrm{S-wave}} \to a_1(1260)^{\pm}\pi^{\mp}\pi^+\pi^- \to \rho^0 2(\pi^+\pi^-) \to 3(\pi^+\pi^-)$
 - $\rho(770)(2\pi^+2\pi^-)_{\text{S-wave}} \to 3(\pi^+\pi^-)$ 3 options for $2\pi^+2\pi^-$: phase space, $f_0(1370), f_0(1500)$
 - $\rho(770)f_2(1270) \to 3(\pi^+\pi^-)$
 - The best description is with one $\rho(770)$ and 4 pions in S-wave

$e^+e^- \rightarrow 3\pi^+3\pi^-$ at CMD-3 – II

Systematic uncertainties for $\sigma(e^+e^- \rightarrow 3\pi^+3\pi^-)$

Source	$\mathrm{Error}_{\mathrm{CMD}},\%$	$\mathrm{Error}_{\mathrm{BABAR}}, \%$
Model	4	3
Selection	3	$2 \bigoplus 3$
Lumi	2	3
Background (6 tr.)	1	3
Background (5 tr.)	3	-
$\Delta\sqrt{s}/\sqrt{s}(\sim 5\cdot 10^{-3})$	1	-
Rad. corr.	1	1
Total	6	6

Hope to decrease it to $\sim 3\%$

April 1-5, 2014

We have relatively clean selection of 2 and 1 π^0 in addition to four charged tracks

2011 – all reconstructed or a π^{\pm} or π^{0} lost, 2012 – all reconstructed The dip structure near $N\bar{N}$ threshold also seen $\omega\pi^{+}\pi^{-}\pi^{0}, \ \eta\pi^{+}\pi^{-}\pi^{0}$ already selected

First ever measurement of this final state, very important for dynamics studies

We expect the $\phi(1680)$ after disentangling various mechanisms

S.Eidelman, BINP

p.27/34

BaBar data higher than old data by ~ 15%, not confirmed by new SND data?

The first measurement of radiative decays above 1.4 GeV

S.Eidelman, BINP

p.29/34

$p\bar{p}$ Production at VEPP-2000

p.31/34

Dominated by BES: stat. errors (3-5)%, syst. errors (5-8)% J.Z. Bai et al., Phys.Rev.Lett. 84 (2000) 594, Phys.Rev.Lett. 88 (2002) 101802; M. Ablikim et al., Phys.Rev.Lett. 97 (2006) 262001, Phys.Lett. B677 (2009) 239

R Measurement at KEDR from 3.1 to 3.7 GeV $\,$

2k events per point, aimed at 4% systematics

S.Eidelman, BINP

p.33/34

Conclusions

- VEPP-2000 is running smoothly with CMD-3 and SND
- New channels with many neutrals observed
- CMD-3 and SND at VEPP-2000 will provide high accuracy, comparable or better than ISR measurements, the tentative goals are 0.5% for $\pi^+\pi^-$ and 3% for multibody modes
- Below 2 GeV progress (a factor of 2-3) expected in exclusive σ 's due to scans in Novosibirsk and ISR from KLOE, BaBar, Belle, BES3 and Belle2
- Above 2 GeV R measurements with 3-4% accuracy at BES3 and KEDR
- More precise measurements of Γ_{ee} for the narrow ψ and Υ at KEDR and Belle
- Various high-statistics experiments will substantially improve the accuracy of vacuum polarization calculations for $(g_{\mu} - 2)/2$

 $a_1^{\pm}(1260)\pi^{\mp}, \ \rho^0 f_0 \text{ and } \rho^+\rho^- \text{ intermediate states seen,}$ other mechanisms possible: $a_2^{\pm}(1320)\pi^{\mp}, \ \pi^{\pm}(1300)\pi^{\mp}, \ \dots$

Various mechanisms seen: $\omega \pi^+ \pi^-$, $\eta \pi^+ \pi^-$, $\omega f_0(980)$

S.Eidelman, BINP

p.37/34

