Hadronic light-by-light from Dyson-Schwinger equations

Christian S. Fischer

Justus Liebig Universität Gießen

DFG Deutsche Forschungsgemeinschaft

5th of April 2014

Together with Richard Williams, Gernot Eichmann, Tobias Goecke, Jan Haas

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

2.Hadronic light by light

3. Outlook: towards the photon four-point function

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

Quarks and Gluons

$$\mathcal{Z}_{QCD} = \int \mathcal{D}[\Psi, A] \exp\left\{-\int d^4x \left(\bar{\Psi} \left(iD / -m\right)\Psi - \frac{1}{4} \left(F^a_{\mu\nu}\right)^2 + \text{gauge fixing}\right)\right\}$$

Landau gauge propagators in momentum space,

The Goal: gauge invariant information in a gauge fixed approach.

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

Nonperturbative QCD: Complementary approach

Quarks and gluons

- Lattice simulations
 - Ab initio
 - Gauge invariant

- Dyson-Schwinger Equations
 - Physical quark masses
 - Full momentum dependencies
 - Multi-scale problems feasible

Hadrons

- Effective theories and models (XPT, chiral models,...)
- Dispersive approach
 - Physical degrees of freedom

Hadronic light-by-light from DSEs

Need to determine quark propagator and quark-photon vertex:

Need to determine quark propagator and quark-photon vertex:

Need to determine quark propagator and quark-photon vertex:

Model for quark-gluon interaction

$$\alpha(k^2) = \pi \eta^7 \left(\frac{k^2}{\Lambda^2}\right) e^{-\eta^2 \left(\frac{k^2}{\Lambda^2}\right)} + \alpha_{UV}(k^2)$$

Maris, Tandy, 1999

- two (related) parameters η and Λ from f $_{\pi}$
- α_{UV} from perturbation theory
- e masses $m_u = m_d$ from m_{π} or m_{ρ}
- Renormalizable and momentum dependent !

Model for quark-gluon interaction

$$\alpha(k^2) = \pi \eta^7 \left(\frac{k^2}{\Lambda^2}\right) e^{-\eta^2 \left(\frac{k^2}{\Lambda^2}\right)} + \alpha_{UV}(k^2)$$

Maris, Tandy, 1999

- two (related) parameters η and Λ from f $_{\pi}$
- $\bullet \alpha_{UV}$ from perturbation theory
- \bullet masses m_u=m_d from m_{π} or m_{ρ}
- Renormalizable and momentum dependent !

NJL-model

$$\alpha(k^2) = \alpha \ \Theta(\Lambda^2 - k^2)$$

Quark mass: momentum and flavor dependence

Typical solution:

Phenomenology from Maris-Tandy interaction

	expt.	calc.		
$\langle \bar{q}q \rangle^0_\mu$	(0.236 GeV) ³	(0.241 [†]) ³		
m _π	0.1385 GeV	0.138 [†]		
fπ	0.0924 GeV	0.093 [†]		
m_K	0.496 GeV	0.497 [†]		
fк	0.113 GeV	0.109		
Charge r	adii (PM, Tandy	, PRC62, 055204)		
r_{π}^2	0.44 fm ²	0.45		
$r_{K^{+}}^{2}$	0.34 fm ²	0.38		
.2 K ⁰	-0.054 fm ²	-0.086		
γπγ trans	sition (PM, Tandy	, PRC65, 045211)		
g _{πγγ}	0.50	0.50		
r ² πγγ	0.42 fm ²	0.41		
Weak K	3 decay (PM, Ji	, PRD64, 014032)		
$\lambda_+(e3)$	0.028	0.027		
$\Gamma(K_{e3})$	$7.6 \cdot 10^6 \text{ s}^{-1}$	7.38		
$\Gamma(K_{\mu3})$	$5.2 \cdot 10^6 \text{ s}^{-1}$	4.90		

Summary of light meson results

Vector mesons	(PM, Tandy, PRC60, 055214)		
$m_{ m p/\omega}$	0.770 GeV	0.742	
$f_{ ho/\omega}$	0.216 GeV	0.207	
$m_{K^{\star}}$	0.892 GeV	0.936	
$f_{K^{\star}}$	0.225 GeV	0.241	
m_{Φ}	1.020 GeV	1.072	
f_{ϕ}	0.236 GeV	0.259	

Strong decay (Jarecke, PM, Tandy, PRC67, 035202)

0	6.02	5.4
<i>Β</i> ρππ	0.02	0.4
<i>g</i> _{φ<i>KK</i>}	4.64	4.3
<i>8K</i> * <i>K</i> π	4.60	4.1
Radiative decay	-	(PM, nucl-th/0112022)
$g_{\rho\pi\gamma}/m_{\rho}$	0.74	0.69
$g_{\omega\pi\gamma}/m_{\omega}$	2.31	2.07
$(g_{K^{\star}K\gamma}/m_K)^+$	0.83	0.99
$(g_{K^{\star}K\gamma}/m_K)^0$	1.28	1.19
Scattering lengt	h (PM, 0	Cotanch, PRD66, 116010)
a_0^0	0.220	0.170
a_0^2	0.044	0.045
a_1^1	0.038	0.036

Slide from Pieter Maris

8 / 23

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

 $M_{\rho}, M_{\phi}, M_{K^{\star}}$ good to 5%, $f_{\rho}, f_{\phi}, f_{K^{\star}}$ good to 10%

Quark-photon vertex and pion form factors

Krassnigg, Schladming 2011; Maris, Tandy NPPS 161, 2006

Vector meson poles dynamically generated!

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

Transition form factors

- good agreement with data
- rho/omega pole generated dynamically

Maris, Tandy, Phys. Rev. C 65 045211 (2002)

Results: Hadronic vacuum polarisation

Very reasonable agreement !

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

2.Hadronic light by light

3. Outlook: towards the photon four-point function

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

Τ

-

Derived from gauge invariance!

Goecke, CF, Williams, PRD 83 (2011) 094006 Eichmann and CF, PRD 87 (2013) 3, 036006

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

Friday, April 4, 2014

Hadronic light-by-light from DSEs

Hadronic light-by-light from DSEs

Meson-exchange contribution

Meson-exchange contribution

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

Meson exchange contribution to LBL

 $F_{\pi\gamma\gamma}$ overall similar to VMD-models $(a_{\mu}^{\pi,\eta,\eta'})_{DSE} = 8.1(1.3) \cdot 10^{-10}$ our value: comparable with model calculations numerical: 0.2 short distance constraints satisfied!

see also Dorokhov, Broniowski, PRD 78 (2008) 073011

systematic: I.I

Goecke, CF, Williams, PRD 83 (2011) 094006

Friday, April 4, 2014

Hadronic light-by-light from DSEs

Quark-loop contribution to LBL

 Numerically demanding due to superficial divergency

Vertex contains 12 tensor structures

$$\Gamma^{\mu} = \sum_{i=1,4} BC_i L_i^{\mu} + \sum_{i=1,8} F_i T_i^{\mu}$$

gauge part → WTI

transverse part \rightarrow vector-mesons

ENJL-model:	$(2.1 \pm 0.3) \cdot 10^{-10}$	Bijnens, Pallante and Prades PRL 75, (1995)
DSE:		
bare vertex	$(6.1 \pm 0.2) \cdot 10^{-10}$	CF, Goecke, Williams, EPJA 47 (2011) 28
BC ₁ only	$(11.1 \pm 0.2) \cdot 10^{-10}$	
$BC_1 + F_1$	$(10.7 \pm 0.3) \cdot 10^{-10}$	Goecke, CF, Williams, PRD 87 (2013) 034013

Calculation not yet completed !

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

Comparison ENJL vs. DSE

- NJL: no momentum dependence in quark
- NJL: no relative momenta in quark-photon vertex $\Gamma_{\mu}(P, p, p.P)$
- artificial suppression of quark-loop contribution

Goecke, CF, Williams, Phys. Rev. D 87 (2013) 034013

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

Hadronic LBL contributions - DSE + Models

					-
Group	Tool	π₀,η,η'	quark-loop	π+-	SUM
BPP	ENJL	8.5(1.3)	2.1(0.3)	-1.9(1.3)	8.3(3.2)
HKS	HLS	8.3(0.6)	1.0(1.1)	-0.4(0.8)	8.9(1.6)
PdRV		11.4(1.3)	0.2	-1.9(1.3)	10.5(2.6)
GFW	DSE	8. I (0.2)	10.7(0.3)		18.8(0.5)
preliminary!					numerical
BPP J. Bijnens, E. Pallante and J. Prades Phys. Rev. Lett. 75, 1447 (1995)					
НКЅ	HKS M. Hayakawa, T. Kinoshita and A. I. Sanda, Phys. Rev. Lett. 75, 790 (1995)				
PdRV	PdRV J. Prades, E. de Rafael and A. Vainshtein, arXiv:0901.0306			systematic ?	
GFW T. Goecke, CF, R. Williams, Phys. Rev. D 87 (2013) 034013					

2.Hadronic light by light

3. Outlook: towards the photon four-point function

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

The four-photon amplitude

Orthogonal basis constructed: I36 elements (41 after gauge inv.)
 four-photon amplitude satisfies (exact within RL):

Quark-Compton-vertex

Christian Fischer (University of Gießen)

Hadronic light-by-light from DSEs

Quark-Compton-vertex

- basis constructed (128 elements)
- meson exchange contributions isolated and $F_{\pi\gamma\gamma}$ recovered

Next steps:

- calc. full quark-loop contribution
- calc. full IPI contribution and systematically compare with "off-shell meson approximation"

Eichmann, CF, Williams, work in progress

Eichmann and CF, PRD 87 (2013) 3, 036006

Step by step process:

I. Complete rainbow-ladder calc. of four-photon amplitude

- Avoid systematic errors of off-shell meson exchange approx.
- From HVP, form factors, etc.: expect error of <10 %</p>
- Can be checked systematically by comparison with lattice at selected kinematical points

II. Include contributions beyond rainbow-ladder

Pion-loop effects

Eichmann, CF., Williams, Haas, work in progress

(Euclidean) QCD based approach

- renormalizable
- UV \rightarrow IR: dynamical quark mass generation
- Hadronic vaccuum polarisation
 - agreement with experiment on 5 % level

Light-by-light

- large effects due to momentum dependencies
- full calculation w.o. off-shell meson approximation under way

Highly desirable: Systematic comparison with lattice results at physical and unphysical pion and/or myon masses !

Friday, April 4, 2014