Hadronic Vacuum Polarization: Initial State Radiation results at flavor factories

Andreas Hafner (hafner@kph.uni-mainz.de)

Johannes Gutenberg-University Mainz

MITP workshop on $(g - 2)_{\mu}$, Mainz April 1, 2014

Physics at B-factories

PEP-II and the BABAR detector at SLAC

main purpose: B-physics $\rightarrow CP$ violation

PEP-II

- asymmetric e^+e^- -colliders
- $\sqrt{s} = 10.58 \,\text{GeV} \Rightarrow \Upsilon(4S)$ \Rightarrow above $B\overline{B}$ -threshold

BABAR detector

- multi purpose detector
- data taking: 1999 2008:
- $\mathcal{L}_{int} = 531 \, \text{fb}^{-1}$ $\mathcal{L}_{int}(\Upsilon(4S)) = 454 \, \text{fb}^{-1}$ $\approx 4.7 \cdot 10^8 \ B\overline{B} \text{ pairs}$

Initial State Radiation (ISR)-Physics

- high energy $\gamma_{ISR} \Rightarrow$ lower cms energy
- produce vectors: $J^{PC} = 1^{--}$
- measure σ_{had}

 \Rightarrow low-energy hadron Physics (*u*-*d*-*s*-quarks) at the *B*-Factories

 \Rightarrow low-energy hadron Physics (*u*-*d*-*s*-quarks) at the *B*-Factories

Andreas Hafner (JGU Mainz)

Hadron Physics for $(g - 2)_{\mu}$

 μ

Hadronic cross sections at flavor factories

Hadronic cross sections for $a_{\mu}^{had,VP}$

Experimental input for a_{μ}^{had}

Energy scan

- CMD & SND@VEPP-2M & VEPP-2000, Novosibirsk
- BES-I & II, BEPC, Beijing

Experimental input for a_{μ}^{had}

Energy scan

- CMD & SND@VEPP-2M & VEPP-2000 in Novosibirsk
- BES-III@BEPC-II in Beijing

Initial State Radiation (ISR) events at BABAR

ISR selection

- Detected high energy photon: E_γ > 3 GeV
 → defines E_{CM} & provides strong background rejection
- Event topology: γ_{ISR} back-to-back to hadrons \rightarrow high acceptance
- Kinematic fit including γ_{ISR} \rightarrow very good energy resolution (4 – 15 MeV)
- Continuous measurement from threshold to \sim 4.5 GeV \rightarrow provides common, consistent systematic uncertainties

Initial State Radiation (ISR) events at BABAR

ISR selection

- Detected high energy photon: E_γ > 3 GeV
 → defines E_{CM} & provides strong background rejection
- Event topology: γ_{ISR} back-to-back to hadrons \rightarrow high acceptance
- Kinematic fit including γ_{ISR} \rightarrow very good energy resolution (4 – 15 MeV)
- Continuous measurement from threshold to ~4.5 GeV
 → provides common, consistent systematic uncertainties

ISR analyses at BABAR

published

ongoing analyses

 $\mathbf{e^+e^-} \to \mathbf{K}^0_S \mathbf{K}^0_L, \mathbf{K}^0_S \mathbf{K}^0_L \pi^+\pi^-, \mathbf{K}^0_S \mathbf{K}^0_S \pi^+\pi^-, \mathbf{K}^0_S \mathbf{K}^0_S \mathbf{K}^+ \mathbf{K}^-, \ \pi^+\pi^-\pi^0\pi^0, \mathbf{K}^0_S \mathbf{K}^\pm\pi^\mp\pi^0/\eta$

Contributions of exclusive final states to $g_{\mu}-2$

Contributions of different energy regions to the dispersion integral

 $\label{eq:expansion} \begin{array}{l} \rightarrow {\it E} < 1 \, {\rm GeV} \mbox{ region dominates} \\ \rightarrow \pi^+ \pi^- \mbox{ channel needed!} \end{array}$

(F. Jegerlehner, A. Nyfeller, 2009)

$\pi^+\pi^-$ cross section

- ρ peak
- $\rho \omega$ interference
- Dip at 1.6 GeV: excited ρ states
- Dip at 2.2 GeV
- Contribution to a_{μ}^{had} : 75%!

Systematic Uncertainties

 BABAR:
 0.5%

 CMD2:
 0.8%

 SND:
 1.5%

 KLOE:
 0.8%

$\pi^+\pi^-$ cross section

- KLOE and BABAR dominate the world average
- Uncertainty of both measurements smaller than 1%
- Systematic difference, especially above ρ peak
- Difference \rightarrow relatively large uncertainty for $a_{\prime\prime}^{\rm had}$

$\pi^+\pi^-$ cross section

- KLOE and BABAR dominate the world average
- \bullet Uncertainty of both measurements smaller than 1%
- Systematic difference, especially above ρ peak
- Difference ightarrow relatively large uncertainty for $a_{\mu}^{
 m had}$

Contributions of exclusive final states

Contributions of different energy regions to the dispersion integral

Precise measurements $1 \, \text{GeV} < E < 2 \, \text{GeV}$ needed!

 \Rightarrow Other channels important!

- K⁺K⁻
- $K_s^0 K_L^0$
- $\pi^+\pi^-\pi^+\pi^-$
- $\pi^+\pi^-\pi^0$
- $\pi^+\pi^-\pi^0\pi^0$

Contributions of exclusive final states

Contributions of different energy regions to the dispersion integral

Precise measurements $1 \, \text{GeV} < E < 2 \, \text{GeV}$ needed!

Cross section $\sigma(e^+e^- \rightarrow K^+K^-)$

- uncertainty: 0.8% near ϕ peak!
- efficiency obtained from simulation [Kühn et al., EPJC 18 (2001),497] \rightarrow data/MC corrections of utmost importance:

trigger, tracking, particle-ID

• ISR effective luminosity from $\mu\mu\gamma(\gamma)$ as in $\pi^+\pi^-$ study: KK/ $\mu\mu$ ratio

 $e^+e^- \rightarrow K^+K^-$

Cross section $\sigma(e^+e^- \rightarrow K^+K^-)$

 $e^+e^- \rightarrow K^+K^-$

Cross section $\sigma(e^+e^- \rightarrow K^+K^-)$

 $e^+e^- \rightarrow K^+K^-$

Cross section $\sigma(e^+e^- \rightarrow K^+K^-)$

Charged kaon form factor at large Q^2

Predictions based on QCD in asymptotic regime (Chernyak, Brodsky-Lepage, Farrar-Jackson)

- Power law: F_K ∝ α_S(Q²)Q⁻ⁿ with n = 2 →in good agreement with the data (2.5-5 GeV n = 2.10 ± 0.23)
- HOWEVER: data on $|F_K|^2$ factor ≈ 20 above prediction!
- $\bullet\,$ No trend in data up to $25\,{\rm GeV}^2$ for approaching the asymp. QCD prediction

Cross section $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-)$

- BABAR 12: 2.4% uncertainty in peak region
- various experiments agree

 $e^+e^- \rightarrow K^0_S K^0_I$

Cross section $\sigma(e^+e^- ightarrow {\cal K}^0_{\scriptscriptstyle L} {\cal K}^0_{\scriptscriptstyle L})$

Events/0.001 GeV/C BABAR PRELIMINARY 1000 500 $\frac{1.05 \qquad 1.075}{m(K_{S}K_{L}) \text{ GeV/c}^{2}}$ 1.025

 σ extracted from fit

- consistent with CMD2
- syst uncertainty: 2.9%
- dominated by trigger

- $\sim 10\%$ for $\sigma > 0.5\,\mathrm{nb}$
- \sim 30% for $\sigma <$ 0.5 m nb
- dominated by bkg-subtraction

arxiv: 1403.7593

Recent results $e^+e^- \rightarrow K_s^0 K_l^0 \pi^+\pi^-$

Cross Section of $e^+e^-
ightarrow K^0_s K^0_{\prime} \pi^+\pi^-$

Systematic uncertainty dominated by background-subtraction procedure:

- $\sim 10\%$ in peak region
- Increases to $\sim 30\%$ at 1.5 and $3\,{\rm GeV}$ ۰
- $\sim 100\%$ above 3 GeV

Recent results $e^+e^- \rightarrow K_s^0 K_s^0 \pi^+ \pi^- / K_s^0 K_s^0 K^+ K^-$

Cross Section of $K_s^0 K_s^0 \pi^+ \pi^-$ and $K_s^0 K_s^0 K^+ K^-$

 $K_s^0 K_L^0$ BABAR not evaluated, yet

 K^+K^- BABAR reduces $\delta a_\mu^{had}(K^+K^-)$ by factor pprox 3

 $a_{\mu}^{\rm VP,LO} = (692.3 \pm 4.2) \cdot 10^{-10}$

 $\pi^+\pi^-\pi^0\pi^0$ wait for *BABA*R, BESIII and CMD3 results

 $\pi^+\pi^-\pi^+\pi^-$ BABAR reduces $\delta a^{had}_\mu(\pi^+\pi^-\pi^+\pi^-)$ by 40%

$$\pi^+\pi^-\& \pi^+\pi^-\pi^0$$

wait for BESIII and CMD3 results

Hadron Physics for $(g - 2)_{\mu}$

Summary & outlook

hadronic cross sections for $a_{\mu}^{had,VP}$

• still dominate the uncertainty of a_{μ}^{had} and thus a_{μ}^{theory}

•
$$e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-, K^+K^-, K^0_s K^0_L$$
 : well under controll

challenge between ISR and scan experiments continues

- $e^+e^-
 ightarrow \pi^+\pi^-\pi^0\pi^0$ \Rightarrow *BABA*R, CMD3, BESIII
- $e^+e^- \rightarrow \pi^+\pi^-\pi^0, \pi^+\pi^- \Rightarrow$ CMD3, BESIII, (*BABAR* ???) \Rightarrow validation is essentiel!

backup slides

ϕ (1680) $\rightarrow K_s^0 K_L^0$

ϕ (1680) observations in other channels

What we know about $\phi(1680)$

Energy dependence significantly increase width.

BaBar has measured $\phi(1680)$ parameters in major decay modes:

φ(1680) → K_SKπ, KKπ⁰ (K*K), φη, φππ, K_SK_L (preliminary) - still no info in PDG

Internal structure in various E_{CM} energy slices

First column (4 entries/event):

 $a_1(1260)$

Internal structure in various E_{CM} energy slices

First column (4 entries/event): a₁(1260)

Second column (4 entries/event):

strong ρ^0 contribution e.g. for $M_{4\pi}>1.4\,{\rm GeV}/c^2$: 1/4th of entries in ρ^0 peak $\rho^0\rho^0$ is forbidden $\rightarrow \rho^0$ in each event!

Internal structure in various E_{CM} energy slices

Andreas Hafner (JGU Mainz)

Hadron Physics for $(g - 2)_{\mu}$

DPG 2014 24 / 20

π^0 -photon transition form factors

- systematic uncertainty: efficiency (trigger): 2.5% bkg $(e^+e^- \rightarrow e^+e^-\pi^0\pi^0)$: 0.3 – 6.0% model uncertainty: 1.5%
- $4 \, {\rm GeV}^2 < Q^2 < 9 \, {\rm GeV}^2$: reasonable agreement with CLEO
- $Q^2 > 10 \text{ GeV}^2$: pQCD: $\lim_{Q^2 \to \infty} Q^2 F(Q^2) = \sqrt{2} f_{\pi}$ \Rightarrow asymptotic limit exceeded!

π^0 -photon transition form factors

- systematic uncertainty: efficiency (trigger): 2.5% bkg $(e^+e^- \rightarrow e^+e^-\pi^0\pi^0)$: 0.3 – 6.0% model uncertainty: 1.5%
- 4 GeV² < Q² < 9 GeV² : reasonable agreement with CLEO
 Q² > 10 GeV² :
 - pQCD: $\lim_{Q^2 \to \infty} Q^2 F(Q^2) = \sqrt{2} f_{\pi}$ \Rightarrow asymptotic limit exceeded!

 \Rightarrow triggered a lot of theoretical work & a new measurement at Belle > 200 citations since 2009

η/η' -photon transition form factors

systematic uncertainty: 2.9% dominated by model unc. & π^0 rec.

systematic uncertainty: 3.5% dominated by model unc. & η rec.

η/η' -photon transition form factors

systematic uncertainty: 2.9% dominated by model unc. & π^0 rec. η -FF exceeds asymptotic limit

systematic uncertainty: 3.5% dominated by model unc. & η rec. η' -FF below asymptotic expectation