$\Lambda_b \to \Lambda_c^{(*)}$ form factors from lattice QCD

Stefan Meinel

Challenges in Semileptonic B Decays, MITP, April 2018

1 Introduction

- 2 $\Lambda_b \rightarrow \Lambda_c$ form factors from lattice QCD
- 3 $\Lambda_b \rightarrow \Lambda_c^*$ form factors from lattice QCD
- 4 Outlook

The $\Lambda_b \to \Lambda_c^{(*)}$ form factors are needed mainly for:

•
$$\left| \frac{V_{ub}}{V_{cb}} \right|$$
 from $\frac{\Gamma(\Lambda_b \to p \ \mu^- \bar{\nu}_\mu)}{\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \bar{\nu}_\mu)}$

•
$$|V_{cb}|$$
 from $\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \bar{\nu}_\mu)$

•
$$R(\Lambda_c^{(*)}) = \frac{\Gamma(\Lambda_b \to \Lambda_c^{(*)} \tau^- \bar{\nu})}{\Gamma(\Lambda_b \to \Lambda_c^{(*)} \mu^- \bar{\nu})}$$

Name	J^P	Mass [MeV]	Width [MeV]	Strong decay modes
Λ_c	$\frac{1}{2}^{+}$	2286.46(14)	$3.3(1) imes10^{-9}$	stable
$\Lambda_{c}^{*}(2595)$	$\frac{1}{2}^{-}$	2592.25(28)	2.6(6)	$\Lambda_c \pi^+ \pi^-$
$\Lambda_{c}^{*}(2625)$	$\frac{3}{2}^{-}$	2628.11(19)	< 0.97	$\Lambda_c \pi^+ \pi^-$

(decays proceed partly through $\Lambda_c^* \to \Sigma_c^{(*)} (\to \Lambda_c \pi) \pi)$

[2017 Review of Particle Physics]

In the following, we will treat the Λ_c^* baryons as if they were stable.

Some notation to define the form factors:

$$\langle \Lambda_{c\frac{1}{2}^{+}}(\mathbf{p}',s') | \bar{c}\Gamma b | \Lambda_{b}(\mathbf{p},s) \rangle = \bar{u}(m_{\Lambda_{c\frac{1}{2}^{+}}},\mathbf{p}',s') \mathscr{G}^{(\frac{1}{2}^{+})}[\Gamma] u(m_{\Lambda_{b}},\mathbf{p},s)$$

$$\langle \Lambda_{c\frac{1}{2}^{-}}^{*}(\mathbf{p}',s') | \bar{c}\Gamma b | \Lambda_{b}(\mathbf{p},s) \rangle = \bar{u}(m_{\Lambda_{c\frac{1}{2}^{-}}},\mathbf{p}',s') \gamma_{5} \mathscr{G}^{(\frac{1}{2}^{-})}[\Gamma] u(m_{\Lambda_{b}},\mathbf{p},s)$$

$$\langle \Lambda_{c\frac{3}{2}^{+}}^{*}(\mathbf{p}',s') | \bar{c}\Gamma b | \Lambda_{b}(\mathbf{p},s) \rangle = \bar{u}_{\lambda}(m_{\Lambda_{c\frac{3}{2}^{-}}},\mathbf{p}',s') \gamma_{5} \mathscr{G}^{\lambda(\frac{3}{2}^{+})}[\Gamma] u(m_{\Lambda_{b}},\mathbf{p},s)$$

$$\langle \Lambda_{c\frac{3}{2}^{-}}^{*}(\mathbf{p}',s') | \bar{c}\Gamma b | \Lambda_{b}(\mathbf{p},s) \rangle = \bar{u}_{\lambda}(m_{\Lambda_{c\frac{3}{2}^{-}}},\mathbf{p}',s') \mathscr{G}^{\lambda(\frac{3}{2}^{-})}[\Gamma] u(m_{\Lambda_{b}},\mathbf{p},s)$$

$$\sum_{s} u(m,\mathbf{p},s)\bar{u}(m,\mathbf{p},s) = m + p$$

$$\sum_{s'} u_{\mu}(m', \mathbf{p}', s') \bar{u}_{\nu}(m', \mathbf{p}', s') = -(m' + p') \left(g_{\mu\nu} - \frac{1}{3} \gamma_{\mu} \gamma_{\nu} - \frac{2}{3m'^2} p'_{\mu} p'_{\nu} - \frac{1}{3m'} (\gamma_{\mu} p'_{\nu} - \gamma_{\nu} p'_{\mu}) \right)$$

 $\frac{1}{2}^+ \rightarrow \frac{1}{2}^+$ vector and axial vector helicity form factors:

$$\begin{aligned} \mathscr{G}^{(\frac{1}{2}^{+})}[\gamma^{\mu}] &= f_{0}^{(\frac{1}{2}^{+})} \left(m_{\Lambda_{b}} - m_{\Lambda_{c}} \right) \frac{q^{\mu}}{q^{2}} \\ &+ f_{+}^{(\frac{1}{2}^{+})} \frac{m_{\Lambda_{b}} + m_{\Lambda_{c}}}{s_{+}} \left(p^{\mu} + p'^{\mu} - (m_{\Lambda_{b}}^{2} - m_{\Lambda_{c}}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{\perp}^{(\frac{1}{2}^{+})} \left(\gamma^{\mu} - \frac{2m_{\Lambda_{c}}}{s_{+}} p^{\mu} - \frac{2m_{\Lambda_{b}}}{s_{+}} p'^{\mu} \right) \end{aligned}$$

$$\begin{aligned} \mathscr{G}^{(\frac{1}{2}^{+})}[\gamma^{\mu}\gamma_{5}] &= -g_{0}^{(\frac{1}{2}^{+})}\gamma_{5}\left(m_{\Lambda_{b}}+m_{\Lambda_{c}}\right)\frac{q^{\mu}}{q^{2}} \\ &-g_{+}^{(\frac{1}{2}^{+})}\gamma_{5}\frac{m_{\Lambda_{b}}-m_{\Lambda_{c}}}{s_{-}}\left(p^{\mu}+p'^{\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}}^{2})\frac{q^{\mu}}{q^{2}}\right) \\ &-g_{\perp}^{(\frac{1}{2}^{+})}\gamma_{5}\left(\gamma^{\mu}+\frac{2m_{\Lambda_{c}}}{s_{-}}p^{\mu}-\frac{2m_{\Lambda_{b}}}{s_{-}}p'^{\mu}\right) \\ &s_{\pm}=(m_{\Lambda_{b}}-m_{\Lambda_{c}})^{2}-q^{2} \end{aligned}$$

[T. Feldmann and M. Yip, arXiv:1111.1844/PRD 2012]

 $\frac{1}{2}^+ \rightarrow \frac{1}{2}^-$ vector and axial vector helicity form factors:

$$\begin{aligned} \mathscr{G}^{(\frac{1}{2}^{-})}[\gamma^{\mu}] &= f_{0}^{(\frac{1}{2}^{-})} \left(m_{\Lambda_{b}} + m_{\Lambda_{c}^{*}} \right) \frac{q^{\mu}}{q^{2}} \\ &+ f_{+}^{(\frac{1}{2}^{-})} \frac{m_{\Lambda_{b}} - m_{\Lambda_{c}^{*}}}{s_{-}} \left(p^{\mu} + p^{\prime \mu} - \left(m_{\Lambda_{b}}^{2} - m_{\Lambda_{c}^{*}}^{2} \right) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{\perp}^{(\frac{1}{2}^{-})} \left(\gamma^{\mu} + \frac{2m_{\Lambda_{c}^{*}}}{s_{-}} p^{\mu} - \frac{2m_{\Lambda_{b}}}{s_{-}} p^{\prime \mu} \right), \end{aligned}$$

$$\begin{aligned} \mathscr{G}^{(\frac{1}{2}^{-})}[\gamma^{\mu}\gamma_{5}] &= -g_{0}^{(\frac{1}{2}^{-})}\gamma_{5}\left(m_{\Lambda_{b}}-m_{\Lambda_{c}^{*}}\right)\frac{q^{\mu}}{q^{2}} \\ &-g_{+}^{(\frac{1}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{b}}+m_{\Lambda_{c}^{*}}}{s_{+}}\left(p^{\mu}+p'^{\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})\frac{q^{\mu}}{q^{2}}\right) \\ &-g_{\perp}^{(\frac{1}{2}^{-})}\gamma_{5}\left(\gamma^{\mu}-\frac{2m_{\Lambda_{c}^{*}}}{s_{+}}p^{\mu}-\frac{2m_{\Lambda_{b}}}{s_{+}}p'^{\mu}\right),\end{aligned}$$

$$s_{\pm}=(m_{\Lambda_b}-m_{\Lambda_c^*})^2-q^2$$

 $\frac{1}{2}^+ \rightarrow \frac{3}{2}^+$ vector and axial vector helicity form factors:

$$\begin{split} \mathcal{G}^{\lambda(\frac{3}{2}^{+})}[\gamma^{\mu}] &= f_{0}^{(\frac{3}{2}^{+})} \frac{m_{\Lambda_{c}^{*}}}{s_{-}} \frac{(m_{\Lambda_{b}} + m_{\Lambda_{c}^{*}}) p^{\lambda} q^{\mu}}{q^{2}} \\ &+ f_{+}^{(\frac{3}{2}^{+})} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \frac{(m_{\Lambda_{b}} - m_{\Lambda_{c}^{*}}) p^{\lambda} (q^{2} (p^{\mu} + p'^{\mu}) - (m_{\Lambda_{b}}^{2} - m_{\Lambda_{c}^{*}}^{2}) q^{\mu})}{q^{2} s_{-}} \\ &+ f_{\perp}^{(\frac{3}{2}^{+})} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \left(p^{\lambda} \gamma^{\mu} - \frac{2 p^{\lambda} (m_{\Lambda_{b}} p'^{\mu} - m_{\Lambda_{c}^{*}} p^{\mu})}{s_{-}} \right) \\ &+ f_{\perp^{\prime}}^{(\frac{3}{2}^{+})} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \left(p^{\lambda} \gamma^{\mu} + \frac{2 p^{\lambda} p'^{\mu}}{m_{\Lambda_{c}^{*}}} + \frac{2 p^{\lambda} (m_{\Lambda_{b}} p'^{\mu} - m_{\Lambda_{c}^{*}} p^{\mu})}{s_{-}} - \frac{s_{+} g^{\lambda \mu}}{m_{\Lambda_{c}^{*}}} \right) \end{split}$$

$$\begin{split} \mathcal{G}^{\lambda(\frac{3}{2}^{+})}[\gamma^{\mu}\gamma_{5}] &= -\frac{g_{0}^{\left(\frac{3}{2}^{+}\right)}\gamma_{5}}{s_{+}}\frac{m_{\Lambda_{c}^{*}}}{s_{+}}\frac{(m_{\Lambda_{b}}-m_{\Lambda_{c}^{*}})p^{\lambda}q^{\mu}}{q^{2}} \\ &-\frac{g_{+}^{\left(\frac{3}{2}^{+}\right)}\gamma_{5}}{s_{-}}\frac{m_{\Lambda_{c}^{*}}}{s_{-}}\frac{(m_{\Lambda_{b}}+m_{\Lambda_{c}^{*}})p^{\lambda}(q^{2}(p^{\mu}+p^{\prime}\mu)-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c}^{*}}^{2})q^{\mu})}{q^{2}s_{+}} \\ &-\frac{g_{\perp}^{\left(\frac{3}{2}^{+}\right)}\gamma_{5}}{s_{-}}\frac{m_{\Lambda_{c}^{*}}}{s_{-}}\left(p^{\lambda}\gamma^{\mu}-\frac{2p^{\lambda}(m_{\Lambda_{b}}p^{\prime}\mu+m_{\Lambda_{c}^{*}}p^{\mu})}{s_{+}}\right) \\ &-\frac{g_{\perp}^{\left(\frac{3}{2}^{+}\right)}\gamma_{5}}{s_{-}}\frac{m_{\Lambda_{c}^{*}}}{s_{-}}\left(p^{\lambda}\gamma^{\mu}-\frac{2p^{\lambda}p^{\prime}\mu}{m_{\Lambda_{c}^{*}}}+\frac{2p^{\lambda}(m_{\Lambda_{b}}p^{\prime}\mu+m_{\Lambda_{c}^{*}}p^{\mu})}{s_{+}}+\frac{s_{-}g^{\lambda\mu}}{m_{\Lambda_{c}^{*}}}\right) \end{split}$$

 $\frac{1}{2}^+ \rightarrow \frac{3}{2}^-$ vector and axial vector helicity form factors:

$$\begin{aligned} \mathscr{G}^{\lambda(\frac{3}{2}^{-})}[\gamma^{\mu}] &= f_{0}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \frac{(m_{\Lambda_{b}} - m_{\Lambda_{c}^{*}}) p^{\lambda} q^{\mu}}{q^{2}} \\ &+ f_{+}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{-}} \frac{(m_{\Lambda_{b}} + m_{\Lambda_{c}^{*}}) p^{\lambda} (q^{2} (p^{\mu} + p'^{\mu}) - (m_{\Lambda_{b}}^{2} - m_{\Lambda_{c}^{*}}^{2}) q^{\mu})}{q^{2} s_{+}} \\ &+ f_{\perp}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{-}} \left(p^{\lambda} \gamma^{\mu} - \frac{2 p^{\lambda} (m_{\Lambda_{b}} p'^{\mu} + m_{\Lambda_{c}^{*}} p^{\mu})}{s_{+}} \right) \\ &+ f_{\perp}^{(\frac{3}{2}^{-})} \frac{m_{\Lambda_{c}^{*}}}{s_{-}} \left(p^{\lambda} \gamma^{\mu} - \frac{2 p^{\lambda} p'^{\mu}}{m_{\Lambda_{c}^{*}}} + \frac{2 p^{\lambda} (m_{\Lambda_{b}} p'^{\mu} + m_{\Lambda_{c}^{*}} p^{\mu})}{s_{+}} + \frac{s_{-} g^{\lambda \mu}}{m_{\Lambda_{c}^{*}}} \right) \end{aligned}$$

$$\begin{aligned} \mathcal{G}^{\lambda(\frac{3}{2}^{-})}[\gamma^{\mu}\gamma_{5}] &= -g_{0}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{-}} \frac{(m_{\Lambda_{b}} + m_{\Lambda_{c}^{*}}) p^{\lambda}q^{\mu}}{q^{2}} \\ &-g_{+}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \frac{(m_{\Lambda_{b}} - m_{\Lambda_{c}^{*}}) p^{\lambda}(q^{2}(p^{\mu} + p'^{\mu}) - (m_{\Lambda_{b}}^{2} - m_{\Lambda_{c}^{*}}^{2})q^{\mu})}{q^{2}s_{-}} \\ &-g_{\perp}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \left(p^{\lambda}\gamma^{\mu} - \frac{2p^{\lambda}(m_{\Lambda_{b}}p'^{\mu} - m_{\Lambda_{c}^{*}}p^{\mu})}{s_{-}}\right) \\ &-g_{\perp}^{(\frac{3}{2}^{-})}\gamma_{5} \frac{m_{\Lambda_{c}^{*}}}{s_{+}} \left(p^{\lambda}\gamma^{\mu} + \frac{2p^{\lambda}p'^{\mu}}{m_{\Lambda_{c}^{*}}} + \frac{2p^{\lambda}(m_{\Lambda_{b}}p'^{\mu} - m_{\Lambda_{c}^{*}}p^{\mu})}{s_{-}} - \frac{s_{+}g^{\lambda\mu}}{m_{\Lambda_{c}^{*}}}\right) \end{aligned}$$

1 Introduction

2 $\Lambda_b \rightarrow \Lambda_c$ form factors from lattice QCD

3 $\Lambda_b \rightarrow \Lambda_c^*$ form factors from lattice QCD

4 Outlook

Early work (quenched, focused on Isgur-Wise function):

- K. C. Boweler et al. (UKQCD Collaboration), hep-lat/9709028/PRD 1998
- S. Gottlieb and S. Tamhankar, hep-lat/0301022/Lattice 2002

Our work:

- W. Detmold, C. Lehner, S. Meinel, arXiv:1503.01421/PRD 2015 (vector and axial vector form factors)
- A. Datta, S. Kamali, S. Meinel, A. Rashed, arXiv:1702.02243/JHEP 2017 (tensor form factors)

• Gauge field configurations generated by the RBC and UKQCD collaborations

[Y. Aoki et al., arXiv:1011.0892/PRD 2011]

• *u*, *d*, *s* quarks: domain-wall action

[D. Kaplan, hep-lat/9206013/PLB 1992; V. Furman and Y. Shamir, hep-lat/9303005/NPB 1995]

• *c*, *b* quarks: anisotropic clover with two or three parameters tuned nonperturbatively

[A. El-Khadra, A. Kronfeld, P. Mackenzie, hep-lat/9604004/PRD 1997; Y. Aoki et al., arXiv:1206.2554/PRD 2012]

"Mostly nonperturbative" renormalization

[A. El-Khadra et al., hep-ph/0101023/PRD 2001]

- Three-point functions with 12 source-sink separations
- Combined chiral/continuum/kinematic extrapolation using modified
 z-expansion [C. Bourrely, I. Caprini, L. Lellouch, arXiv:0807.2722/PRD 2009]

$N_s^3 \times N_t$	β	$am_{u,d}^{(sea)}$	$am_{u,d}^{(val)}$	$am_s^{(sea)}$	<i>a</i> (fm)	$m_\pi^{(m sea)}~(m MeV)$	$m_\pi^{(m val)}~(m MeV)$
$24^{3} \times 64$	2.13	0.005	0.005	0.04	pprox 0.11	pprox 340	pprox 340
$24^3 imes 64$	2.13	0.005	0.002	0.04	pprox 0.11	pprox 340	pprox 270
$24^3 imes 64$	2.13	0.005	0.001	0.04	pprox 0.11	pprox 340	pprox 250
$32^3 imes 64$	2.25	0.006	0.006	0.03	pprox 0.08	pprox 360	pprox 360
$32^3 imes 64$	2.25	0.004	0.004	0.03	pprox 0.08	pprox 300	pprox 300
$32^3 \times 64$	2.25	0.004	0.002	0.03	pprox 0.08	pprox 300	≈ 230

Here $a=0.112$ fm, $m_{\pi}=336$ MeV	⊢ $H_{\pi} = 0.085 { m fm}, \ m_{\pi} = 352 { m MeV}$	$a = 0, m_{\pi} = 135 \text{ MeV}$
${f H}_{\pi}$ $a=0.112$ fm, $m_{\pi}=270$ MeV	$rac{1}{4}$ $a=0.085~{ m fm},~m_{\pi}=295~{ m MeV}$	
\mathbf{F}_{π} $a=0.112 \mathrm{fm}, \ m_{\pi}=245 \mathrm{MeV}$	$H_{1}^{\pm} a = 0.085 \text{ fm}, \ m_{\pi} = 227 \text{ MeV}$	

Vector and axial vector form factors:

Tensor form factors:

Differential decay rates in the standard model:

Integrated decay rates in the standard model:

$$\frac{1}{|V_{cb}|^2} \Gamma(\Lambda_b \to \Lambda_c \ \mu^- \bar{\nu}_{\mu}) = (21.5 \pm 0.8_{\text{stat}} \pm 1.1_{\text{syst}}) \text{ ps}^{-1}$$

$$(6.3\% \text{ uncertainty} \to 3.2\% \text{ for } |V_{cb}|)$$

$$\frac{1}{|V_{cb}|^2} \int_{7 \text{ GeV}^2}^{q^2_{\text{max}}} \frac{d\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \bar{\nu}_\mu)}{dq^2} dq^2 = (8.37 \ \pm \ 0.16_{\text{stat}} \ \pm \ 0.34_{\text{syst}}) \text{ ps}^{-1}$$

$$(4.5\% \text{ uncertainty} \to 2.3\% \text{ for } |V_{cb}|)$$

$$R(\Lambda_c) = \frac{\Gamma(\Lambda_b \to \Lambda_c \ \tau^- \bar{\nu}_{\tau})}{\Gamma(\Lambda_b \to \Lambda_c \ \mu^- \bar{\nu}_{\mu})} = 0.3328 \pm 0.0074_{\text{stat}} \pm 0.0070_{\text{syst}}$$

$$(3.1\% \text{ uncertainty})$$

The shape of the $\Lambda_b \rightarrow \Lambda_c \mu^- \bar{\nu}_{\mu}$ decay rate measured by LHCb (black data points) agrees with our lattice QCD prediction (gray).

[LHCb Collaboration, arXiv:1709.01920/PRD 2017]

BSM phenomenology of $\Lambda_b \rightarrow \Lambda_c \ \tau^- \bar{\nu}$

[A. Datta, S. Kamali, S. Meinel, A. Rashed, arXiv:1702.02243/JHEP 2017]

- We have shown that a future measurement of $R(\Lambda_c)$ can provide useful constraints on all of the couplings g_L , g_R , g_S , g_P , g_T .
- The paper contains plots showing the correlations between $R(D^{(*)})$ and $R(\Lambda_c)$ for several leptoquark models.

1 Introduction

2 $\Lambda_b \rightarrow \Lambda_c$ form factors from lattice QCD

3 $\Lambda_b \rightarrow \Lambda_c^*$ form factors from lattice QCD

[S. Meinel and G. Rendon, work in progress]

4 Outlook

We work in the Λ_c^* rest frame to allow exact spin-parity projection. We use the interpolating field

$$\begin{split} (\Lambda_c^*)_{j\gamma} &= \epsilon^{abc} \, (C\gamma_5)_{\alpha\beta} \left[\tilde{c}^a_\alpha \, \tilde{d}^b_\beta \, (\nabla_j \tilde{u})^c_\gamma - \tilde{c}^a_\alpha \, \tilde{u}^b_\beta \, (\nabla_j \tilde{d})^c_\gamma \right. \\ &+ \tilde{u}^a_\alpha \, (\nabla_j \tilde{d})^b_\beta \, \tilde{c}^c_\gamma - \tilde{d}^a_\alpha \, (\nabla_j \tilde{u})^b_\beta \, \tilde{c}^c_\gamma \end{split}$$

(~ denotes Gaussian smearing)

[S. Meinel and G. Rendon, arXiv:1608.08110/Lattice2016]

This requires light-quark propagators with derivative sources.

We project to $J^P = \frac{1}{2}^-$ and $J^P = \frac{3}{2}^-$ using

$$\begin{array}{lll} {\cal P}_{jk}^{(\frac{1}{2}^{-})} & = & \frac{1}{3}\gamma_{j}\gamma_{k}\frac{1+\gamma_{0}}{2}, \\ {\cal P}_{jk}^{(\frac{3}{2}^{-})} & = & \left(g_{jk}-\frac{1}{3}\gamma_{j}\gamma_{k}\right)\frac{1+\gamma_{0}}{2} \end{array}$$

Gauge field configurations generated by the RBC and UKQCD collaborations

[Y. Aoki et al., arXiv:1011.0892/PRD 2011]

- u, d, s quarks: domain-wall action
 [D. Kaplan, hep-lat/9206013/PLB 1992; V. Furman and Y. Shamir, hep-lat/9303005/NPB 1995]
- All-mode averaging with 1 exact and 32 sloppy propagators per configuration

[E. Shintani et al., arXiv:1402.0244/PRD 2015]

- *c*, *b* quarks: anisotropic clover with three parameters, re-tuned more accurately to $D_s^{(*)}$ and $B_s^{(*)}$ dispersion relation and HFS
- "Mostly nonperturbative" renormalization [A. El-Khadra *et al.*, hep-ph/0101023/PRD 2001]
- Three-point functions with 7 source-sink separations (plan to add 2 more)

$N_s^3 \times N_t$	β	am _{u,d}	am _s	<i>a</i> (fm)	m_{π} (MeV)	Run status
$24^3 \times 64$	2.13	0.01	0.04	pprox 0.111	pprox 430	1/4 of cfgs done
$24^3 imes 64$	2.13	0.005	0.04	pprox 0.111	pprox 340	1/4 of cfgs done
$32^3 imes 64$	2.25	0.004	0.03	pprox 0.083	pprox 300	1/4 of cfgs done
$48^3 imes 96$	2.31	0.002144	0.02144	pprox 0.071	pprox 230	planned

 Λ_c^* two-point functions

preliminary

Results from 24³ \times 64, $am_{u,d}=0.005$ ensemble, 78 configs \times 32 sources $a^{-1}=1.785(5)$ GeV

Extracting the form factors from ratios of 3pt and 2pt functions

t = source-sink separation t' = current insertion time

We have data for two different Λ_b momenta: $\mathbf{p} = (0, 0, 2)\frac{2\pi}{L} \approx 0.9 \text{ GeV}$ and $\mathbf{p} = (0, 0, 3)\frac{2\pi}{L} \approx 1.4 \text{ GeV}$

Schematically,

$$R_f(\mathbf{p},t) = \sqrt{(\text{kinematic factors}) \times (\text{polarization vectors}) \times (\text{ratio at } t' = t/2)}$$

 \rightarrow $f(\mathbf{p})$ for large t

Example: R_{f_+} for $\Lambda_b \to \Lambda_c^* \left(\frac{3}{2}^-\right)$ preliminary

Results from $24^3 \times 64$, $am_{u,d} = 0.005$ ensemble, 78 configs \times 32 sources

 $\Lambda_b \to \Lambda_c^* \left(\frac{1}{2}^- \right)$ axial vector form factors

$\Lambda_b \rightarrow \Lambda_c^* \left(\frac{3}{2}^-\right)$ axial vector form factors

 $\Lambda_b \rightarrow \Lambda_c^* \left(rac{3}{2}^-
ight)$ tensor form factors part 1

 $\Lambda_b \rightarrow \Lambda_c^* \left(\frac{3}{2}^-\right)$ tensor form factors part 2

1 Introduction

- 2 $\Lambda_b \rightarrow \Lambda_c$ form factors from lattice QCD
- 3 $\Lambda_b \rightarrow \Lambda_c^*$ form factors from lattice QCD
- 4 Outlook

 $\Lambda_b \rightarrow \Lambda_c^*$ next steps:

- 4×statistics
- third lattice spacing
- chiral/continuum extrapolations

The lattice form factor results are limited to high q^2 .

To predict $R(\Lambda_c^*)$, it will be helpful to combine the lattice results with experimental data for the shape of the $\Lambda_b \to \Lambda_c^* \mu \bar{\nu}$ differential decay rates, making use of HQET.

[P. Boer, M. Bordone, E. Graverini, P. Owen, M. Rotondo, and D. Van Dyk, arXiv:1801.08367]

An improved calculation of $\Lambda_b \rightarrow p, \Lambda, \Lambda_c$ $(\frac{1}{2}^+)$ form factors is also underway:

- remove data sets with $m_{u,d}^{(\mathrm{val})} < m_{u,d}^{(\mathrm{sea})}$, add two new ensembles
- for $\Lambda_b \to \Lambda$: physical $m_s^{(val)}$
- more accurate tuning of charm and bottom actions
- all-mode-averaging for higher statistics
- better source smearing

$N_s^3 \times N_t$	β	$am_{u,d}^{(sea)}$	$am_{u,d}^{(val)}$	$am_s^{(sea)}$	<i>a</i> (fm)	$m_\pi^{(m sea)}$ (MeV)	$m_\pi^{(m val)}$ (MeV)	Status
$24^3 \times 64$	2.13	0.005	0.005	0.04	≈ 0.111	\approx 340	≈ 340	done
$-24^3 \times 64$	2.13	0.005	0.002	0.04	~ 0.111	≈ 340	≈ 270	
$-24^3 \times 64$	2.13	0.005	0.001	0.04	≈ 0.111	≈ 340	≈ 250	
$48^3 \times 96$	2.13	0.00078	0.00078	0.0362	pprox 0.114	pprox 140	pprox 140	done
$32^3 \times 64$	2.25	0.006	0.006	0.03	pprox 0.083	pprox 360	pprox 360	done
$32^3 \times 64$	2.25	0.004	0.004	0.03	pprox 0.083	pprox 300	pprox 300	done
$-32^3 \times 64$	2.25	0.004	0.002	0.03	≈ 0.083	≈ 300	≈ 230	
$48^3 imes 96$	2.31	0.002144	0.002144	0.02144	pprox 0.071	≈ 230	≈ 230	planned

Expected completion: 2020. Hope to reduce total uncertainties by factor of 2.

Extra slides

Breakdown of uncertainties in partially integrated $\Lambda_b \rightarrow p\mu\bar{\nu}_{\mu}$ and $\Lambda_b \rightarrow \Lambda_c\mu\bar{\nu}_{\mu}$ decay rates (in percent):

	$\zeta_{ ho\muar{ u}}(15{ m GeV}^2)$	$\zeta_{\Lambda_c \mu \bar{ u}} (7 \text{ GeV}^2)$	$rac{\zeta_{ ho\muar{ u}}(15~{ m GeV}^2)}{\zeta_{\Lambda_c\muar{ u}}(7~{ m GeV}^2)}$
Statistics	6.2	1.9	6.5
Finite volume	5.0	2.5	4.9
Continuum extrapolation	3.0	1.4	2.8
Chiral extrapolation	2.6	1.8	2.6
RHQ parameters	1.4	1.7	2.3
Matching & improvement	1.7	0.9	2.1
Missing isospin breaking/QEI) 1.2	1.4	2.0
Scale setting	1.7	0.3	1.8
z expansion	1.2	0.2	1.3
Total	8.8	4.5	9.8

Note: the individual systematic uncertainties are correlated in a complicated way. Use the total uncertainty only.

[W. Detmold, C. Lehner, S. Meinel, arXiv:1503.01421/PRD 2015]

	mb	<i>a</i> [fm]	m_{π} [MeV]	Reference
$\Lambda_b o \Lambda$	∞	0.11, 0.08	230–360	arXiv:1212.4827/PRD 2013
$\Lambda_b o p$	∞	0.11, 0.08	230-360	arXiv:1306.0446/PRD 2013
$\Lambda_b o p$	phys.	0.11, 0.08	230–360	arXiv:1503.01421/PRD 2015
$\Lambda_b o \Lambda_c$	phys.	0.11, 0.08	230–360	arXiv:1503.01421/PRD 2015,
				arXiv:1702.02243/JHEP 2017
$\Lambda_b o \Lambda$	phys.	0.11, 0.08	230–360	arXiv:1602.01399/PRD 2016
$\Lambda_b ightarrow \Lambda^*(rac{3}{2}^-)$	phys.	0.11	340	arXiv:1608.08110/Lattice 2016
$\Lambda_c ightarrow \Lambda$		0.11, 0.08	140 –360	arXiv:1611.09696/PRL 2017
$\Lambda_c o p$		0.11, 0.08	230–360	arXiv:1712.05783/PRD 2018

 Λ_b and Λ_c decay form factors from lattice QCD: References