Inclusive $b \rightarrow c$ experiment

Christoph Schwanda Institute of High Energy Physics Austrian Academy of Sciences

Data used in $b \rightarrow c$ inclusive analyses

BaBar	$: n=0,1,2,3$ [PRD 69, 111104 (2004), PRD 81, 032003 (2010)] $: n=1,2, 3$ [PRD 81, 032003 (2010)]
Belle	<e<sup>n_I>: n=0,1,2,3 [PRD 75, 032001 (2007)] <m<sup>2n_X>: n=1,2 [PRD 75, 032005 (2007)]</m<sup></e<sup>
CDF	<m<sup>2n_X>: n=1,2 [PRD 71, 051103 (2005)]</m<sup>
CLEO	<m<sup>2n_X>: n=1,2 [PRD 70, 032002 (2004)] <e<sup>n_γ>: n=1 [PRL 87, 251807 (2001)]</e<sup></m<sup>
DELPHI	<e<sup>n_l>: n=1,2,3 <m<sup>2n_X>: n=1,2 [EPJ C45, 35 (2006)]</m<sup></e<sup>

• Newest measurement is from the year 2010!

BaBar hadronic moments

- Fully reconstruct the hadronic decay of one B in Y(4S) → BB (efficiency ~0.4%, purity ~80%)
- B B B B B
 - Require one identified lepton amongst the signal-side particles (p > 0.8 GeV/c)
 - Combine all remaining particles to the X system and do a kinematic fit
 - 4-momentum conservation
 - Missing mass consistent with zero mass neutrino

232M BB

PRD 81, 032003 (2010)

 $m_{\rm x} [GeV/c^2]$

Moment measurement

Hadronic mass spectrum after kinematic fit

16

14

 $6 \leq N_{X_c} \leq 7$

- $< m_{X,reco}^2 > [(GeV/c^2)^2]$ 12 10 8 6 2 10 15 5 $< m_{X,true}^2 > [(GeV/c^2)^2]$ momentum
- Moments of the hadronic mass spectrum up to M_{x}^{6} for E_{cut} between 0.8 and 1.9 GeV are measured
- Also mixed mass-energy moments are determined and the electron energy moments from [PRD69, 111104] are reevaluated

2000

PRD 81, 032003 (2010)

Belle E_I and M²_X moments PRD 75, 032001 (2007) PRD 75, 032005 (2007)

- For both the E_I and M²_X measurements, similar 152M BB experimental method using fully reconstructed events
- The finite detector resolution is unfolded with SVD algorithm [NIM A372, 469 (1996)]
- <Eⁿ_e> measured for n=0,...,4 and E_{cut}=0.4-2.0 GeV
- $< M^{2n}_{x} >$ measured for n=1,2 and $E_{cut} = 0.7-1.9$ GeV

|V_{cb}| from inclusive decays

$$\mathbf{B} \to \mathbf{X} \mathbf{I} \mathbf{v} \qquad \Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left(1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_b^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_b^3} + \mathcal{O}(\frac{1}{m_b^4})\right)$$

- Based on the Operator Product Expansion (OPE)
- <O_i>: hadronic matrix elements (non-perturbative)
 c_i: coefficients (perturbative)
- Parton-hadron duality → the hadronic ME depend only on the initial state

	Kinetic scheme [JHEP 1109 (2011) 055]	1S scheme [PRD70, 094017 (2004)]		
O(1)	m _b , m _c	m _b		
O(1/m ² _b)	μ^2_{π} , μ^2_{G}	$λ_1$, $λ_2$		
O(1/m ³ _b)	$\rho^{3}_{D}, \rho^{3}_{LS}$	ρ ₁ , τ ₁₋₃		

Moments of the E₁ and M²_X spectrum

Also other observables in B \rightarrow XIv can be expanded into an OPE with the same heavy quark parameters, e.g.,

The nth moment of the (truncated) lepton energy spectrum

$$R_n(E_{\rm cut},\mu) = \int_{E_{\rm cut}} \left(E_\ell - \mu\right)^n \frac{\mathrm{d}\Gamma}{\mathrm{d}E_\ell} \,\mathrm{d}E_\ell \,, \quad \langle E_\ell^n \rangle_{E_{\rm cut}} = \frac{R_n(E_{\rm cut},0)}{R_0(E_{\rm cut},0)}$$

• The nth moment of the (truncated) M²_X spectrum

$$\langle m_X^{2n} \rangle_{E_{\rm cut}} = \frac{\displaystyle \int_{E_{\rm cut}} (m_X^2)^n \, \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2}{\displaystyle \int_{E_{\rm cut}} \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2}$$

Master plan:

- Measure the quark masses and heavy quark parameters using moments
- Substitute them in the formula of the semileptonic width
- Determine $|V_{cb}|$ from the semileptonic branching fraction

Two sets of theoretical calculations

- Kinetic running mass
 - P. Gambino, N. Uraltsev, Eur. Phys. J. C34, 181 (2004)
 - P. Gambino, JHEP 1109 (2011) 055
 - A. Alberti, P. Gambino, K.J. Healey, S. Nandi, Phys. Rev. Lett. 114, 061802 (2015)
- 1S mass
 - C. Bauer, Z. Ligeti, M. Luke, A. Manohar, M. Trott, Phys. Rev. D70, 094017 (2004)
- Non-perturbative parameters in the 1/m_b expansion

	Kinetic scheme	1S scheme
O(1)	m _b , m _c	m _b
O(1/m ² _b)	μ^2_{π} , μ^2_{G}	λ ₁ , λ ₂
O(1/m ³ _b)	$ρ^3_{ D}, ρ^3_{ LS}$	ρ ₁ , τ ₁₋₃

Moments used in the HFLAV analysis

	Experiment	Hadron moments $\langle M_X^n \rangle$	Lepton moments $\langle E_{\ell}^n \rangle$
HFLAV	BABAR	n=2,c=0.9,1.1,1.3,1.5	n = 0, c = 0.6, 1.2, 1.5
		n = 4, c = 0.8, 1.0, 1.2, 1.4	n = 1, c = 0.6, 0.8, 1.0, 1.2, 1.5
Summer 2016		n = 6, c = 0.9, 1.3 [495]	n = 2, c = 0.6, 1.0, 1.5
			n = 3, c = 0.8, 1.2 [495, 496]
	Belle	n = 2, c = 0.7, 1.1, 1.3, 1.5	n = 0, c = 0.6, 1.4
		n = 4, c = 0.7, 0.9, 1.3 [497]	n = 1, c = 1.0, 1.4
			n = 2, c = 0.6, 1.4
			n = 3, c = 0.8, 1.2 [498]
	CDF	n = 2, c = 0.7	
		n = 4, c = 0.7 [499]	
	CLEO	$n = 2, c = 1.0, \overline{1.5}$	
		n = 4, c = 1.0, 1.5 [500]	
	DELPHI	$n=2,\ c=0.0$	n = 1, c = 0.0
		n = 4, c = 0.0	n = 2, c = 0.0
		n = 6, c = 0.0 [489]	n = 3, c = 0.0 [489]

 23 measurements from BaBar, 15 measurements from Belle, 12 from other experiments

HFLAV

Summer 2016

	$ V_{cb} [10^{-3}]$	$m_b^{ m kin}~[{ m GeV}]$	$m_c^{\overline{ m MS}}~[{ m GeV}]$	$\mu_\pi^2 \; [\text{GeV}^2]$	$ ho_D^3 ~[{ m GeV^3}]$	$\mu_G^2 \; [\text{GeV}^2]$	$ ho_{LS}^3$ [GeV ³]
value	42.19	4.554	0.987	0.464	0.169	0.333	-0.153
error	0.78	0.018	0.015	0.076	0.043	0.053	0.096
$ V_{cb} $	1.000	-0.257	-0.078	0.354	0.289	-0.080	-0.051
$m_b^{ m kin}$		1.000	0.769	-0.054	0.097	0.360	-0.087
$m_c^{\overline{ m MS}}$			1.000	-0.021	0.027	0.059	-0.013
μ_{π}^2				1.000	0.732	0.012	0.020
$ ho_D^3$					1.000	-0.173	-0.123
μ_G^2						1.000	0.066
$ ho_{LS}^3$							1.000

 $\mathcal{B}(\overline{B} \to X_c \ell^- \overline{\nu}_\ell) = (10.65 \pm 0.16)\%$ χ^2 of 15.6 for 43 degrees of freedom.

- c quark mass constraints $m_c^{\overline{\text{MS}}}(3 \text{ GeV}) = 0.986 \pm 0.013 \text{ GeV}$
- Average B lifetime: (1.579 +/- 0.004) ps

- BaBarBelle
- ▲ Other

1S scheme analysis

HFLAV

Summer 2016

	m_b^{1S} [GeV]	$\lambda_1 \; [\text{GeV}^2]$	$ ho_1 [{ m GeV^3}]$	$ au_1 \; [\text{GeV}^3]$	$ au_2 \; [\text{GeV}^3]$	$\tau_3 \; [\text{GeV}^3]$	$ V_{cb} $ [10 ⁻³]
value	4.691	-0.362	0.043	0.161	-0.017	0.213	41.98
error	0.037	0.067	0.048	0.122	0.062	0.102	0.45
m_b^{1S}	1.000	0.434	0.213	-0.058	-0.629	-0.019	-0.215
λ_1		1.000	-0.467	-0.602	-0.239	-0.547	-0.403
$ ho_1$			1.000	0.129	-0.624	0.494	0.286
$ au_1$				1.000	0.062	-0.148	0.194
$ au_2$					1.000	-0.009	-0.145
$ au_3$						1.000	0.376
$ V_{cb} $							1.000

 χ^2 of 23.0 for 59 degrees of freedom

- B quark mass constrained with $B \rightarrow X_s \gamma$ data
- Average B lifetime: (1.579 +/- 0.004) ps

Summary

- HFLAV analysis
 - While we see a good agreement between data and theory and between theory frameworks, there is a ~ 3σ disagreement between $|V_{cb}|$ inclusive/exclusive (3.2 σ for D*, 2.4 σ for D)
- Prospects for experiments
 - Measurements are old and should be updated to the full data sets
 - Experimental correlations are not fully available and thus not accounted in the present analysis
 - LHCb can and should also work on this measurement