Form factors for semileptonic B-meson decays into light hadrons from lattice QCD

Aida X. El-Khadra

(University of Illinois and Fermilab)

Outline

- Motivation and IntroductionIntroduction to LQCD
- **Q** CC form factors for $B \rightarrow \pi$, *K*
 - ★ Implications
- **FCNC** form factors
 - \star into pseudoscalar final states
 - \star into vector final states
- **Summary and Outlook**

Introduction and Motivation

example:
$$B^0 \to \pi^- \ell^+ \nu_\ell$$

Experiment vs. SM theory:

(experiment) = (known) x (**CKM factors**) x (had. matrix element)

$$\begin{split} & \underbrace{d\Gamma(B \to \pi \ell \nu)}{dq^2}, \underbrace{d\Gamma(B \to K \ell^+ \ell^-)}{dq^2}, \dots \\ & \underbrace{d\Gamma(B \to D \ell \nu)}_{d\omega}, \underbrace{d\Gamma(B \to D \tau \nu)}_{d\omega}, \dots \\ & \Delta m_{d(s)} \\ & \cdot \end{split}$$

Lattice QCD

parameterize the MEs in terms of form factors, decay constants, bag parameters, ...

Introduction and Motivation

example: $B^0 \to \pi^- \ell^+ \nu_\ell$

Experiment vs. SM theory:

(experiment) = (known) x (**CKM factors**) x (had. matrix element)

Two main purposes:

- combine experimental measurements with LQCD results to determine CKM parameters.
- confront experimental measurements of rare processes or lepton flavor (universality) violating observables with SM theory using LQCD inputs.

Lattice QCD

parameterize the MEs in terms of form factors, decay constants, bag parameters, ...

form factors for $B \to \pi \,\ell \,\nu \,\& \, V_{ub}$

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = (\text{known}) \times |V_{ub}|^2 \times |f_+(q^2)|^2 \qquad q^2 = (p_B - p_\pi)^2$$

- \star calculate the form factors in the low recoil (high q^2) range.
- \star use model-independent parameterization of q^2 dependence.
- * calculate the complete set of form factors, $f_+(q^2)$, $f_0(q^2)$ and $f_T(q^2)$.
- * for $f_+(q^2)$ compare shape between experiment and lattice.

$$\langle \pi | V^{\mu} | B \rangle = f_{+}(q^{2}) \left[p_{B}^{\mu} + p_{\pi}^{\mu} - \frac{M_{B}^{2} - M_{\pi}^{2}}{q^{2}} q^{\mu} \right] + f_{0}(q^{2}) \frac{M_{B}^{2} - M_{\pi}^{2}}{q^{2}} q^{\mu}$$

$$\langle \pi | S | B \rangle = \frac{M_{B}^{2} - M_{\pi}^{2}}{m_{b} - m_{u}} f_{0}(q^{2})$$

$$\langle \pi | T^{\mu\nu} | B \rangle = 2 \frac{p_{B}^{\mu} p_{\pi}^{\nu} - p_{B}^{\nu} p_{\pi}^{\mu}}{M_{B} + M_{\pi}} f_{T}(q^{2})$$

Convenient for lattice QCD:

$$\langle \pi | V^{\mu} | B \rangle = \sqrt{2M_B} \left[v^{\mu} f_{\parallel}(E_{\pi}) + p^{\mu}_{\perp} f_{\perp}(E_{\pi}) \right] \quad v = p/M_B$$

$$f_{\parallel}(E_{\pi}) = \frac{\langle \pi | V^4 | B \rangle}{\sqrt{2M_B}}, \qquad p^{\mu}_{\perp} = p^{\mu} - (p \cdot v) v^{\mu}$$

$$f_{\perp}(E_{\pi}) = \frac{\langle \pi | V^i | B \rangle}{\sqrt{2M_B}} \frac{1}{p^i}$$

A. El-Khadra

The State of the Art

- Lattice QCD calculations of simple quantities (with at most one stable meson in initial/final state) that quantitatively account for all systematic effects (discretization, finite volume, renormalization,...), in some cases with
 - sub percent precision.
 - total errors that are commensurate (or smaller) than the corresponding experimental uncertainties.
- Scope of LQCD calculations is increasing due to continual development of new methods:
 - baryons
 - nonleptonic decays ($K \rightarrow \pi \pi, ...$)
 - resonances, scattering, long-distance effects,
 - QED effects
 - ...

Lattice **QCD** Introduction

$egin{array}{l} \langle ar{B}^0_q \mathcal{O}^{\Delta B=}_i \ \langle ar{D}^0 \mathcal{O}^{\Delta C=}_i \end{array}$	$ B_q^0 angle^2 B_q^0 angle^2 D^0 angle$	[insp A. Kr	ired by onfeld]	
$\hat{B}_{K} \cdots$ $f_{+,0}^{B \to D}(q^{2}),$ $f_{+}^{K \to \pi} f_{+,0,T}^{B \to \pi}$ $f_{K^{\pm}} f_{B_{(s)}} \cdots$	$\langle \pi \pi_{(I=2)} \mathcal{H}^{\Delta S=1} K^0$	$\Delta M_K, \epsilon_K \\ \langle \pi \pi_{(I=0)} \mathcal{H}^{\Delta S=1} K^0 \rangle \\ \rangle$	$B \to K^* \ell \ell \to$ $K^+ \to \ell^+ \nu (\gamma)$ $K^+ \to \pi^+ \ell^+ \ell^-$ $K^+ \to \pi^+ \nu \bar{\nu}$	<i>K</i> π <i>ll</i>
			Com	nplexity
LQCD flagship results	First complete LQCD results, large(ish) errors	First results, physical params, incomplete systematics	new methods, pilot projects, unphysical kinematics	

combined chiral-continuum interpolation/extrapolation

When

 $m_{\text{light}} \leq 1/2 (m_u + m_d)_{\text{phys}}$

 χ PT guides the interpolation/extrapolation to the physical point.

combined chiral-continuum interpolation/extrapolation

- Θ include (light quark) discretization effects (for example, staggered χ PT)
- ♀ can also add HQ discretization terms to chiral-continuum fits
- **Q** for *B*,*D* meson processes use Heavy Meson χ PT: χ PT + 1/*M* expansion

combined chiral-continuum interpolation/extrapolation

Growing number of collaborations have generated sets of ensembles that include sea quarks with physical light-quark masses: PACS-CS, BMW, MILC, RBC/UKQCD, ETM,...

combined chiral-continuum extrapolation

Heavy Quark Treatment

- For light quarks ($m_\ell < \Lambda_{
 m QCD}$), leading discretization errors ~ $lpha_s^k (a \Lambda_{
 m QCD})^n$
- For heavy quarks, leading discretization errors $\sim \alpha_s^k (am_h)^n$ for *b* quarks: need $a \leq 0.04$ fm so that $am_b \leq 1$ not a problem for charm with improved action: $a \leq 0.12$ fm
 - need effective field theory methods for b quarks for charm can use light quark methods, with improved action
- avoid errors of $(am_b)^n$ in the action by using EFT:
 - relativistic HQ actions (Fermilab, Columbia [aka RHQ],...)
 - + HQET
 - NRQCD
- or
- use an improved light quark action (HISQ, tmWilson, DWF, NP imp. Wilson,....)
 - use same LQ action for heavy quarks, but keep $am_h < 1$
 - $\mbox{+}$ use HQET to extrapolate/interpolate to b quark mass

Semileptonic B decays to light pseudo scalars

☆ HPQCD:

NRQCD *b* quarks+ HISQ light valence

1. $B \rightarrow K$ form factors (rare decay) on MILC asqtad (2+1) ensembles [arXiv:1306.0434, PRL 2013; arXiv:1306.2384, PRD 2013] 5 ensembles $a \approx 0.00, 0.12$ fm m = 270, 400 MeV, 1 lease PT matching

5 ensembles, $a \approx 0.09$, 0.12 fm, $m_{\pi} = 270-400$ MeV, 1-loop PT matching

2. $B_s \rightarrow K$ form factors on MILC asqtad (2+1) ensembles

[arXiv:1406.2279, PRD 2014]

5 ensembles, $a \approx 0.09$, 0.12 fm, $m_{\pi} = 175\text{-}300$ MeV, 1-loop PT matching

3. $B \rightarrow \pi$ form factor at zero recoil on MILC HISQ (2+1+1) ensembles [arXiv:1510.07446, PRD 2016]

8 ensembles, $a \approx 0.09$, 0.12,0.15 fm, $m_{\pi} = 135-300$ MeV, 1-loop PT matching soft pion theorem confirmed

RBC/UKQCD:

RHQ action for b quark + DWF light on DWF (2+1) ensembles

 $B_s \rightarrow K$ and $B \rightarrow \pi$ form factors

[arXiv:1501.05373, PRD 2015]

5 ensembles, $a \approx 0.09$, 0.11 fm, $m_{\pi} = 290-420$ MeV,

mostly nonperturbative renormalization, aka mNPR (with 1-loop PT matching) ongoing effort to add more ensembles, including at physical mass

- **FNAL/MILC**:
 - 1. Fermilab *b* quark +
 - (a) asqtad light on MILC asqtad (2+1) ensembles
 - form factors for
 - $B \rightarrow \pi$ [arXiv:1503.07839, PRD 2015; arXiv:1507.01618, PRL 2015] and
 - $B \rightarrow K$ [arXiv:1509.06235, PRD 2016]
 - 12 ensembles, $a \approx 0.045, 0.06, 0.09, 0.12$ fm, $m_{\pi} = 175-420$ MeV
 - mNPR (with 1-loop PT matching)

 $B_s \rightarrow K$ [Y. Liu et al, Lattice 2017, arXiv:1711.08085] preliminary, blinded

- 6 ensembles, $a \approx 0.06, 0.09, 0.12$ fm, $m_{\pi} = 175-350$ MeV
- mNPR (with 1-loop PT matching)
- (b) HISQ light on MILC HISQ (2+1+1) ensembles

 $B \rightarrow \pi, B_s \rightarrow K, B \rightarrow K$ [Z. Gelzer et al, Lattice 2017, arXiv:1710.09442]

5 ensembles, $a \approx 0.09, 0.12, 0.15$ fm, $m_{\pi} = 135-300$ MeV

mNPR (with 1-loop PT matching), preliminary

2. HISQ *b* quark + HISQ light (currently testing set-up)

plan: $a \approx 0.03$, 0.045, 0.06, 0.09, 0.12 fm, $m_{\pi} = 135-300$ MeV

nonperturbative renormalization (see Kronfeld talk on decay constants)

★ ALPHA: HQET *b* quark + NP imp. Wilson on CLS NP imp. Wilson (2) ensembles $B_s \rightarrow K$ form factors [arXiv:1601.04277, PLB 2016] static limit, nonperturbative renormalization, aka NPR 3 ensembles, *a* ≈ 0.05, 0.065, 0.075 fm, *m*_π = 310-330 MeV preliminary results for the 1/m terms [M. Koren, Lattice 2017, arXiv:1711.01158]

☆ JLQCD:

DWF *b* quark+ DWF light on DWF (2+1) ensembles

 $B \rightarrow \pi$ form factors

[B. Colquhoun, Lattice 2017, arXiv:1710.07094]

5 ensembles, $a \approx 0.044$, 0.055, 0.08 fm, $m_{\pi} = 300-500$ MeV

use heavy quark mass $m_{\text{charm}} \leq m_{\text{heavy}} \leq 2.44 \times m_{\text{charm}}$

and extrapolate to b quark mass

preliminary results

A. El-Khadra

 m_1, m_2

FNAL/MILC [arXiv:1503.07839, PRD 2015]

Table X. Error budgets of form factors f_+ and f_0 at $q^2 = 20 \text{GeV}^2$.

 m_1, m_2

	Uncertainty	δf_+	δf_0	;
	$\overline{ ext{Statistical}+\chi ext{PT}+ ext{HQ}+g_{B^{*}B\pi}}$	3.1	3.8	(
	Scale r_1	0.5	0.7	2
	Non-perturbative $Z_{V_{bb}^4}$	0.4	0.6	ę
	Non-perturbative $Z_{V_{II}^4}$	0.4	0.4	
	Perturbative ρ	1.0	1.0	
	Heavy-quark mass mistuning	0.4	0.4	$(Ors)^2$
	Light-quark mass tuning	0.4	0.2	(err
	Total	3.4	4.1]
El-Khadra $_{bb}^{4}$, Z	κ_b 6 Challenge	jem	ileptonic	κ_b B ⁴ _{ll} Décays, σ_7 -13

17

FNAL/MILC [arXiv:1503.07839, PRD 2015]

form factors for $B \to \pi \,\ell \, \nu \,\& \, V_{ub}$

Two independent LQCD predictions for $B_s \rightarrow K\ell v$ form factors [HPQCD, arXiv:1406.2279, PRD 2014; RBC, arXiv:1501.05373, PRD 2015] congoing work by:

FNAL/MILC [Y. Liu (S. Gottlieb), Z. Gelzer (A. Kronfeld) @ Lattice 2017]
RBC/UKQCD [O. Witzel @ Lattice 2017], ALPHA [M. Koren @ Lattice 2017],
JLQCD [B. Colquhoun @ Lattice 2017]

A. El-Khadra

form factors for $B \to \pi \,\ell \, \nu \,\& \, V_{ub}$

☆ shape of f_+ agrees with experiment and uncertainties are commensurate ☆ fit lattice form factors together with experimental data to determine $|V_{ub}|$ and obtain form factors (f_+, f_0) with improved precision...

 \Rightarrow determination of $|V_{ub}/V_{cb}|$ from Λ_b decay with LHCb [arXiv:1503.01421, PRD 2015; arXiv:1504.01568, Nature 2015]:

$$R_{FF} = \frac{|V_{cb}|^2}{|V_{ub}|^2} \frac{\int_{15\text{GeV}^2}^{q_{\max}^2} \frac{d\Gamma(\Lambda_b \to p\mu\nu)}{dq^2} dq^2}{\int_{7\text{GeV}^2}^{q_{\max}^2} \frac{d\Gamma(\Lambda_b \to \Lambda_c \mu\nu)}{dq^2} dq^2} = 1.471 \pm 0.094 \pm 0.109$$

A. El-Khadra

form factors for $B \to \pi \,\ell \, \nu \,\& \, V_{ub}$

☆ shape of f_+ agrees with experiment and uncertainties are commensurate ☆ fit lattice form factors together with experimental data to determine $|V_{ub}|$ and obtain form factors (f_+ , f_0) with improved precision...

 \Rightarrow determination of $|V_{ub}/V_{cb}|$ from Λ_b decay with LHCb [arXiv:1503.01421, PRD 2015; arXiv:1504.01568, Nature 2015]:

$$R_{FF} = \frac{|V_{cb}|^2}{|V_{ub}|^2} \frac{\int_{15 \,\text{GeV}^2}^{q_{\text{max}}^2} \frac{d\Gamma(\Lambda_b \to p\mu\nu)}{dq^2} dq^2}{\int_{7\,\text{GeV}^2}^{q_{\text{max}}^2} \frac{d\Gamma(\Lambda_b \to \Lambda_c \mu\nu)}{dq^2} dq^2} = 1.471 \pm 0.094 \pm 0.109$$

A. El-Khadra

BSM phenomenology: LFU μ/e

D. Du et al [arXiv:1510.02349, PRD 2016]

SM prediction for
$$R(\pi) = \frac{\mathcal{B}(B \to \pi \tau \nu_{\tau})}{\mathcal{B}(B \to \pi \ell \nu)} = 0.641(17)$$

Expect Belle II to measure this ratio.

form factors for $B_s \to K$

waiting for experimental measurement (LHCb, see talk by M. Calvi)
 Lattice form factors consistent

(some tension at large recoil between RBC/UKQCD and HPQCD) ☆ ongoing work by FNAL/MILC, ALPHA, JLQCD

Exclusive $|V_{ub}|$

form factors for $B \to K \, \ell \ell$

HPQCD [arXiv:1306.0434, 1306.2384, PRL 2013]

FNAL/MILC [arXiv:1509.06235, PRD 2016]

 \Rightarrow Two LQCD calculations (on overlapping ensemble sets, different valence actions): HPQCD (NRQCD b + HISQ), FNAL/MILC (Fermilab b + asqtad)

☆ consistent results for all three form factors

🗙 consistent with LCSR [Khodjamarian et al, arXiv:1006.4945, JHEP 2010]

 \Rightarrow Note: First LQCD calculation of $\Lambda_b \rightarrow \Lambda \ell^+ \ell^-$ form factors (10 total)

[Detmold & Meinel, arXiv:1602.01399, 2016 PRD].

A. El-Khadra

form factors for $B \to K \, \ell \ell$

 \Rightarrow Two LQCD calculations (on overlapping ensemble sets, different valence actions): HPQCD (NRQCD b + HISQ), FNAL/MILC (Fermilab b + asqtad)

☆ consistent results for all three form factors

☆ consistent with LCSR [Khodjamarian et al, arXiv:1006.4945, JHEP 2010]

 \Rightarrow Note: First LQCD calculation of $\Lambda_b \rightarrow \Lambda \ell^+ \ell^-$ form factors (10 total)

[Detmold & Meinel, arXiv:1602.01399, 2016 PRD].

A. El-Khadra

form factors for $B \to \pi \, \ell \ell$

\bigstar LQCD calculation of f_T by FNAL/MILC

★ Take f_{+,f_0} from combined fit of lattice form factors + experimental data for $d\mathscr{B}(B \rightarrow \pi \ell v)/dq^2$

theoretically clean, but difficult to measure experimentally
 Some modes will be accessible to Belle II

A. El-Khadra

form factors for $B \to \pi, B_s \to K, B \to K$

PRELIMINARY BLIND

Z. Gelzer et al, [Lattice 2017, arXiv:1710.09442]

 $a \approx 0.15 \text{ fm}, \ m'_l/m'_s = \text{phys}$ $a \approx 0.12 \text{ fm}, \ m'_l/m'_s = 0.2$ $a \approx 0.12 \text{ fm}, \ m'_l/m'_s = 0.1$ $a \approx 0.12 \text{ fm}, \ m'_l/m'_s = \text{phys}$ $a \approx 0.088 \text{ fm}, \ m'_l/m'_s = \text{phys}$

A. El-Khadra

Semileptonic B decays to light vector mesons

 K^* , ϕ are treated as stable mesons

Cambridge group (Horgan, Liu, Meinel, Wingate): NRQCD b quarks+ asqtad light valence

 $B_s \to K^*, B \to K^*, B_s \to \phi$ form factors

MILC asqtad (2+1) ensembles

[arXiv:1310.3722, PRD 2014; arXiv:1310.3887, PRL 2014]

3 ensembles, $a \approx 0.09$, 0.12 fm, $m_{\pi} = 270-400$ MeV, 1-loop PT matching

RBC/UKQCD

RHQ action for b quark + DWF light on DWF (2+1) ensembles

 $B_s \rightarrow \phi$ form factors, preliminary results

[E. Lizarazo @ Lattice 2017; arXiv:1612.05112]

7 ensembles, $a \approx 0.07, 0.09, 0.11$ fm, $m_{\pi} = 139-430$ MeV,

mostly nonperturbative renormalization, aka mNPR (with 1-loop PT matching) ongoing effort to add more ensembles, including at physical mass

Rare semileptonic $B_{(s)}$ decay to vector states

A. El-Khadra

Semileptonic $B_{(s)}$ decays to vector states

Lattice **QCD** Introduction

finite volume effects

One stable hadron (meson) in initial/final state:

If *L* is large enough, FV error $\sim e^{-m_{\pi}L}$

 \bigcirc keep $m_{\pi} L \gtrsim 4$

To quantify residual error:

Sinclude FV effects in χPT

 \bigcirc compare results at several *L*s (with other parameters fixed)

The story changes completely if there are two or more hadrons in the initial/final/intermediate state.

Semileptonic $B_{(s)}$ decays to vector states

R. Briceno @ Lattice 2014 [arXiv:1411.6944]

A roadmap towards physics

A. El-Khadra

Semileptonic $B_{(s)}$ decays to vector states

Formalism for multi-channel 1→ 2 transition amplitudes: [Bricenet Hansen, Walker-Loud, arXiv:1406.5965, PRD 2015;1502.04314, PRD 2015]

weak current

Π pilot study [Agadjanov et al, arXiv:1605.03386, NPB 2016] Π

Same as for:

OED

studies of $\pi\gamma^{(*)} \rightarrow \pi\pi$

[Briceno et al arXiv:150706622, PRL 2015; arXiv:1604.03530, PRD 2016; Leskovec et al, arXiv: 1611.00282, Lattice 2016]

Summary

- ★ LQCD results exist for complete set of $B \rightarrow \pi$, K; $B_s \rightarrow K$ form factors, including the tensor form factors
- \Leftrightarrow Errors on $B \rightarrow \pi$ form factors are commensurate with current experimental uncertainties.
 - > enable SM predictions of R(X) and $|V_{ub}|$ determinations
 - ➤ constrain BSM theories
- \Leftrightarrow Expect to see new LQCD results for $B_{(s)} \rightarrow \pi$, K form factors with physical mass ensembles soon.
- \Rightarrow Similar LQCD results for form factors for semileptonic $B_{(s)}$ -meson decays to charm mesons.

Amala Willenbrock

Outlook

- ☆ Gauge field ensembles with light sea quarks at their physical masses are being used in a growing number of LQCD calculations.
- \Rightarrow including charm sea quarks and adding isospin breaking effects ($m_u \neq m_d$) straightforward
- * next milestone: Semileptonic B decay form factors to pseudo scalars with (sub)percent level precision
- ☆ structure-dependent QED effects:
 - program being developed for kaon decays, muon g-2 [D. Giusti et al, arXiv:1711.06537, PRL 2018; ...]
 - \succ need to extend to *D*,*B*-meson quantities
- \bigstar First complete calculations of weak $\Lambda_{b,c}$ decay form factors
- ☆ theoretical framework for semileptonic *B* decays to vector meson final states exists [Briceño et al, arXiv:1406.5965, 2015 PRD; Agadjanov et al, arXiv:1605.03386].
 - > enables LQCD calculations of form factors for $B_s \to K^* \ell \nu, B \to K^* \ell \ell, \dots$ pilot studies are underway.

Amala Willenbroek

Thank you!

Farah Willenbrock

Appendix

Collaborators

Fermilab Lattice Collaboration:

AXK, Freeland, Gámiz, Gottlieb, Kronfeld, Laiho, Mackenzie, Neil, Simone, Van de Water Bailey, Bouchard, Chang, Gelzer, Liu

⊌ MILC:

Bazavov, Bernard, DeTar, Gottlieb, Heller, Sugar, Toussaint, Brown, Kim, Komijani, Li, Vacquero

Computations done at NCSA (Blue Waters), ALCF (Argonne), NERSC, NCAR, TACC, USQCD clusters,

The *z*-expansion

The form factor can be expanded as:

$$f(t) = \frac{1}{P(t)\phi(t,t_0)} \sum_{k=0}^{\infty} a_k(t_0) z(t,t_0)^k$$

Bourrely at al (Nucl.Phys. B189 (1981) 157) Boyd, Grinstein, Lebed (hep-ph/9412324, PRL 95; hep-ph/9504235, PLB 95; hep-ph/ 9508211, NPB 96; hep-ph/9705252, PRD 97) Lellouch (arXiv:hep- ph/9509358, NPB 96) Boyd & Savage (hep-ph/9702300, PRD 97) Bourrely at al (arXiv:0807.2722, PRD 09)

- P(t) removes poles in $[t_{-},t_{+}]$
- The choice of outer function ϕ affects the unitarity bound on the a_k .
- In practice, only first few terms in expansion are needed.

A. El-Khadra

Rare semileptonic B decay

Parameterize the amplitude in terms of the three form factors $f_{+,0,T}(q^2)$: $A(B \to P \,\ell \ell) \sim C_7^{\text{eff}} f_T + (C_9^{\text{eff}} + C_{10}) f_+ + \text{nonfactorizable terms}$

A. El-Khadra

 $B \to K$ Experiment vs. Theory $B \to \pi$

A. El-Khadra

Experiment vs. theory

- LHCb data + Detmold & Meinel form factors [arXiv:1503.07138, JHEP 2015]
- focus on regions above and below charmonium resonances
- exp. data lie above SM theory $\sim 1-3\sigma$ tensions

Detmold & Meinel [arXiv:1602.01399, PRD 2016]

Experiment vs. theory

- LHCb data + FNAL/MILC form factors [arXiv:1509.00414, JHEP 2015;1403.8044, JHEP 2014]
- focus on large bins above and below charmonium resonances
- theory errors commensurate with experiment (but nonfactorizable contributions not under good control)
- yields $\sim 1-2\sigma$ tensions
- \Rightarrow determine $|V_{td}/V_{ts}, |V_{td}|, |V_{ts}|$ or constrain Wilson coefficients

D. Du et al [arXiv:1510.02349, PRD 2016]

D. Du et al [arXiv:1510.02349, PRD 2016]:

Constraints on Wilson coefficients (C_9 , C_{10})

- \swarrow New physics contributions modify the Wilson coefficients: $C_i \rightarrow C_i + C_i^{NP}$ at the high scale, $\mu_0 = 120 \text{ GeV}$
- \checkmark use constraints from $B \to X_s \gamma$ to set $C_{7,8}^{\mathrm{NP}} = 0$
- \bigstar assume MFV so that $C_i(b \to s \,\ell \ell) = C_i(b \to d \,\ell \ell)$
- \bigstar assume $C_{9,10}^{\text{NP}}$ are real (no new CP violating phases)
- \bigstar take measured $\Delta \mathcal{B}(B \to K, \pi \mu^+ \mu^-)$ in $\Delta q^2 = 1 6, 15 22 \text{ GeV}^2$ together with FNAL/MILC form factors

 \bigstar add $B_s \rightarrow \mu^+ \mu^-$ constraint with lattice f_{Bs}

Constraints on Wilson coefficients (C_9 , C_{10})

 $B \rightarrow K \mu \mu$, high q^2 bin dominates constraint

\bigodot BSM Phenomenology for $B \to K, \pi \, \ell^+ \, \ell^-$

Constraints on Wilson coefficients (C_9 , C_{10})

 $B \rightarrow K \mu \mu$, high q^2 bin dominates constraint

- $\approx -2.6 \sigma$ tension between LHCb measurement and SM theory
- ☆ renewed interest due to recent LHCb measurement of R_{K^*} [R. Ajai et al, arXiv:1705.05802, JHEP 2017]
- ☆ The SM predictions of these ratios are insensitive to the form factors and nonfactorizable contributions.

UT analysis

Exclusive vs. inclusive $|V_{cb}|$ and $|V_{ub}|$

 $\approx -2.6 \sigma$ tension between LHCb measurement and SM theory

- \Leftrightarrow renewed interest due to recent LHCb measurement of R_{K^*} [R. Ajai et al, arXiv:1705.05802, JHEP 2017]
- The SM predictions of these ratios are insensitive to the form factors and nonfactorizable contributions.