Diagnosing new physics in $b \to c \tau \nu$ decays

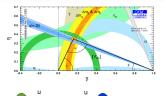
Martin Jung

Talk at the mitp Workshop "Challenges in Semileptonic *B* Decays" Mainz, Germany, 10th of April 2018

Importance of (semi-)leptonic hadron decays

In the Standard Model:

- Tree-level, $\sim |V_{ij}|^2 G_F^2 \, \mathrm{FF}^2$
- Determination of $|V_{ij}|$ (7/9)



Beyond the Standard Model:

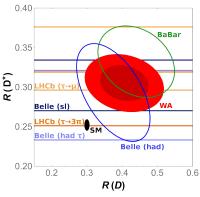
- Leptonic decays $\sim m_I^2$
 - \blacktriangleright large relative NP influence possible (e.g. H^{\pm})
- NP in semi-leptonic decays small/moderate
 - Need to understand the SM very precisely! For instance isospin breaking in $\Upsilon(4S) \to B\bar{B}$ [MJ'15]

Key advantages:

- Large rates
- Minimal hadronic input ⇒ systamatically improvable
- Differential distributions ⇒ large set of observables

Lepton-non-Universality in $b \to c \tau \nu$ 2018

$$R(X) \equiv \frac{\operatorname{Br}(B \to X \tau \nu)}{\operatorname{Br}(B \to X \ell \nu)}$$



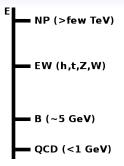
contours: 68% CL filled: 95(68)% CL

- R(D^(*)): [Greg's+Giacomo's talks]
 2× LHCb, 4× Belle recently
 → average ~ 4σ from SM
- au-polarization (au o had) [1608.06391]
- $B_c o J/\psi au
 u$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of B_c
- $b \to X_c \tau \nu$ by LEP

Higgs EFT(s) [see also Ben's talk]

Apparent gap between EW and NP scales:

- ► EFT approach at the electroweak scale:
 - ✓ SM particle content
 - ✓ SM gauge group
 - ? Embedding of h
 - ? Power-counting
 - ▶ Formulate NLO



Linear embedding of h:

- h part of doublet H
- Appropriate for weaklycoupled NP
- Power-counting: dimensionsFinite powers of fields
- LO: SM

Non-linear embedding of h:

- h singlet, U Goldstones
- Appropriate for stronglycoupled NP
- Power-counting: loops (~χPT)
 Arbitrary powers of h/v, φ
- LO: SM + modified Higgs-sector

Flavour EFTs for semi-leptonic decays

At scales $\mu \ll \mu_{EW}$: remove top + heavy gauge bosons

- Construct EFT from "light" fermions + QCD, QED
- Gauge group: $SU(3)_C \times U(1)_{em}$

Example: $b \to c\tau\nu$ transitions (SM: $C_{V_I} = 1, C_{i \neq V_I} = 0$):

$$\mathcal{L}_{\text{eff}}^{b\to c\tau\nu} = -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_{j}^{5} C_j \mathcal{O}_j$$

$$\begin{split} \mathcal{O}_{V_{L,R}} &= (\bar{c}\gamma^{\mu}P_{L,R}b)\bar{\tau}\gamma_{\mu}\nu\,, \qquad \quad \mathcal{O}_{\mathcal{S}_{L,R}} &= (\bar{c}P_{L,R}b)\bar{\tau}\nu\,, \\ \mathcal{O}_{T} &= (\bar{c}\sigma^{\mu\nu}P_{L}b)\bar{\tau}\sigma_{\mu\nu}\nu\,. \end{split}$$

Generically:

- 1. All coefficients independent
- 2. Coefficients for other processes unrelated (e.g. $\tau \leftrightarrow e, \mu$)

Tree-level matching of HEFT(s) on flavour-EFT

Implications of HEFT for the flavour-EFTs? [Cata/MJ'15] Differences between linear and non-linear realization?

Separate "generic" operators from non-linear HEFT

Two types of contributions:

- 1. Operators already present at the EW scale \rightarrow identification
- 2. Tree-level contributions of HEFT operators with SM ones
 - lacktriangle e.g. HEFT $\bar{b}sZ$ vertex with $Z \to \ell\ell$
- Both of the same order

Previous work (linear EFT) e.g. [D'Ambrosio+'02,Cirigliano+'09,Alonso+'14]

A word of caution: flavour hierarchies have to be considered!

Mostly relevant when SM is highly suppressed, e.g. for EDMs

Implications of the Higgs EFT for flavour [Cata/MJ'15]

 $q \rightarrow q'\ell\ell$:

- Tensor operators absent in linear EFT for $d o d' \ell \ell$ [Alonso+'14]
 - Present in general! (already in linear EFT for $u \to u'\ell\ell$)
- Scalar operators: linear EFT $C_S^{(d)} = -C_P^{(d)}$, $C_S^{\prime(d)} = C_P^{\prime(d)}$ [Alonso+'14] • Analogous for $u \to u'\ell\ell$, but no relations in general!

$$\mathsf{q} o \mathsf{q}' \ell \nu$$
 :

- All operators are independently present already in the linear EFT
- However: Relations between different transitions: C_{V_R} is lepton-flavour universal [see also Cirigliano+'09] Relations between charged- and neutral-current processes, e.g. $\sum_{U=u,c,t} \lambda_{U_S} C_{S_R}^{(U)} = -\frac{e^2}{8\pi^2} \lambda_{t_S} C_S^{(d)}$ [see also Cirigliano+'12,Alonso+'15]
- These relations are again absent in the non-linear EFT

Flavour physics sensitive to Higgs embedding!

- Surprising, since no Higgs is involved
- ▶ Difficult differently [e.g. Barr+, Azatov+'15]

b ightarrow c Form Factors [see also e.g. Christine's, Stefan's and Nico's talks]

Only $V_{cb} \times \mathrm{FF}(q^2)$ extracted from data

SM: fit to data + normalization from lattice/LCSR/... $\rightarrow |V_{cb}|$

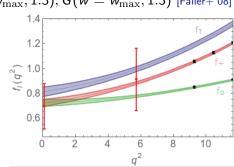
NP: can affect the q^2 -dependence, introduces additional FFs \blacktriangleright To determine general NP, FF shapes needed from theory

In [MJ/Straub'18], we use all available theory input:

- Unitarity bounds (using results from [BGL,Bigi/Gambino(/Schacht)'16'17])
 - LQCD for $f_{+,0}(q^2)$ (B o D), $h_{A_1}(q^2_{\max})$ $(B o D^*)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for $R_{1,2}(0)$, $h_{A_1}(w=w_{\max},1.3)$, $G(w=w_{\max},1.3)$ [Faller+'08] HQET relations up to

HQET relations up to $\mathcal{O}(\alpha_s, 1/m_{b,c})$ plus $1/m_{c,b}^2$ subset, mostly à la [Bernlocher+'17] , but w/o CLN

relation between slope and curvature



NP in semileptonic decays - Setup and tree-level scenarios

EFT for $b \to c\ell\nu_{\ell'}$ transitions (no light ν_R , SM: $C_j^{\ell\ell'}=0$):

$$\mathcal{L}_{\mathrm{eff}}^{b\to c\ell\nu} = -\frac{4G_F}{\sqrt{2}}V_{cb}\sum_{j}^{5}\sum_{\ell,\ell'=e,\mu,\tau}\left[\delta_{\ell\ell'}\delta_{jV_L} + C_j^{\ell\ell'}\right]\mathcal{O}_j^{\ell\ell'}, \quad \text{with}$$

 $\mathcal{O}_{V_{L,P}}^{\ell\ell'} = (\bar{c}\gamma^{\mu}P_{L,R}b)\bar{\ell}\gamma_{\mu}\nu_{\ell'}, \, \mathcal{O}_{S_{L,P}}^{\ell\ell'} = (\bar{c}P_{L,R}b)\bar{\ell}\nu_{\ell'}, \, \mathcal{O}_{T}^{\ell\ell'} = (\bar{c}\sigma^{\mu\nu}P_{L}b)\bar{\ell}\sigma_{\mu\nu}\nu_{\ell'}.$

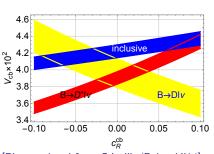
NP models typically generate subsets (never C_T alone)

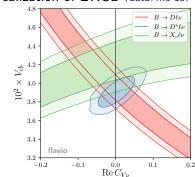
Model	C_{V_L}	C_{V_R}	C_{S_R}	C_{S_L}	C_T	$C_{S_L} = 4C_T$	$C_{S_L} = -4C_T$
Vector-like singlet	×						
Vector-like doublet		×					
W'	×						
H^\pm			×	×			
S_1	×						×
R_2						×	
S_3	×						
U_1	×		×				
V_2			×				
U_3	×						

Right-handed vector currents [MJ/Straub'18]

Usual suspect for tension inclusive vs. exclusive [e.g. Voloshin'97] SMEFT: $C_{V_R}^{\ell\ell'}$ is lepton-flavour-universal [Cirigliano+'10,Catà/MJ'15]

- All available data can be used in SMEFT context
- ▶ Violation could signal non-linear realization of EWSB [Catà/MJ'15]



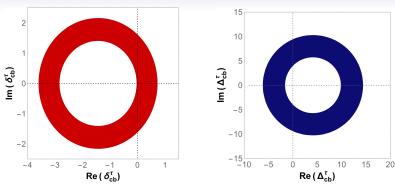


[Plot: updated from Crivellin/Pokorski'14]

Impact of differential distributions:

 V_{cb} and C_{V_R} can be determined individually in $B o D^*$

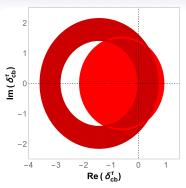
- \blacktriangleright Tension smaller, but is **not** improved by C_{V_R}
- $ightharpoonup C_{V_R}$ in SMEFT cannot explain b o c au
 u data

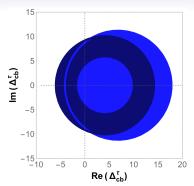


 $R(D), R(D^*)$: trivially explainable, but strange

•
$$R(D): \delta_{cb}^{l} \equiv \frac{(C_{S_{L}} + C_{S_{R}})(m_{B} - m_{D})^{2}}{m_{l}(\bar{m}_{b} - \bar{m}_{c})}, R(D^{*}): \Delta_{cb}^{l} \equiv \frac{(C_{S_{L}} - C_{S_{R}})m_{B}^{2}}{m_{l}(\bar{m}_{b} + \bar{m}_{c})}$$

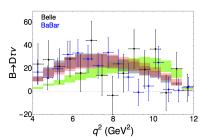
- R(D) compatible with SM at $\sim 2\sigma$
- Preferred scalar couplings from $R(D^*)$ huge $(|\mathcal{C}_{S_I} \mathcal{C}_{S_R}| \sim 1-5)$
- Can't go beyond circles with just $R(D, D^*)!$

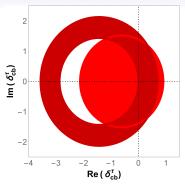


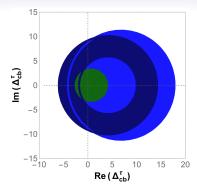


Differential rates:

- compatible with SM and NP
- already now constraining, especially in B o D au
 u
- "theory-dependence" of data needs addressing [Bernlochner+'17]

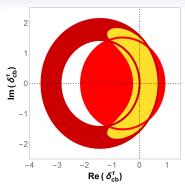


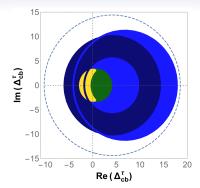




Total width of B_c :

- $B_c \to \tau \nu$ is an obvious $b \to c \tau \nu$ transition
 - not measurerable in foreseeable future
 - \blacktriangleright can oversaturate total width of $B_c!$ [X.Li+'16]
- Excludes second real solution in Δ_{cb}^{τ} plane (even scalar NP for $R(D^*)$? [Alonso+'16, Akeroyd+'17])





au polarization:

- So far not constraining (shown: $\Delta \chi^2 = 1$)
- Differentiate NP models: with scalar NP [Celis/MJ/Li/Pich'13]

$$X_2^{D^{(*)}}(q^2) \equiv R_{D^{(*)}}(q^2) \left[A_{\lambda}^{D^{(*)}}(q^2) + 1 \right] = X_{2,SM}^{D^{(*)}}(q^2)$$

Consistent explanation in 2HDMs possible, flavour structure?

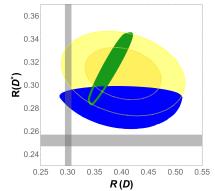
Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM}$):

- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B \to K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $au o \mu
 u
 u$ [Feruglio+'16] and $bar b o X o au^+ au^-$ [Faroughy+'16]

Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM}$):

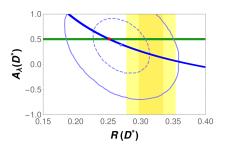
- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B \to K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- ullet issues with $au o \mu
 u
 u$ [Feruglio+'16] and $bar b o X o au^+ au^-$ [Faroughy+'16]

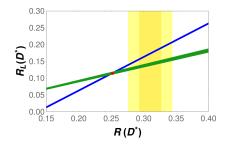
Fit results for the two scenarios for $B \to D^{(*)} \tau \nu$:



Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM}$):

- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B \to K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $\tau \to \mu\nu\nu$ [Feruglio+'16] and $b\bar{b} \to X \to \tau^+\tau^-$ [Faroughy+'16] Fit predictions for polarization-dependent $B \to D^*\tau\nu$ observables:





Large $R(D^*)$ possible with NP in V_L ($\hat{R}(X) = R(X)/R(X)_{SM}$):

- trivial prediction: $\hat{R}(D) = \hat{R}(D^*) = \hat{R}(\Lambda_c) = \dots \stackrel{exp}{\sim} 1.25$
- can be related to anomaly in $B \to K^{(*)} \ell^+ \ell^-$ modes
- $\hat{R}(X_c) = 0.99 \pm 0.10$ measured by LEP, oversaturation
- issues with $\tau \to \mu\nu\nu$ [Feruglio+'16] and $b\bar{b} \to X \to \tau^+\tau^-$ [Faroughy+'16] Fit predictions for $B \to X_c\tau\nu$ and $\Lambda_b \to \Lambda_c\tau\nu$:

0.30 0.28 0.26 **X** 0.24 0.22 0.20 0.18 0.35 0.40 0.45 $R(\Lambda_c)$

Conclusions

- Absence of clear NP signals \rightarrow new challenges
- Apparent hierarchy between EW and NP \rightarrow EFTs useful tools Flavour physics can distinguish Higgs embeddings
- Form factors: so far only f_{+,0}(q²) available from LQCD
 ▶ presently HQET relations necessary
- NP analysis: classification of scenarios with tree-level mediators
- Differential observables potentially very powerful
- Right-handed vector currents: LFU in SMEFT, strong constraints • Especially new constraint from $B \to D^* \ell \nu$ distributions
- Scalar NP: differentiation via relations independent of NP Tension $B_c \to \tau \nu \Leftrightarrow R(D^*)$, present $R(D^*)$ central value impossible
- Left-handed vector current: easier to get $R(D^*)$ clear predictions allow for "simple" exclusion/confirmation

Exciting times ahead for $b \to c \tau \nu$ modes!

Conclusions

- ullet Absence of clear NP signals o new challenges
- Apparent hierarchy between EW and NP \rightarrow EFTs useful tools Flavour physics can distinguish Higgs embeddings
- Form factors: so far only f_{+,0}(q²) available from LQCD
 ▶ presently HQET relations necessary
- NP analysis: classification of scenarios with tree-level mediators
- Differential observables potentially very powerful
- Right-handed vector currents: LFU in SMEFT, strong constraints
 ▶ Especially new constraint from B → D*ℓν distributions
- Scalar NP: differentiation via relations independent of NP Tension $B_c \to \tau \nu \Leftrightarrow R(D^*)$, present $R(D^*)$ central value impossible
- Left-handed vector current: easier to get $R(D^*)$ clear predictions allow for "simple" exclusion/confirmation

Thank you for your attention!

BR measurements and isospin violation [MJ 1510.03423]

Detail due to high precision and small NP

▶ Relevant for $\sigma_{\rm BR}/{\rm BR} \sim \mathcal{O}(\%)$

Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon \to B^+B^-$ vs. $B^0\bar{B}^0$
- LHCb: normalization mode, usually obtained from B factories

Assumptions entering this normalization:

- PDG: assumes $r_{+0} \equiv \Gamma(\Upsilon \to B^+ B^-)/\Gamma(\Upsilon \to B^0 \bar{B}^0) \equiv 1$
- LHCb: assumes $f_u \equiv f_d$, uses $r_{+0}^{\rm HFAG} = 1.058 \pm 0.024$

Both approaches problematic:

- Potential large isospin violation in $\Upsilon o BB$ [Atwood/Marciano'90]
- Measurements in $r_{+0}^{\rm HFAG}$ assume isospin in exclusive decays
 - This is one thing we want to test!
- Avoiding this assumption yields $r_{+0} = 1.035 \pm 0.038$ (potentially subject to change, in contact with Belle members)

Implications of the Higgs EFT for Flavour: $q \rightarrow q' \ell \nu$

 $b \rightarrow c \tau \nu$ transitions (SM: $C_{V_L} = 1, C_{i \neq V_L} = 0$):

$$\begin{split} \mathcal{L}_{\mathrm{eff}}^{b\to c\tau\nu} &= -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_{j}^{5} C_j \mathcal{O}_j \,, \qquad \text{with} \\ \mathcal{O}_{V_{L,R}} &= (\bar{c} \gamma^\mu P_{L,R} b) \bar{\tau} \gamma_\mu \nu \,, \qquad \mathcal{O}_{S_{L,R}} &= (\bar{c} P_{L,R} b) \bar{\tau} \nu \,, \\ \mathcal{O}_T &= (\bar{c} \sigma^{\mu\nu} P_L b) \bar{\tau} \sigma_{\mu\nu} \nu \,. \end{split}$$

- All operators are independently present already in the linear EFT
- However: Relations between different transitions: C_{V_R} is lepton-flavour universal [see also Cirigliano+'09] Relations between charged- and neutral-current processes, e.g. $\sum_{U=u,c,t} \lambda_{Us} C_{S_R}^{(U)} = -\frac{e^2}{8\pi^2} \lambda_{ts} C_S^{(d)} \text{ [see also Cirigliano+'12,Alonso+'15]}$
- These relations are again absent in the non-linear EFT

Matching for $b \to c \ell \nu$ transitions

$$\begin{split} C_{V_L} &= -\mathcal{N}_{\mathrm{CC}} \left[C_L + \frac{2}{v^2} c_{V5} + \frac{2V_{cb}}{v^2} c_{V7} \right] \,, \\ C_{V_R} &= -\mathcal{N}_{\mathrm{CC}} \left[\hat{C}_R + \frac{2}{v^2} c_{V6} \right] \,, \\ C_{S_L} &= -\mathcal{N}_{\mathrm{CC}} \left(c'_{S1} + \hat{c}'_{S5} \right) \,, \\ C_{S_R} &= 2\mathcal{N}_{\mathrm{CC}} \left(c_{LR4} + \hat{c}_{LR8} \right) \,, \\ C_T &= -\mathcal{N}_{\mathrm{CC}} \left(c'_{S2} + \hat{c}'_{S6} \right) \,, \end{split}$$

where
$$\mathcal{N}_{\text{CC}} = \frac{1}{2V_{cb}} \frac{v^2}{\Lambda^2}$$
, $C_L = 2c_{LL2} - \hat{c}_{LL6} + \hat{c}_{LL7}$ and $\hat{C}_R = -\frac{1}{2}\hat{c}_{Y4}$.

LO and NLO in linear and non-linear HEFT

Linear EFT

Building blocks $\psi_f, X_{\mu\nu}, D_{\mu}, H$

Finite powers of fields *H*-interactions symmetry-restricted

LO:

- Terms of dimension 4
- SM (renormalizable)

NLO:

• 59 ops. (w/o flavour)
[Buchmüller+'86,Grzadkowski+'10]

- ms of dimension 4 Tree-leve
- LO:

Non-linear EFT

 $(U = \exp(2i\Phi/v))$

• Tree-level h,U interactions

Building blocks $\psi_f, X_{\mu\nu}, D_{\mu}, U, h$

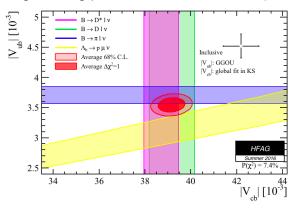
Arbitrary powers of Φ , h: U, f(h/v)

U-interactions symmetry-restricted

- + $SU(2)_{L+R}$, g_{X-h} weak $SM + f_i(h/v)$, non-renorm.
- NLO:
 - ~ 100 ops. (w/o flavour)
- Non-linear EFT generalizes linear EFT
- LO EFT predictive, justification for κ framework

$|V_{xb}|$: inclusive versus exclusive

Long-standing problem, motivation for NP [e.g. Voloshin'97]:



- Very hard to explain by NP [Crivellin/Pokorski'15]
 (but see [Colangelo/de Fazio'15])
- ▶ Suspicion: experimental/theoretical systematics?

$|V_{cb}|$: Recent developments

Recent Belle $B \to D, D^*\ell\nu$ analyses

Recent lattice results for
$$B \rightarrow D$$

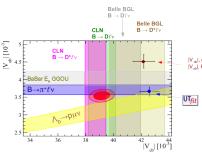
▶
$$B \rightarrow D$$
 between incl. $+ B \rightarrow D^*$

New lattice result for $B o D^*$ [HPQCD]

 $ightharpoonup V_{cb}^{
m incl}$ cv, compatible with old result

$$B \rightarrow D^* \ell \nu$$
 re-analyses with CLN, $|V_{ch}| = 39.3(1.0)10^{-2}$ [Bernlochner+'17]

$$|V_{cb}| = 40.4(1.7)10^{-2}$$



[Plot modification by M. Rotondo]

Theoretical uncertainties previously underestimated, in two ways:

- $1/m_c^2$ contributions likely underestimated in CLN
- Uncertainty given in CLN ignored in experimental analyses
- ▶ Inclusive-exclusive tension softened

Experimental analyses used

Decay	Observable	Experiment	Comment	Year
$B o D(e,\mu) u$	BR	BaBar	global fit	2008
$B o D\ell u$	<u>dΓ</u> dw dI dw	BaBar	hadronic tag	2009
$B\toD(e,\mu)\nu$	$\frac{d\Gamma}{dw}$	Belle	hadronic tag	2015
$B o D^*(e,\mu) u$	BR	BaBar	global fit	2008
$B o D^*\ell u$	BR	BaBar	hadronic tag	2007
$B o D^*\ell u$	BR	BaBar	untagged B^0	2007
$B o D^*\ell u$	BR	BaBar	untagged B^\pm	2007
$B o D^*(e,\mu) u$	$\frac{d\Gamma_{L,T}}{dw}$	Belle	untagged	2010
$B o D^* \ell \nu$	$\frac{d\Gamma}{d(w,\cos\theta_V,\cos\theta_I,\phi)}$	Belle	hadronic tag	2017

Different categories of data:

- Only total rates vs. differential distributions
- e, μ -averaged vs. individual measurements
- · Correlation matrices given or not
- ▶ Sometimes presentation prevents use in non-universal scenarios 🖰
- Recent Belle analyses (mostly) exemplary $\stackrel{\smile}{\circ}$

Comments regarding systematics and fitting [MJ/Straub'18]

Present (and future!) precision renders small effects important:

- Form factor parametrization
- d'Agostini effect: assuming systematic uncertainties \sim (exp. cv) introduces bias
 - lacktriangle e.g. $1\text{-}2\sigma$ shift in $|V_{cb}|$ in Belle 2010 binned data
- Rounding in a fit with strong correlations and many bins:
 - $ightharpoonup 1\sigma$ between fit to Belle 2017 data from paper vs. HEPdata
- BR measurements and isospin violation [MJ 1510.03423] : Normalization depends on $\Upsilon \to B^+B^-$ vs. $B^0\bar{B}^0$ Taken into account, but simple HFLAV average problematic:
 - Potential large isospin violation in $\Upsilon \to BB$ [Atwood/Marciano'90]
 - Measurements in r_{+0}^{HFAG} assume isospin in exclusive decays
 - This is one thing we want to test!
 - Avoiding this assumption yields $r_{+0} = 1.035 \pm 0.038$ (potentially subject to change, in contact with Belle members)
 - Relevant for all BR measurements at the %-level

SM and left-handed vector operators

As a crosscheck, produce SM values (using data from HEPdata): $V_{cb}^{B\to D}=(39.6\pm0.9)10^{-3}$ $V_{cb}^{B\to D^*}=(39.0\pm0.7)10^{-3}$

low compared to BGL analyses, compatible with recent results

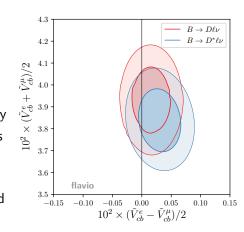
NP in
$$\mathcal{O}_{V_L}^{\ell\ell'}$$
: can be absorbed via $\tilde{V}_{cb}^\ell = V_{cb} \bigg[|1 + C_{V_L}^\ell|^2 + \sum_{\ell' \neq \ell} |C_{V_L}^{\ell\ell'}|^2 \bigg]^{1/2}$

Only subset of data usable $B \rightarrow D, D^*$ in agreement No sign of LFNU

• constrained to be $\lesssim \% \times V_{cb}$

In the following:

- ullet e and μ analyzed separately
- **▶** Usable in different contexts
- Full FF constraints used
- Plots created with flavio
- + independently double-checked
- Open source, adaptable



Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM

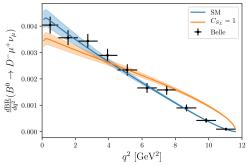
 \blacktriangleright For fixed V_{cb} , scalar NP increases rates

Close to
$$q^2 o q_{\max}^2$$
 in the SM: $\frac{d\Gamma(B o D\ell \nu)}{dq^2} \propto f_+^2 \left(q^2 - q_{\max}^2\right)^{3/2}$

With scalar contributions:
$$\frac{d\Gamma(B\to D\ell\nu)}{dq^2} \propto f_0^2 |C_{S_R} + C_{S_L}|^2 (q^2 - q_{\text{max}}^2)^{1/2}$$

Endpoint very sensitive to scalar contributions! [see also Nierste+'08]

Scalar contributions ruled out by the distributions ($\Gamma_1 = \Gamma_2$):



Scalar operators

For $m_{\ell} \rightarrow 0$, no interference with SM

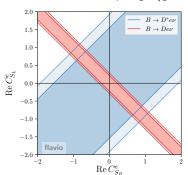
 \blacktriangleright For fixed V_{cb} , scalar NP increases rates

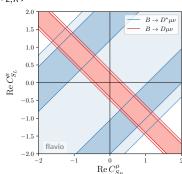
Close to
$$q^2 o q_{
m max}^2$$
 in the SM: $rac{d\Gamma(B o D\ell
u)}{dq^2}\propto f_+^2\left(q^2-q_{
m max}^2
ight)^{3/2}$

With scalar contributions:
$$\frac{d\Gamma(B\to D\ell\nu)}{dq^2} \propto f_0^2 |C_{S_R} + C_{S_L}|^2 (q^2 - q_{\rm max}^2)^{1/2}$$

▶ Endpoint very sensitive to scalar contributions! [see also Nierste+'08]

Fit with scalar couplings (generic $C_{S_{l,R}}$):





Slightly favours large contributions in muon couplings with $\mathit{C}^{\mu}_{S_{R}} pprox - \mathit{C}^{\mu}_{S_{L}}$

Scalar operators

For $m_\ell \to 0$, no interference with SM

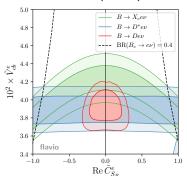
 \blacktriangleright For fixed V_{cb} , scalar NP increases rates

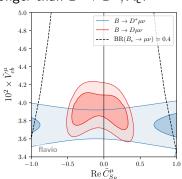
Close to
$$q^2 o q_{
m max}^2$$
 in the SM: ${d\Gamma(B o D\ell
u)\over dq^2}\propto f_+^2\left(q^2-q_{
m max}^2
ight)^{3/2}$

With scalar contributions:
$$\frac{d\Gamma(B\to D\ell\nu)}{dq^2}\propto f_0^2|C_{S_R}+C_{S_L}|^2\left(q^2-q_{\max}^2\right)^{1/2}$$

Endpoint very sensitive to scalar contributions! [see also Nierste+'08]

Also for LQ U_1 (or V_2): $B \to D$ stronger than $B \to D^*, X_c$:





Possible large contribution in $C_{S_B}^{\mu}$ excluded by $B \to D$

Tensor operators

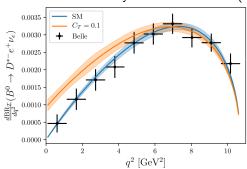
For $m_{\ell} \rightarrow 0$, no interference with SM

▶ For fixed V_{cb} , tensor contributions increase rates Close to $q^2 \rightarrow q_{\min}^2$:

$$rac{d\Gamma_T(B o D^*\ell
u)}{dq^2} \propto q^2 \, C_{V_L}^2 \left(A_1(0)^2 + V(0)^2
ight) + 16 m_B^2 \, C_T^2 \, T_1(0)^2 + O\left(rac{m_{D^*}^2}{m_B^2}
ight)$$

b Endpoint $(q^2 \sim 0)$ very sensitive to tensor contributions!

Tensor contributions ruled out by the distributions ($\Gamma_1 = \Gamma_2$):



Tensor operators

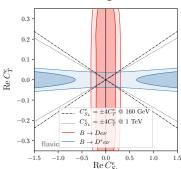
For $m_\ell \to 0$, no interference with SM

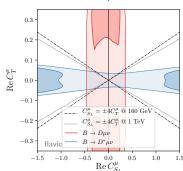
▶ For fixed V_{cb} , tensor contributions increase rates Close to $q^2 \rightarrow q_{\min}^2$:

$$rac{d\Gamma_T(B o D^*\ell
u)}{dq^2} \propto q^2 \, C_{V_L}^2 \left(A_1(0)^2 + V(0)^2
ight) + 16 m_B^2 \, C_T^2 \, T_1(0)^2 + O\left(rac{m_{D^*}^2}{m_B^2}
ight)$$

b Endpoint $(q^2 \sim 0)$ very sensitive to tensor contributions!

Fit for generic C_{S_L} and C_T (including LQs S_1 and R_1):





 $B \to D^*$ favours large contributions in $C_{S_i}^{e,\mu}$, ruled out by $B \to D$