Model independent constraints on new physics in semitauonic decays

Benjamín Grinstein

UC San Diego

April 13, 2018 Topical Workshop Challenges in Semileptonic B Decays MITP, Mainz, Germany

Benjamín Grinstein (UC San Diego)

semitauonic decays

April 13, 2018 1 / 17

Introduction

EFT to characterize models with heavy mediators

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\left(1 + \epsilon_L \right) \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_L b + \epsilon_R \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_R b \right]$$

$$+ \epsilon_{T} \, \bar{\tau} \sigma_{\mu\nu} P_{L} \nu_{\tau} \cdot \bar{c} \sigma^{\mu\nu} P_{L} b + \epsilon_{S_{L}} \bar{\tau} P_{L} \nu_{\tau} \cdot \bar{c} P_{L} b + \epsilon_{S_{R}} \bar{\tau} P_{L} \nu_{\tau} \cdot \bar{c} P_{R} b + \text{h.c.}$$

(日) (同) (三) (三)

Introduction

EFT to characterize models with heavy mediators

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\left(1 + \epsilon_L \right) \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_L b + \epsilon_R \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_R b \right] \\ + \epsilon_T \bar{\tau} \sigma_{\mu\nu} P_L \nu_\tau \cdot \bar{c} \sigma^{\mu\nu} P_L b + \epsilon_{S_L} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_L b + \epsilon_{S_R} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_R b + \text{h.c.}$$

Example: 2HDM. Take $\epsilon_L = \epsilon_R = \epsilon_T = 0$, and

$$\epsilon_{S_L} = \frac{m_\tau m_c}{m_{H^{\pm}}^2} \xi_{S_L}, \quad \epsilon_{S_R} = \frac{m_\tau m_b}{m_{H^{\pm}}^2} \xi_{S_R}$$

Benjamín Grinstein (UC San Diego)

April 13, 2018 2 / 17

Introduction

EFT to characterize models with heavy mediators

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\left(1 + \epsilon_L \right) \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_L b + \epsilon_R \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_R b \right]$$

$$+ \epsilon_{T} \, \bar{\tau} \sigma_{\mu\nu} P_{L} \nu_{\tau} \cdot \bar{c} \sigma^{\mu\nu} P_{L} b + \epsilon_{S_{L}} \bar{\tau} P_{L} \nu_{\tau} \cdot \bar{c} P_{L} b + \epsilon_{S_{R}} \bar{\tau} P_{L} \nu_{\tau} \cdot \bar{c} P_{R} b \bigg] + \text{h.c.}$$

No right handed neutrino:

- Needed only if nutrinos are Dirac
- Straightforward to include:
 - double the number of EFT operators, 10 total
 - creative naming: ϵ'_I , $I = L, R, \ldots$

(日) (同) (三) (三)

Objective

If I understand correctly my marching orders, the purpose of this talk is to review constraints on $\mathcal{L}_{\mathrm{eff}}$ by means unrelated to measurement of $B \to D^{(*)} \tau \nu$ (for this see Martin Jung's talk)

3) *B_c* lifetime

- 🕘 Quarkonium leptonic deacys
 - One line conclusion

SM-EFT

- SM-EFT: Effective Field Theory of SM
- Assume SM field content: all new particles have masses above $\Lambda \gg m_t$
- Supplement SM with operators of dimension ≥ 5
- \bullet Find contributions to $\mathcal{L}_{\rm eff}$ at low energies (integrate out heavy (SM) fields)

4-fermion operators:

$$Q_{lequ}^{(1)} = (\bar{\ell}e_R)(\bar{q}_L u_R) + \text{h.c.} \qquad Q_{lequ}^{(3)} = (\bar{\ell}\sigma_{\mu\nu}e_R)(\bar{q}_L\sigma^{\mu\nu}u_R) + \text{h.c.}$$
$$Q_{\ell q}^{(3)} = (\bar{q}\vec{\tau}\gamma^{\mu}q_L) \cdot (\bar{\ell}\vec{\tau}\gamma_{\mu}\ell_L) \qquad Q_{\ell edq} = (\bar{\ell}_L e_R)(\bar{d}_R q) + \text{h.c.}$$
None give $\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\dots + \epsilon_R \bar{\tau}\gamma_{\mu}P_L \nu_{\tau} \cdot \bar{c}\gamma^{\mu}P_R b + \dots \right]$

To be honest: $Q_{HHud} = i\tilde{H}^{\dagger}D_{\mu}H \bar{u}\gamma^{\mu}d_{R}$ contributes to ϵ_{R} :

Respects Lepton Universality; discard:

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\left(1 + \epsilon_L \right) \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_L b + \epsilon_R \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_R b \right] + \epsilon_T \bar{\tau} \sigma_{\mu\nu} P_L \nu_\tau \cdot \bar{c} \sigma^{\mu\nu} P_L b + \epsilon_{S_L} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_L b + \epsilon_{S_R} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_R b \right] + \text{h.c.}$$

Benjamín Grinstein (UC San Diego)

To be honest: $Q_{HHud} = i\tilde{H}^{\dagger}D_{\mu}H \,\bar{u}\gamma^{\mu}d_{R}$ contributes to ϵ_{R} :

Respects Lepton Universality; discard:

в

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\left(1 + \epsilon_L \right) \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_L b \right]$$

$$+ \epsilon_T \bar{\tau} \sigma_{\mu\nu} P_L \nu_\tau \cdot \bar{c} \sigma^{\mu\nu} P_L b + \epsilon_{S_L} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_L b + \epsilon_{S_R} \bar{\tau} P_L \nu_\tau \cdot \bar{c} P_R b + h.c.$$

Right handed neutrinos: additional 4-fermion operators (beware – done late last night)

$$Q_{Inuq}^{(1)} = (\bar{\ell}_L n_R)(\bar{u}_R q_L) + \text{h.c.}$$
$$Q_{enud} = (\bar{e}_R \gamma^\mu n_R)(\bar{u}_R \gamma_\mu d_R)$$

$$Q_{lnuq}^{(3)} = (\bar{\ell}_L \sigma_{\mu\nu} n_R) (\bar{u}_R \sigma^{\mu\nu} q_L) = 0$$
$$Q_{\ell nqd} = (\bar{\ell}_L n_R) (\bar{q}_L d_R) + \text{h.c.}$$

Parameters: $10 \rightarrow 7$. None give

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\tilde{\epsilon}_L \bar{\tau} \gamma_\mu P_R \nu_\tau \cdot \bar{c} \gamma^\mu P_L b + \epsilon_R \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_R b \right. \\ \left. + \tilde{\epsilon}_T \bar{\tau} \sigma_{\mu\nu} P_R \nu_\tau \cdot \bar{c} \sigma^{\mu\nu} P_R b \right] + \text{h.c.}$$

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F V_{cb}}{\sqrt{2}} \left[\dots + \epsilon_R \bar{\tau} \gamma_\mu P_L \nu_\tau \cdot \bar{c} \gamma^\mu P_R b + \dots \right]$$

3

A B F A B F

X-Q Li, Y-D Yang & X Zhang, arXiv:1605.09308 [hep-ph]. R Alonso, BG, M. Camailch, arXiv:1611.06676 [hep-ph].

(日) (同) (三) (三)

For $B \to D^{(*)} \tau \nu$

X-Q Li, Y-D Yang & X Zhang, arXiv:1605.09308 [hep-ph]. R Alonso, BG, M. Camailch, arXiv:1611.06676 [hep-ph].

(日) (同) (三) (三)

For $B_c \rightarrow \tau \nu$

Bounds from B_c decays are independent of observed anomaly
Branching fraction

$$\operatorname{Br}(B_c \to \tau \bar{\nu}_{\tau}) = \tau_{B_c^-} \frac{m_{B_c} m_{\tau}^2 f_{B_c}^2 G_F^2 |V_{cb}|^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_{B_c}^2}\right)^2 \left|1 + \epsilon_L + \frac{m_{B_c}^2}{m_{\tau}(m_b + m_c)} \epsilon_P\right|^2$$

depends on pseudoscalar coupling $\epsilon_{P} = \epsilon_{S_{R}} - \epsilon_{S_{L}}$ and ϵ_{L} through

$$\epsilon_L + rac{m_{B_c}^2}{m_{ au}(m_b+m_c)}\epsilon_P \simeq \epsilon_L + 4\epsilon_P$$

Below use $\epsilon_L = 0$; to restore ϵ_L in bounds: $\epsilon_P \rightarrow \epsilon_P + \frac{1}{4}\epsilon_L$

- $R_{D^*}^{\mathrm{expt}} = 0.316$, need $\epsilon_P = 1.48 \Rightarrow \mathrm{Br}(B_c \to \tau \bar{\nu}_{\tau}) \approx 104\%$.
- Measurement of ${
 m Br}(B^-_c o auar
 u_ au)$: sensitive probe. [Du et al, PLB414 (1997) 130]

(skip to slide 14, unless questions/discussion) Problem is

B_c^+ DECAY MODES × B($\overline{b} \rightarrow B_c$)

 B_c^- modes are charge conjugates of the modes below.

	Mode	Fraction (F	_i /Γ) (onfidence level
	The following quantities are not pure bra $\Gamma_i/\Gamma \times B(\overline{b} \rightarrow B_c).$	inching ratios;	rather the fr	action
Γ1	$J/\psi(1S)\ell^+ u_\ell$ anything	(5.2 +2	$(\frac{4}{1}) \times 10^{-5}$	
Γ2	$J/\psi(1S)\mu^+ u_\mu$			
Гз	$J/\psi(1S)\pi^+$	seen		
Γ4	$J/\psi(1S)K^+$	seen		
Γ ₅	$J/\psi(1S)\pi^{+}\pi^{+}\pi^{-}$	seen		
Г ₆	$J/\psi(1S) a_1(1260)$	< 1.2	$\times 10^{-3}$	90%
Γ7	$J/\psi(1S)K^+K^-\pi^+$	seen		
Г ₈	$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	seen		
Г9	$\psi(2S)\pi^+$	seen		
Γ ₁₀	$J/\psi(1S)D_s^+$	seen		
Γ11	$J/\psi(1S)D_s^{*+}$	seen		
Γ ₁₂	$J/\psi(1S)p\bar{p}\pi^+$	seen		
Γ ₁₃	$D^{*}(2010)^{+}\overline{D}^{0}$	< 6.2	$\times 10^{-3}$	90%
Γ ₁₄	D ⁺ K ^{*0}	< 0.20	× 10 ⁻⁶	90%
Γ ₁₅	$D^+\overline{K}^{*0}$	< 0.16	× 10 ⁻⁶	90%
Γ ₁₆	D_s^+ K^{*0}	< 0.28	× 10 ⁻⁶	90%
Γ ₁₇	$D_{s}^{+}\overline{K}^{*0}$	< 0.4	× 10 ⁻⁶	90%
Γ ₁₈	$D_s^+\phi$	< 0.32	× 10 ⁻⁶	90%
Γ ₁₉	$K^{+}K^{0}$	< 4.6	× 10 ⁻⁷	90%
Γ ₂₀	$B^0_s \pi^+ / B(\overline{b} \rightarrow B_s)$	(2.37+0	$^{37}_{35}) \times 10^{-3}$	

Benjamín Grinstein (UC San Diego)

<ロ> (日) (日) (日) (日) (日)

- Measurement of ${
 m Br}(B^-_c o au ar
 u_ au)$ may be sensitive probe in future?
- Alternative strategy: lifetime
 - Very high precision (1.5%): $au_{B_c} = 0.507(8) imes 10^{-12}$ s
 - Relatively well understood
 - Overview of result using NR-OPE: [Beneke&Buchala, PRD53,4991]
 - $au^{
 m OPE}_{B_c} = 0.52^{+0.18}_{-0.12}$ ps; take $au^{
 m OPE}_{B_c} < 0.70$ ps
 - OPE is inclusive; but only Weak Annihilation (WA) gives $B_c \rightarrow \tau \nu$.

•
$$\Gamma_{WA}^{OPE} \leq 3\%$$

$$\begin{split} \Gamma^{\mathrm{exp}} &= 0.97 \Gamma^{\mathrm{OPE}} + \Gamma^{\mathrm{OPE}}_{\mathrm{WA}} > 0.97 \Gamma^{\mathrm{OPE}} + \Gamma(B_c \to \tau \nu) \\ &> 0.97 \Gamma^{\mathrm{OPE}}_{\mathrm{min}} + \Gamma(B_c \to \tau \nu) \end{split}$$

• $\Rightarrow Br(B_c \rightarrow \tau \nu) < 30\%$

- Note Strategy does nothing for ϵ_L :
 - with $R_D^{(*)}/R_{D,\rm SM}^{(*)} = 1.3 = (1 + \epsilon_L)^2$ gives small effect Br $(B_c \rightarrow \tau \nu) = 2.7\%$ (and $\Gamma_{\rm WA} < 4\%$)
 - even for perfect theory and including tau from spectator diagrams get effect below experimental uncertainty: $\Delta \tau_{B_c} / \tau_{B_c} = 1.2\%$

Theory of B_c lifetime 0-th order, free quark decay

Lusignoli/Massetti, Z.Phys.C51,549(1991) Gershtein et al, P.Uspekhi 38,1,(1995) Bigi, PLB 371, 105(1996) Beneke/Buchala, PRD 53,4991(1996) Change et al, PRD 64, 014003(2001) Kiselev, NPB 585, 353(2000) Gouz et al, Phys Atm Nucl 67, 1559(2004)

Simple:

$$\Gamma = \Gamma(b
ightarrow X) + \Gamma(c
ightarrow X) + \Gamma(ann)$$

with

$$\Gamma(b \to X) = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \times 9$$
$$\Gamma(c \to X) = \frac{G_F^2 |V_{cs}|^2 m_c^5}{192\pi^3} \times 5$$

and $\Gamma(ann)$ as in Br $(\tau \nu)$ (with a factor of $3|V_{cs}|^2$ for $\bar{c}s$)

1st order, phase space correction: large effect on $c \rightarrow s$ because $m_B/m_{B_c} \sim 0.8$

- - E

Effect of phase space in pictures:

Decay mode	Free quarks	\mathbf{B}_{c}^{+}	BR	Decay mode	Free quarks	$\mathbf{B}_{\mathbf{c}}^{+}$	BR
$b \rightarrow \bar{c} + e^+ \nu_e$	62	62	4.7	$c \rightarrow s + e^+ + \nu_e$	124	74	5.6
$\bar{b}\to\bar{c}+\mu^+\nu_\mu$	62	62	4.7	$c \to s + \mu^+ + \nu_\mu$	124	74	5.6
$\bar{b} \rightarrow \bar{c} + \tau^+ \nu_\tau$	14	14	1.0	$c \to s+u+\bar{d}$	675	405	30.5
$\bar{b} \rightarrow \bar{c} + \bar{d} + u$	248	248	18.7	$c \to s+u+\overline{s}$	33	20	1.5
$\bar{b} \rightarrow \bar{c} + \bar{s} + u$	13	13	1.0	$c \to d + e^+ \nu$	7	4	0.3
$\bar{b} \rightarrow \bar{c} + \bar{s} + c$	87	87	6.5	$c \to d + \mu^+ + \nu_\mu$	7	4	0.3
$\bar{b} \rightarrow \bar{c} + \bar{d} + c$	5	5	0.4	$c \rightarrow d + u + \bar{d}$	39	23	1.7
$\mathrm{B}_{\mathrm{c}}^{+} \rightarrow \tau^{+} + \nu_{\tau}$	_	63	4.7	$B_c^+ \rightarrow c + \overline{s}$	_	162	12.2
$B_c^+ \to c + \bar{d}$	_	8	0.6	$\mathrm{B}_c^+ \to all$	_	1328	100

This simple minded approach gives widths (10^{-6}eV) and Br's

Note: $10^6/1328 eV^{-1} = 0.496 ps$

Decay mode	Free quarks	\mathbf{B}_{c}^{+}	BR	Decay mode	Free quarks	ee quarks B_c^+ B	
$b \rightarrow \bar{c} + e^+ \nu_e$	62	62	4.7	$c \rightarrow s + e^+ + \nu_e$	124	74	5.6
$\bar{b} \rightarrow \bar{c} + \mu^+ \nu_{\mu}$	62	62	4.7	$c \to s + \mu^+ + \nu_\mu$	124	74	5.6
$\bar{b} \rightarrow \bar{c} + \tau^+ \nu_{\tau}$	14	14	1.0	$c \to s+u+\bar{d}$	675	405	30.5
$\overline{b} \rightarrow \overline{c} + \overline{d} + u$	248	248	18.7	$c \to s+u+\overline{s}$	33	20	1.5
$\bar{b} \rightarrow \bar{c} + \bar{s} + u$	13	13	1.0	$c \to d + e^+ \nu$	7	4	0.3
$\overline{c} \rightarrow \overline{c} + \overline{s} + c$	87	87	6.5	$c \rightarrow d + \mu^+ + \nu_{\mu}$	7	4	0.3
$\overline{c} \rightarrow \overline{c} + \overline{d} + c$	5	5	0.4	$c \rightarrow d + u + \bar{d}$	39	23	1.7
$B_c^+ ightarrow au^+ + u_{ au}$	_	63	4.7	$B_c^+ \rightarrow c + \bar{s}$		162	12.2
$3_c^+ \rightarrow c + \bar{d}$	_	8	0.6	$B_c^+ \rightarrow all$	_	1328	100
ote: 10 ⁶ /1328e order: OPE in	$V^{-1} = 0.496$ ps NRQFT, basically sa	ame result, l	out systemat	ic Mode		Partial rate (ps ⁻¹)	
				F . T. 7		0.310	

This simple minded approach gives widths (10^{-6}eV) and Br's

$\Gamma_{B_c} = \frac{1}{2m_{B_c}} \langle B_c \text{Im} i \int d^4 x T \mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}(0) $	B _c)
--	------------------

followed by OPE expansion

- Not fully proven, but works pretty well for Γ_B , Γ_Λ
- Matrix Elements fairly accurate from potential model
- Largest uncertainty: quark masses (huge room for improvement)

Mode	Partial rate (ps ⁻¹)			
$\overline{b} \rightarrow \overline{c} u \overline{d}$	0.310			
$\overline{b} \rightarrow \overline{c} c \overline{s}$	0.137			
$\overline{b} \rightarrow \overline{c} e \nu$	0.075			
$\overline{b} \rightarrow \overline{c} \tau \nu$	0.018			
$\Sigma \overline{b} \rightarrow \overline{c}$	0.615			
$c \rightarrow sud$	0.905			
$c \rightarrow se \nu$	0.162			
$\Sigma c \rightarrow s$	1.229			
WA: $\overline{b}c \rightarrow c\overline{s}$	0.138			
$WA:\overline{b}c \rightarrow \tau \nu$	0.056			
PI	-0.124			
Total	1.914	Ð,	୬ବ୍ଦ	
decays	April 13, 2018		13 / 17	

Benjamín Grinstein (UC San Diego)

semitauonic decays

11 15, 2010

Taking care of errors (using $Br(B_c \rightarrow \tau \nu) < 30\%$ as above)

Correlation between R_{D^*} and $Br(B_c \rightarrow \tau \nu)$ for a pseudoscalar NP interaction (red line). The shaded areas are the 1 σ -band corresponding to the measurement of R_{D^*} (vertical orange) and to the bound on the NP contribution to the lifetime of the B_c assuming that the SM accounts for the 70% of it (gray horizontal).

3

Quarkonium leptonic deacys as Probes for $R(D^{(*)})$

V(nS)	SM prediction	Exp. value $\pm \sigma_{\rm stat} \pm \sigma_{\rm syst}$
$\Upsilon(1S)$	$0.9924 \pm \mathcal{O}(10^{-5})$	$1.005 \pm 0.013 \pm 0.022$
$\Upsilon(2S)$	$0.9940 \pm \mathcal{O}(10^{-5})$	$1.04 \pm 0.04 \pm 0.05$
$\Upsilon(3S)$	$0.9948 \pm \mathcal{O}(10^{-5})$	$1.05 \pm 0.08 \pm 0.05$
$\psi(2S)$	$0.390 \pm O(10^{-4})$	0.39 ± 0.05

D. Aloni, A. Efrait, Y Grossman, Y Nir, arXiv:1702.07356 [hep-ph]

- $R(D^{(*)})$ -New Physics Operators may also appear $ar{Q}Q o ar{\ell}\ell$
- Measurements better than 10 % accuracy
- Theory reasonably clean
- EFT (dim-4 operators) can be mapped to specific mediators

UV field content	$R_{\tau/\ell}^{\Upsilon(1S)}$	$R_{\tau/\ell}^{\psi(2S)}$	Predicted modification to $R_{\tau/\ell}^{\Upsilon(1S)}$
$W'_{\mu} \sim (1,3)_0$	0.989-0.991	0.390	Decrease by $0.2\% - 0.4\%$
$U_{\mu} \sim (3,1)_{+2/3}$	0.952 - 0.990	SM	Decrease by $0.3\% - 4.0\%$
$S \sim (3,1)_{-1/3}$	SM	0.389-0.390	_
$V_{\mu} \sim (3,2)_{-5/6}$	0.976 - 0.987	SM	Decrease by $0.5\% - 1.6\%$
SM	0.992	0.390	
Current measurement	1.005 ± 0.025	0.39 ± 0.05	
Achievable uncertainty (with current data)	± 0.01	± 0.02	
Projected uncertainty $(\mathcal{L}^{\Upsilon(3S)} = 1/ab$ in Belle II)	± 0.004	-	

Benjamín Grinstein (UC San Diego)

April 13, 2018 15 / 17

Example: $U_{\mu} \sim (3,1)_{+2/3}$: $\mathcal{L} = U_{\mu} \left(g_1 \bar{Q}_{3L} \gamma^{\mu} \ell_{3L} + g_2 \bar{d}_{3R} \gamma^{\mu} e_{3R} \right)$

Couplings at 95% C.L. for $M_{\mu} = 1$ TeV Color lines: contours of $R_{\tau/\ell}^{\Upsilon(1S)}$

April 13, 2018 16 / 17

3

(人間) トイヨト イヨト

Conclusion

If I were a model builder and wanted to explain τ anomalies I would build a model with $\epsilon_R = \epsilon_{S_R} = \epsilon_{S_L} = \epsilon_T = 0$ and $\epsilon_I = 0.13$

Benjamín Grinstein (UC San Diego)

April 13, 2018 17 / 17