$B \rightarrow X \tau \nu$ measurements at LHCb

Greg Ciezarek, on behalf of the LHCb collaboration

April 10, 2018

 $B \rightarrow D^{(*)} \tau \nu$

- In the Standard model, the only difference between $B \to D^{(*)} \tau \nu$ and $B \to D^{(*)} \mu \nu$ is the mass of the lepton
 - Form factors mostly cancel in the ratio of rates (except helicity suppressed amplitude)
- Ratio $R(D^{(*)}) = B(B \rightarrow D^{(*)}\tau\nu) / B(B \rightarrow D^{(*)}\mu\nu)$ is sensitive to e.g charged Higgs, leptoquark

2. Introduction

History

Phys. Rev. D. (2010) 88 072012

- How this started: measurements from B factories in $\tau \rightarrow \ell \nu \nu$ channel
 - Final measurement from BaBar (Phys. Rev. D. 88 072012) claimed 3 σ excess over SM expectation
 - Status at the time of the Babar measurement

Experimental challenge

- Difficulty: neutrinos 2 for $(au o \pi\pi\pi
 u)
 u$, 3 for $(au o \mu
 u
 u)
 u$
 - No narrow peak to fit (in any distribution)
- Main backgrounds: partially reconstructed B decays
 - $B \to D^* \mu \nu, B \to D^{**} \mu \nu, B \to D^* D(\to \mu X) X \dots$
 - $B \rightarrow D^* \pi \pi \pi X$, $B \rightarrow D^* D (\rightarrow \pi \pi \pi X) X$...
- Also combinatorial, misidentified background

B Factory method

- Traditional methods for measuring these decays rely on $e^+e^- \rightarrow B\overline{B}$ event properties
 - Centre of mass fixed
 - Nothing else produced in event
- "Tag reconstruction"
 - Fully reconstruct other $B \rightarrow$ measurement of signal B kinematics
 - Signal B + other B should be entire event \rightarrow strong rejection against other missing reconstructable particles
- Penalty: sub percent efficiency

Can you do this at a hadron collider?

- In a hadron collider the BB centre of mass isn't fixed → rest of event provides little constraint on the signal B kinematics
 - Event also contains a lot of junk from the proton-proton interaction \rightarrow reconstructing the whole event is meaningless
- Needed completely different methods

4. Muonic $\mathcal{R}(D^*)$ measurement

Isolation

Phys. Rev. Lett. 115 (2015) 111803

- Reject physics backgrounds with additional charged tracks
- MVA output distribution for $B \to D^{**} \mu^+ \nu$ background (hatched) and signal (solid)
- Inverting the cut gives a sample hugely enriched in background \rightarrow control samples

Fit strategy

Phys. Rev. Lett. 115 (2015) 111803

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

- Can use *B* flight direction to measure transverse component of missing momentum
- No way of measuring longitudinal component \rightarrow use approximation to access rest frame kinematics
 - Assume $\gamma \beta_{z,visible} = \gamma \beta_{z,total}$
 - \sim 20% resolution on *B* momentum, long tail on high side
- Can then calculate rest frame quantities $m^2_{missing}$, E_{μ} , q^2

Fit strategy

Phys. Rev. Lett. 115 (2015) 111803

- Three dimesional template fit in E_{μ} (left), $m^2_{missing}$ (middle), and q^2
 - Projections of fit to isolated data shown
- All uncertainties on template shapes incorporated in fit:
 - Continuous variation in e.g different form factor parameters

Background strategy

10/28 Phys. Rev. Lett. 115 (2015) 111803

All major backgrounds modelled using control samples in data

- Dedicated samples for different backgrounds $(D^*\pi, D^*\pi\pi, D^*DX)$
- Quality of fit used to justify modelling
- Data-driven systematic uncertainties
- All combinatorial or misidentified backgrounds taken from data
- More details on everything in backups

- Fit to isolated data, used to determine ratio of $B \to D^* \tau \nu$ and $B \to D^* \mu \nu$
- Model fits data well
- We measure $\mathcal{R}(D^*)=0.336\pm0.027\pm0.030,$ consistent with SM at 2.1σ level
 - Phys. Rev. Lett. 115 (2015) 111803(Run 1 data)

4. Muonic $\mathcal{R}(D^*)$ measurement

 $B_c \rightarrow J/\psi \, \tau \nu$

•
$$R_{J/\psi} \equiv B_c \rightarrow J/\psi \tau \nu / B_c \rightarrow J/\psi \mu \nu$$

- Measured using very similar techniques to R(D^{*}), on run 1 data
- $R_{J/\psi} = 0.71 \pm 0.17 \pm 0.18$
 - $\sim 2\sigma$ from SM
 - But nearly as far from consistency with $\mathcal{R}(D^*)$
- LHCb-PAPER-2017-035(Run 1 data)

(日)、

- 3

 $\mathcal{R}(D^*)$ with $au o \pi \pi \pi
u$

13/28

- Compared to muonic $\mathcal{R}(D^*)$:
 - Large $B
 ightarrow D^* \mu
 u$, $B
 ightarrow D^{**} \mu^+
 u$ backgrounds absent
 - Additional $B \rightarrow D^* \pi \pi \pi X$ backgrounds
 - $B \rightarrow D^* DX$ with $D \rightarrow \pi \pi \pi X$
- Control experimental efficiencies by measuring rate relative to $B \to D^* \pi \pi \pi$

Removing $B \rightarrow D^* \pi \pi \pi X$

LHCb-PAPER-2017-017, LHCb-PAPER-2017-027

- Can use decay topology to remove direct $B \rightarrow D^* \pi \pi \pi X$ decays:
- If the $\pi\pi\pi$ vertex is displaced from the B vertex, cannot be direct $B \rightarrow D^*\pi\pi\pi X$
- · Can remove a large, poorly measured background
 - And control the remainder
- $B \rightarrow D^* DX$ major physics background remaining

Dealing with $B \rightarrow D^* D X$

LHCb-PAPER-2017-017, LHCb-PAPER-2017-027

15/28

- $[\pi\pi\pi]$ lifetime discriminates between tau and $B \rightarrow D^*DX$
- Can use partial reconstruction techniques to reconstruct D peak in $B \rightarrow D^{*+}D$ (not $B \rightarrow D^*DX$)
- $\tau \to \pi \pi \pi \nu$ is mostly a1(1260), $D \to \pi \pi \pi X$ mostly isn't
 - Use the $\pi\pi\pi$ (sub) structure to separate $B \rightarrow D^* \tau \nu$ from $B \rightarrow D^* DX$
 - Shown: control region for $D_s \rightarrow \pi \pi \pi X$
- Put everything in an MVA: kinematics, Dalitz, partial reconstruction, page

 $D \to \pi \pi \pi X$

LHCb-PAPER-2017-017, LHCb-PAPER-2017-027

16/28

∋) ∋

Again, use data to control background modelling

• Use low BDT region to control $D_s \rightarrow \pi\pi\pi X$ substructure

LHCb-PAPER-2017-017, LHCb-PAPER-2017-027

(日)、

æ

• 3D template fit in BDT, q^2 , tau lifetime to determine signal yield

Result

LHCb-PAPER-2017-017, LHCb-PAPER-2017-027

- Result equally compatible with SM, world average
- More precise than our past result (still only run 1 data)
- New average gives a slightly lower value, but higher precision ightarrow significance increases very, very slightly
- LHCb-PAPER-2017-017, LHCb-PAPER-2017-027(Run 1 data)

Where do we stand?

- Official HFLAV combination of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$
- Excellent consistency between results
- Combined: 4.1σ tension with SM
 - (Before considering more conservative $B \rightarrow D^* \tau \nu$ form factors..))

Where next?

- Next step from muonic $\mathcal{R}(D^*)$: $D^0\mu X$ vs $D^{*+}\mu X$
 - Backgrounds not so much worse than in $D^{*+}\mu X$
 - Significant improvement in precision
- Ongoing: $B_s \rightarrow D_s^{(*)} \tau \nu$
 - Similar situation to $\mathcal{R}(D^{(*)})$
 - Main difference to $B \rightarrow D^{(*)} \tau \nu$: feed-down mostly via neutrals

Where next?

- Ongoing: $\Lambda_b \to \Lambda_c^{(*)} \tau \nu$
 - Different spin structure to meson modes \rightarrow different physics sensitivity
 - In particular, would help discriminate tensor contributions
- Potential: $B \rightarrow D^{**} \tau \nu$
 - Samples of $D^{**}\mu X$ not so small: control sample for $\mathcal{R}(D^*)$ measurement shown
 - To interpret results, need to split measurements between different D^{**} states
 - More work needed first on $B
 ightarrow D^{**} \mu
 u$ modes

- If we establish a new physics signal in $b \rightarrow c \tau \nu$, would really want to test the flavour structure: $b \rightarrow u \tau \nu$
 - $b \to c \tau \nu$ hard enough to measure, before extra suppression \to background levels challenging
 - Requires very careful choice of channel to give us any hope
- $B \rightarrow p\overline{p}\tau\nu$ with $\tau \rightarrow \mu\nu\nu$
 - Experimentally the cleanest, Theoretically not so good...
 - Will make detailed measurements of corresponding $B
 ightarrow p \overline{p} \mu
 u$ mode
- $\Lambda_b \rightarrow p \tau \nu$ with $\tau \rightarrow \pi \pi \pi \nu$?
 - Lattice calculations used to measure $|V_{\rm ub}|$ with equivalent $\Lambda_b \rightarrow p\mu\nu$ mode \rightarrow already have a good theory prediction

Angular resolutions for $B \rightarrow D^* \tau \nu$

- Angular resolution for $B \to D^* \mu \nu$, $B \to D^* \tau \nu \ (\tau \to \mu \nu \nu)$
- Tau decay results in loss of information
 - θ_{ℓ} and χ degraded, θ_D a bit less
- These resolutions aren't horrific \rightarrow we can make a measurement (with unknown sensitivity)
- These resolutions aren't insignificant \rightarrow needs massive care

What can we do?

- Unfolding this seems a nightmare (as does background subtraction) ightarrow we are unlikely to publish corrected q^2 / angular distributions for signal
- But we can fit the data
 - Templates we fit already include effects of resolution, acceptance ...

What to measure

- First need to see if the excess holds up!
- Afterwards:
 - Does measured value change allowing NP operators?
 - Can enhancement be accommodated by theory uncertainty?
 - Pure vector/axial/tensor/...?
 - Or a combination of operators?
 - Can we fit the full matrix element?

Scalar form factor

- Trying to measure (pseudo)scalar form factor directly from $B \to D^{(*)} \tau \nu$ doesn't seem so implausible
 - If no new (pseudo)scalar physics, and form factor agrees with prediction \rightarrow model independent SM exclusion
 - Uncertainty from QED corrections?
- Testing SM only hypothesis \rightarrow constrain other form factors from $B \rightarrow D^{(*)} \mu \nu$
- Not yet sure when we become sensitive enough

- With $\tau \rightarrow \mu \nu \nu$:
 - Some sensitivity to polarisation, but probably can't disentangle from angular distribution?
- With $\tau \to \pi \pi \pi \nu$:
 - Combined $\pi\pi\pi$ momentum has little sensitivity to polarisation
 - But some information in substructure \rightarrow exploring this
 - Thesis of Laurent Duflot (LAL 93-09)
- · Measurement of polarisation and angular information correlated
- Physics of polarisation and angular information correlated
- We should consider both together

Conclusion

- World average for $\mathcal{R}(D^{(*)})$ still in tension with SM
- LHCb has established techniques to measure $B \to X_c \tau \nu$ with both $\tau \to \mu \nu \nu$ and $\tau \to \pi \pi \pi \nu$
 - Relatively independent systematics, important as precision improves
- Wide program underway with a full range of charm hadrons
- Plans for how to go beyond branching fractions
 - Overlaps with measurements in $B o X_c \mu
 u$
- Lots to look forward to

Backups

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$B \rightarrow D^* \mu \nu$

- $B \rightarrow D^* \mu \nu$ (black) vs $B \rightarrow D^* \tau \nu$ (red)
- $B \rightarrow D^* \mu \nu$ is both the normalisation mode, and the highest rate background ($\sim 20 \times B \rightarrow D^* \tau \nu$)
 - Use CLN parameterisation for form factors
 - Float form factors parameters in fit ightarrow uncertainty taken into account

8. Backup

 $B \rightarrow D^{**} \mu^+ \nu$

- $B \rightarrow D^{**} \mu^+ \nu$ refers to any higher charm resonances (or non resonant hadronic modes)
- Not so well measured
 - Set of states comprising D^{**} known to be incomplete
 - Decay models not well measured
- For the established states (shown in black):
 - Separate components for each resonance (D_1, D_2^*, D_1')
 - Use LLSW model (Phys. Rev. D. (1997) 57 307), float slope of Isgur-wise function < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $B
ightarrow D^{**} (
ightarrow D^{*+} \pi) \mu
u$ control sample

• Isolation MVA selects one track, $M_{D^{*+}\pi}$ around narrow D^{**} peak \rightarrow select a sample enhanced in $B \rightarrow D^{**}\mu^+\nu$

- Use this to constrain, justify $B
 ightarrow D^{**} \mu^+
 u$ shape for light D^{**} states
- Also fit above, below narrow D^{**} peak region to check all regions of $M_{D^{*+}\pi}$ are modelled correctly in data

Higher $B \rightarrow D^{**} \mu^+ \nu$ states

- Previously unmeasured $B \rightarrow D^{**} (\rightarrow D^{*+} \pi \pi) \mu \nu$ contributions recently measured by BaBar
 - Too little data to separate individual (non)resonant components
 - Single fit component, empirical treatment
- Constrain based on a control sample in data
 - Degrees of freedom considered: D^{**} mass spectrum, q^2 distribution
 - Effect of D** mass spectrum negligible

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

$B \rightarrow D^{**} (\rightarrow D^{*+} \pi \pi) \mu \nu$ control sample

- Also look for two tracks with isolation MVA \rightarrow study $B \rightarrow D^{**}(\rightarrow D^{*+}\pi\pi)\mu\nu$ in data
- Can control shape of this background

34/28

(日)、

э

$B \rightarrow D^* D X$

- $B \rightarrow D^*DX$ consists of a very large number of decay modes
 - Physics models for many modes not well established
- Constrain based on a control sample in data
- Single component, empirical treatment
 - Consider variations in M_{DD}
 - Multiply simulated distributions by second order polynomials
 - Parameters determined from data

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$B \rightarrow D^* DX$ control sample

• Isolation MVA selects a track with loose kaon ID \rightarrow select a sample enhanced in $B \rightarrow D^*DX$

・ロト ・聞ト ・ヨト ・ヨト

э

• Use this to constrain, justify $B \rightarrow D^* DX$ shape

Combinatorial backgrounds

- Combinatorial background modelled using same-sign $D^{*+}\mu^+$ data
- Two sources of combinatorial background are treated separately (shown on next slide)

(日)、

-

Combinatorial backgrounds

- Non D^{*+} backgrounds (fake D^*) template modelled using $D^0\pi^-$ data (shown)
 - Yield determined from sideband extrapolation beneath D^{*+} mass peak
- Hadrons misidentified as muons (fake muons)
 - Controlled using $D^{*+}h^{\pm}$ sample
 - · Both template and expected yield can be determined
- Both of these are subtracted from D^{*+}µ⁺ template to avoid double counting

$D^{*+}\tau X$ backgrounds

- Two small backgrounds containing taus, each $<\sim 10\%$ of the signal yield: $B \rightarrow D^{**}\tau^+\nu$ (shown) and $B \rightarrow D^*(D_s \rightarrow \tau\nu)X$
 - Both too small to measure
- $B \rightarrow D^{**}\tau^+\nu$ constrained based on measured $B \rightarrow D^{**}\mu^+\nu$ yield, theoretical expectations (~50% uncertainty)
- $B \rightarrow D^*(D_s \rightarrow \tau \nu)X$ constrained based on $B \rightarrow D^*DX$ yield, and measured branching fractions (~30% uncertainty)

Systematics / efficiencies

Model uncertainties	Size (×10 ⁻²)		
Simulated sample size	2.0		
Misidentified μ template shape	1.6		
D^* form factors	0.6	Multiplicative uncertainties	Size $(\times 10^{-2})$
$B \to D^* D X$ snape $\mathcal{B}(B \to D^{**} \tau \nu) / \mathcal{B}(B \to D^{**} \mu \nu)$	0.5	Simulated sample size	0.6
$B \rightarrow [D^*\pi\pi]\mu\nu$ shape	0.4	Hardware trigger efficiency	0.6
Corrections to simulation	0.4	Particle identification efficiencies	0.3
Combinatoric background shape	0.3	Form-factors	0.2
D ^{**} form factors	0.3	$\mathcal{B}(au o \mu u u)$	< 0.1
$B \to D^*(D_* \to \tau \nu) X$ fraction	0.1	Total multiplicative uncertainty	0.9
Total model uncertainty	2.8	Total systematic uncertainty	3.0

- Largest systematic from simulation statistics \rightarrow reducible in future
- Next largest systematic from choice of method used to construct fake muon template
- Other systematic from background modelling depend on control samples in data
 - No uncertainties limited by external inputs
- Systematics from ratio of $B \rightarrow D^* \mu \nu$ and $B \rightarrow D^* \tau \nu$ efficiencies small

・ロト・日本・モート モー うへぐ

Other hadronic analyses

- After $\mathcal{R}(D^*)$, expect full program of measurements with hadronic tau
- $\mathcal{R}(\Lambda_c)$ already underway
- Key issue: normalisation channels
 - Hadronic $\mathcal{R}(D^*)$ measurement relies on precise external measurement of $B\to D^{*+}\pi^-\pi^+\pi^-$
 - These do not exist for e.g $\Lambda_b \to \Lambda_c \pi^- \pi^+ \pi^-$
 - Plan to use theory calculation for B(Λ_b → Λ_cμν)/B(B→ D^{*}μν) to avoid dependence on Λ_b production fraction

Beyond Rs

- Ratios of branching fractions are only the first observable
 - q^2 , angles, τ/D^* polarisation have different sensitivity to new physics
- Variables fitted in $\tau \to \mu \nu \nu$ analyses already have some sensitivity to this
 - For now, measurements assume SM distributions (+ uncertainties)

9. Future

Angular resolutions for $B \rightarrow D^* \tau \nu \ (\tau \rightarrow \mu \nu \nu)$

- Angular resolution for $B \rightarrow D^* \mu \nu$ (black) and $B \rightarrow D^* \tau \nu$ (red)
- Tau decay results in degredation of resolution
- Pretty wide, but have something to work with
 - Interesting mesurements also possible in muonic modes
- Ideas for how to exploit this, some tools already exist
- Sensitivity not yet known, may need larger samples to really pin things down..

Future

- What we have analysed now is a tiny fraction of the sample we will eventually collect
 - With 50 fb $^{-1}$ (2021-2030), samples will grow by a factor \sim 30
 - With 300 fb $^{-1}$, (2034) samples will grow by a factor \sim 200
 - No sign that we hit a systematic limit
 - O(10 million) $B \rightarrow D^* \tau \nu \ (\tau \rightarrow \mu \nu \nu)$ events \rightarrow huge power for angular analysis
 - Need to work together with theory to understand all contributions to the needed precision \rightarrow continuous process
 - Even more suppressed signals $(B_c \rightarrow J/\psi \tau \nu X, B \rightarrow D^{**} \tau \nu, b \rightarrow u \tau \nu modes?)$ can have high statistical precision

• Now in slices of BDT output

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Dealing with $B \rightarrow D^* D X$

- Use data to control $B \rightarrow D^*DX$ modelling
- Can use $D_{(s)}
 ightarrow \pi \pi \pi$ mass peak to select a pure $B
 ightarrow D^* D X$ sample

・ 同 ト ・ ヨ ト ・ ヨ

• This controls the $B \rightarrow D^*DX$ modelling, but not the $D \rightarrow \pi\pi\pi X$

Unfolding isn't fundamentally sound

- Unfolding doesn't have good statistical properties
- See e.g R. D. Cousins, S.J. May, Y. Sun "Should unfolded histograms be used to test hypotheses?"
 - Spoilers: probably not
 - Even before biases introduced by regularisation
 - Going in the other direction is a fundamentally well defined procedure
- Describing the full space will require O(1000) bins \rightarrow not practical to unfold
- Uncertainty from background shapes difficult to reproduce accurately as a simple "background subtraction"
 - Often just ignored, we really cannot do this

Forward folding

- Don't deconvolute data to theory, convolute theory to data
 - Best convolution: MC simulation
- This is exactly what we are already doing!
 - Can build on what we already have...
- Problem: model dependence need to choose functional form
 - We will explore all possibilities

Histogram expansion PDF

- What we want to do: reweight MC, reproduce histogram PDF
 - Event-by-event \rightarrow slow
- Weight for each event can be written as $\sum [(\text{Combination of fit coefficients}) \times (\text{Stuff invariant in fit})]$
 - (or expand it until it can be..)
 - Loop through events once, for each term generate a histogram
 - Adding up histograms, scaled by fit coefficients, exactly equivalent to fully reweighted histogram
- Only need to sum up histograms \rightarrow fast
 - Already using for muonic $\mathcal{R}(D^{(*)})$