B — X7v measurements at LHCb

Greg Ciezarek,
on behalf of the LHCb collaboration

April 10, 2018




2. Introduction 2/28

B— D¥ry
pt wt/rt ut )t
Wt 14 b /H+< v b . v
B B Lo~
C c C
D* D* D*

e In the Standard model, the only difference between B — D™ 7y and
B — D™ is the mass of the lepton
e Form factors mostly cancel in the ratio of rates (except helicity
suppressed amplitude)
e Ratio R(D™) = B(B— D®7v) / B(B— D)) is sensitive to e.g
charged Higgs, leptoquark



2. Introduction 3/28
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e How this started: measurements from B factories in 7 — fvv channel
e Final measurement from BaBar (Phys. Rev. D. 88 072012) claimed 3 ¢
excess over SM expectation
e Status at the time of the Babar measurement


http://dx.doi.org/10.1103/PhysRevLett.99.191807
http://arxiv.org/abs/0910.4301
http://dx.doi.org/10.1103/PhysRevD.82.072005
http://dx.doi.org/10.1103/PhysRevD.88.072012
http://dx.doi.org/10.1103/PhysRevD.88.072012
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Experimental challenge

B— D*rv
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e Difficulty: neutrinos - 2 for (1 — mrnv)v, 3 for (7 — pvv)v
e No narrow peak to fit (in any distribution)

e Main backgrounds: partially reconstructed B decays
e B— D*uv,B — D*uv, B — D*D(— uX)X ..
e B— D*ranX, B— D*D(— X)X ...

e Also combinatorial, misidentified background
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B Factory method
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e Traditional methods for measuring these decays rely on ete™ — BB
event properties
e Centre of mass fixed
e Nothing else produced in event
e “Tag reconstruction”
e Fully reconstruct other B — measurement of signal B kinematics
e Signal B + other B should be entire event — strong rejection against
other missing reconstructable particles

e Penalty: sub percent efficiency
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Can you do this at a hadron collider?

e In a hadron collider the BB centre of mass isn't fixed — rest of event
provides little constraint on the signal B kinematics

e Event also contains a lot of junk from the proton-proton interaction —
reconstructing the whole event is meaningless

e Needed completely different methods
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Isolation Phys. Rev. Lett. 115 (2015) 111803
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o Reject physics backgrounds with additional charged tracks

e MVA output distribution for B— D**;; v background (hatched) and
signal (solid)

e Inverting the cut gives a sample hugely enriched in background —
control samples


http://dx.doi.org/10.1103/PhysRevLett.115.111803
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F|t Strategy Phys. Rev. Lett. 115 (2015) 111803

B— D*rv B— D*uv

e Can use B flight direction to measure transverse component of missing
momentum

e No way of measuring longitudinal component — use approximation to
access rest frame kinematics

e Assume 7ﬂz,visible - PYBZ,total
e ~20% resolution on B momentum, long tail on high side

., . 2 2
e Can then calculate rest frame quantities - Missing E. q


http://dx.doi.org/10.1103/PhysRevLett.115.111803
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Fit strategy Phys. Rev. Lett. 115 (2015) 111803
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e Three dimesional template fit in E, (left), mrznissing (middle), and g2
e Projections of fit to isolated data shown

o All uncertainties on template shapes incorporated in fit:
e Continuous variation in e.g different form factor parameters


http://dx.doi.org/10.1103/PhysRevLett.115.111803
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Background strategy

4. Muonic R(D™*) measurement

2500F

2000

1500

1000

500!

10/28

Phys. Rev. Lett. 115 (2015) 111803
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o All major backgrounds modelled using control samples in data

e Dedicated samples for different backgrounds (D*m,D*rm,D* DX
e Quality of fit used to justify modelling
e Data-driven systematic uncertainties

o All combinatorial or misidentified backgrounds taken from data
e More details on everything in backups

q2 (GeVic?)


http://dx.doi.org/10.1103/PhysRevLett.115.111803

Signal fit

9.35 < 2 < 12.60 GeV?/c*

9.35 < 2 < 12.60 GeV?%/c*

e Fit to isolated data, used to determine ratio of B— D*7v and

B— D*uv

. Muonic R(D*) measurement
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e Model fits data well
e We measure R(D*) = 0.336 £ 0.027 + 0.030, consistent with SM at

2.10 level
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http://dx.doi.org/10.1103/PhysRevLett.115.111803
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Ry = Be — JppTv/Be — Jhb pv
Measured using very similar techniques to R(D*), on run 1 data
Ry, =0.71+0.17 +0.18

e ~ 20 from SM

e But nearly as far from consistency with R(D*)

LHCb-PAPER-2017-035(Run 1 data)


https://arxiv.org/abs/1711.05623

e Compared to muonic R(D*):

5. Hadronic R(D*) measurement

R(D*) with 7 — mrmv
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LHCb-PAPER-2017-017, LHCb-PAPER-2017-027
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e Large B— D*uv, B— D**utv backgrounds absent
e Additional B — D*mwmw X backgrounds

e B— D*DX with D — 7w X

e Control experimental efficiencies by measuring rate relative to

B — D*rrm


https://arxiv.org/abs/1708.08856
https://arxiv.org/abs/1711.02505
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Removing B - D*7T7T7TX LHCb-PAPER-2017-017, LHCb-PAPER-2017-027

D"~ vertex DY ~* K+ D" vertex
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Can use decay topology to remove direct B — D*mwm X decays:

If the w7 vertex is displaced from the B vertex, cannot be direct
B — D*rnn X

Can remove a large, poorly measured background
e And control the remainder

B — D*DX major physics background remaining


https://arxiv.org/abs/1708.08856
https://arxiv.org/abs/1711.02505
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Dealing W|th B N D* DX LHCb-PAPER-2017-017, LHCb-PAPER-2017-027
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[r7m] lifetime discriminates between tau and B— D*DX
Can use partial reconstruction techniques to reconstruct D peak in
B — D*TD (not B— D*DX)
T — wrmy is mostly al(1260), D — wwwX mostly isn't
o Use the mrrw (sub) structure to separate B— D*7v from B— D*DX
e Shown: control region for Dy — X
Put everything in an MVA: kinematics, Dalitz, partial reconstruction,


https://arxiv.org/abs/1708.08856
https://arxiv.org/abs/1711.02505
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LHCb-PAPER-2017-017, LHCb-PAPER-2017-027
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e Again, use data to control background modelling
e Use low BDT region to control Dy — mwwX substructure


https://arxiv.org/abs/1708.08856
https://arxiv.org/abs/1711.02505
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Fit
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https://arxiv.org/abs/1708.08856
https://arxiv.org/abs/1711.02505
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LHCb-PAPER-2017-017, LHCb-PAPER-2017-027

Result

BaBar had. tag

0.332 + 0,024 £ 0.018 ——

Belle had. tag

0.293 £ 0.038 £ 0.015

Belles.tag

0.302 + 0,080  0.011 e

Belle (hadronic tau)
0.270 + 0.035 + 0.0

LHCb
0.336 + 0.027 + 0.030 A

LHCb (hadronic tau)
0.285 £ 0.019 + 0.029

Average
0.304 + 0.013 £ 0.007 1

S. Fajfer etal. (2012)
0.252 + 0.003 -
HFLAV

|
0.2 0.3 0.4
R(D*)

Result equally compatible with SM, world average

More precise than our past result (still only run 1 data)

New average gives a slightly lower value, but higher precision —
significance increases very, very slightly

LHCb-PAPER-2017-017, LHCb-PAPER-2017-027(Run 1 data)


https://arxiv.org/abs/1708.08856
https://arxiv.org/abs/1711.02505
https://arxiv.org/abs/1708.08856
https://arxiv.org/abs/1711.02505
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Where do we stand?
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e Official HFLAV combination of R(D)and R(D*)

o Excellent consistency between results

e Combined: 4.10 tension with SM

o (Before considering more conservative B— D*7v form factors..))

19/28
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Where next?

o Next step from muonic R(D*): D°uX vs D**uX
e Backgrounds not so much worse than in D*t X
e Significant improvement in precision
e Ongoing:Bs — Ds(*)TV
e Similar situation to R(D*))
e Main difference to B— D) 7v: feed-down mostly via neutrals
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Where next?

e Ongoing: N\p — /\(C*)TV

Different spin structure to meson modes — different physics sensitivity
In particular, would help discriminate tensor contributions

e Potential: B — D**rv

Samples of D**1.X not so small: control sample for R(D*) measurement
shown

To interpret results, need to split measurements between different D**
states

More work needed first on B — D**urv modes
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o |f we establish a new physics signal in b — c7v, would really want to
test the flavour structure: b — utv
e b — cTv hard enough to measure, before extra suppression —
background levels challenging

e Requires very careful choice of channel to give us any hope
o B — pprv with 7 — uvv

e Experimentally the cleanest, Theoretically not so good...

e Will make detailed measurements of corresponding B — ppur mode

e Ay — ptv with 7 — rmv?

e Lattice calculations used to measure |V,,| with equivalent A, — puv
mode — already have a good theory prediction


http://dx.doi.org/10.1038/nphys3415

Arbitrary units
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Angular resolutions for B— D*rv
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Angular resolution for B— D*uv, B— D*rtv (1 — pvv)
Tau decay results in loss of information
e 0y and x degraded, 6p a bit less

e These resolutions aren't horrific — we can make a measurement (with
unknown sensitivity)

These resolutions aren't insignificant — needs massive care
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What can we do?

e Unfolding this seems a nightmare (as does background subtraction) —
we are unlikely to publish corrected g2 / angular distributions for signal
e But we can fit the data

e Templates we fit already include effects of resolution, acceptance ...
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What to measure

o First need to see if the excess holds up!

o Afterwards:

Does measured value change allowing NP operators?

Can enhancement be accommodated by theory uncertainty?
Pure vector/axial/tensor/...?

Or a combination of operators?

Can we fit the full matrix element?
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Scalar form factor

e Trying to measure (pseudo)scalar form factor directly from B — D)1y
doesn’t seem so implausible

e If no new (pseudo)scalar physics, and form factor agrees with prediction
— model independent SM exclusion
e Uncertainty from QED corrections?

e Testing SM only hypothesis — constrain other form factors from
B— D™y

e Not yet sure when we become sensitive enough
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Tau polarisation?

With 7 — uvv:

e Some sensitivity to polarisation, but probably can't disentangle from
angular distribution?

With 7 — nrmv:

e Combined mwm momentum has little sensitvity to polarisation
e But some information in substructure — exploring this
o Thesis of Laurent Duflot (LAL 93-09)

Measurement of polarisation and angular information correlated
Physics of polarisation and angular information correlated
We should consider both together


https://inspirehep.net/record/354667/files/CM-P00068750.pdf

7. Conclusion

Conclusion

World average for R(D™))still in tension with SM

LHCb has established techniques to measure B — X.7v with both
T — pvv and T = TV

o Relatively independent systematics, important as precision improves
Wide program underway with a full range of charm hadrons
Plans for how to go beyond branching fractions

e Overlaps with measurements in B — X uv

Lots to look forward to

28/28
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Backups
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e B— D*uv (black) vs B— D*71v (red)
e B— D*uv is both the normalisation mode, and the highest rate

background (~ 20 x B— D*rv)
e Use CLN parameterisation for form factors

Arbitrary units
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e Float form factors parameters in fit — uncertainty taken into account
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e B— D*ptv refers to any higher charm resonances (or non resonant
hadronic modes)
e Not so well measured
e Set of states comprising D** known to be incomplete
e Decay models not well measured
[ ]

For the established states (shown in black):
e Separate components for each resonance (D1,D§‘,D{)
o Use LLSW model (Phys. Rev. D. (1997) 57 307), float slope of
Isgur-wise function


http://dx.doi.org/10.1103/PhysRevD.57.308

Candidates / ( 0.3 GeV*/c* )
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B — D**(— D**m)uv control sample
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e [solation MVA selects one track, Mp+«+, around narrow D** peak —
select a sample enhanced in B— D*utv
e Use this to constrain, justify B— D**uv shape for light D** states
e Also fit above, below narrow D** peak region to check all regions of
Mp«+, are modelled correctly in data
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Higher B— D** ;v states
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e Previously unmeasured B — D**(— D*"rm)uv contributions recently

measured by BaBar

e Too little data to separate individual (non)resonant components
e Single fit component, empirical treatment

e Constrain based on a control sample in data

e Degrees of freedom considered: D** mass spectrum, g? distribution
o Effect of D** mass spectrum negligible
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B — D**(— D*"mm)uv control sample
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e Also look for two tracks with isolation MVA —
B — D**(— D**wr)uv in data

e Can control shape of this background
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B — D*DX consists of a very large number of decay modes
e Physics models for many modes not well established

Constrain based on a control sample in data
Single component, empirical treatment

e Consider variations in Mpp
e Multiply simulated distributions by second order polynomials
e Parameters determined from data
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B — D*DX control sample
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e Isolation MVA selects a track with loose kaon ID — select a sample
enhanced in B— D*DX

e Use this to constrain, justify B— D*DX shape
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Combinatorial backgrounds
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o Combinatorial background modelled using same-sign D** ™ data

e Two sources of combinatorial background are treated separately (shown
on next slide)
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Combinatorial backgrounds
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e Non D** backgrounds (fake D*) template modelled using D%7~ data
(shown)
e Yield determined from sideband extrapolation beneath D** mass peak
e Hadrons misidentified as muons (fake muons)
e Controlled using D**h* sample
e Both template and expected yield can be determined
e Both of these are subtracted from D** ;™ template to avoid double
counting
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D**7X backgrounds
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Two small backgrounds containing taus, each <~ 10% of the signal
yield: B— D**7"v (shown) and B— D*(Ds — 1v)X

e Both too small to measure
B — D**7 v constrained based on measured B— D** v yield,
theoretical expectations (~50% uncertainty)
B — D*(Ds — 1v)X constrained based on B— D*DX yield, and
measured branching fractions (~30% uncertainty)
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Systematics / efficiencies

Model uncertainties Size (x10°2%)
- Simulated sample size 2.0
= Misidentified p template shape 1.6
D* form factors 0.6 PR TP = < =
B - D*DX shape 0.5 Multiplicative uncertainties Size (x107?)
B(B - D**T;/)/B(B o D) 0'5 Simulated sample size 0.6
B D'r o / ' 4 Hardware trigger efficiency 0.6
= [Dtmr]py shape 0. Particle identification efficiencies 0.3
Corrections to simulation 0.4 Arn T R ’ ~ "
Combinatoric background shape 0.3 Form-factors 0.2
D** form factors 0.3 B(r — /wu). .. . <01
B = D*(D, — r1/)X fraction p.1 _ Total multiplicative uncertainty 0.9
Total moc;el uncertainty 2.8 Total systematic uncertainty 3.0

o Largest systematic from simulation statistics — reducible in future
o Next largest systematic from choice of method used to construct fake
muon template

o Other systematic from background modelling depend on control samples
in data

e No uncertainties limited by external inputs

e Systematics from ratio of B— D*uv and B— D*7v efficiencies small
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Other hadronic analyses

o After R(D*), expect full program of measurements with hadronic tau
e R(Ac)already underway
e Key issue: normalisation channels

e Hadronic R(D*) measurement relies on precise external measurement of
B — D**g=rtr~

e These do not exist for e.g A, — Acm— ™

e Plan to use theory calculation for B(Ap — Acuv)/B(B— D*puv) to avoid
dependence on A, production fraction
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Beyond Rs

o Ratios of branching fractions are only the first observable
e g2, angles, 7/D* polarisation have different sensitivity to new physics
e Variables fitted in 7 — uvv analyses already have some sensitivity to
this
e For now, measurements assume SM distributions (+ uncertainties)



Arbitrary units
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Angular resolutions for B— D*rv (7 — pvv)
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Angular resolution for B— D*puv (black) and B— D*7v (red)

Tau decay results in degredation of resolution

Pretty wide, but have something to work with
e Interesting mesurements also possible in muonic modes

Ideas for how to exploit this, some tools already exist

o Sensitivity not yet known, may need larger samples to really pin things
down..



9. Future 44/28

Future

e What we have analysed now is a tiny fraction of the sample we will
eventually collect

With 50 fb~? (2021-2030), samples will grow by a factor ~ 30

With 300 fb~!, (2034) samples will grow by a factor ~ 200

No sign that we hit a systematic limit

O(10 million) B— D*rv (7 — pvv) events — huge power for angular

analysis

e Need to work together with theory to understand all contributions to the
needed precision — continuous process

e Even more suppressed signals (B — JiptvX, B — D**1v, b — utv

modes?) can have high statistical precision
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Fit
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Dealing with B— D*DX
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e Use data to control B— D*DX modelling
e Can use D5y — mmm mass peak to select a pure B— D*DX sample
e This controls the B— D*DX modelling, but not the D — 7w X



9. Future 47/28

Unfolding isn't fundamentally sound

Unfolding doesn’t have good statistical properties

See e.g R. D. Cousins, S.J. May, Y. Sun “Should unfolded histograms
be used to test hypotheses?”

e Spoilers: probably not

e Even before biases introduced by regularisation

e Going in the other direction is a fundamentally well defined procedure
Describing the full space will require O(1000) bins — not practical to
unfold
Uncertainty from background shapes difficult to reproduce accurately as
a simple “background subtraction”

e Often just ignored, we really cannot do this


https://arxiv.org/abs/1607.07038
https://arxiv.org/abs/1607.07038

9. Future 48/28

Forward folding

e Don't deconvolute data to theory, convolute theory to data
e Best convolution: MC simulation

e This is exactly what we are already doing!
e Can build on what we already have...

e Problem: model dependence - need to choose functional form
e We will explore all possibilities
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Histogram expansion PDF

e What we want to do: reweight MC, reproduce histogram PDF
e Event-by-event — slow

o Weight for each event can be written as
>~ [(Combination of fit coefficients) x (Stuff invariant in fit)]
e (or expand it until it can be..)
e Loop through events once, for each term generate a histogram
e Adding up histograms, scaled by fit coefficients, exactly equivalent to
fully reweighted histogram

e Only need to sum up histograms — fast

e Already using for muonic R(D))
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