Exclusive B decays with t's @ Belle II

Giacomo Caria

Challenges in Semileptonic B Decays MITP - 10/04/2018

MELBOURNE

Outline

- Analysis strategies at B factories
- Recent measurements
- Systematics overview
- Reconstruction methods @ Belle II
- Naive prospects @ Belle II
- New physics probes

Motivation for $B \rightarrow D(*) \tau v$ measurements

- W coupling to leptons is universal in the SM
- A charged Higgs would couple more strongly to the τ lepton and produce an enhancement in BR of B decays that involve a τ lepton
- Ratios R(D(*)) eliminate many sources of systematic errors for experimental measurements and theoretical predictions

Previous measurements

Experimen	Tag method	τ	R _D	R _D *	Q
Belle 07*	Inclusive	eνν, π			
Belle 10*	Inclusive	Ινν, π	0.30±0.11 0.34±0.08		-
Babar 12	Hadronic	Ινν	0.440±0.058±0.042	0.332±0.024±0.018	-0.27
Belle 15	Hadronic	Ινν	0.375±0.064±0.026	0.293±0.038±0.015	-0.32
Belle 16	Semileptonic	Ινν	_	0.302±0.030±0.011	_
Belle 17	Hadronic	πν, ον	_	0.270±0.035±0.027	_
LHCb 16	-	Ινν	_	0.336±0.027±0.030	-
LHCb 17	-	πππ	_	0.285±0.019±0.029	-
Belle ave.	SL+Had	_	0.374±0.061	0.296±0.022	-0.29
HFAG	_	_	0.403±0.040±0.024	0.310±0.015±0.008	-0.23

Tagging in Belle II

- $e+e- \rightarrow Y(4S) \rightarrow B\overline{B}$: very clean and well-known initial state
- Reconstruct one of the B mesons in the Y(4S) event (**B tag**) to gather information about the B decay of interest
- Hadronic B decays: PRO: full B reconstruction, high purity CON: low efficiency ~5000 channels
- Semileptonic B decays: PRO: high efficiency CON: one missing neutrino, low purity ~100 channels

Tagging in Belle II - Hadronic

- Tagging is done using a hierarchical multivariate analysis approach
- The B tag signal probability depends on the signal probabilities of all daughters
- The last tagging algorithm developed by Belle II (FEI) shows large improvement w.r.t previous methods
 - Can also be used on Belle
 data !

Algorithm	MVA type	Efficiency	Purity
NB (Belle)	NeuroBayes	0.2%	0.25%
FEI (Belle II)	FastBDT	0.5%	0.25%

Giacomo Caria

10/04/2018

Giacomo Caria

University of Melbourne

7

Tagging in Belle II - Semileptonic

- In past measurement: cut-based
- Future measurements: BDT-based (FEI)

Algorithm	Experiment	B+	B0
FEI	Belle	1.80%	2.04%
FEI	Belle II	1.45%	1.94%

R(D(*)), hadronic tag at Belle

• Leptonic τ decays

• Use m^2_{miss} to separate signal B $\rightarrow D(*) \tau \nu$ from normalization $B \rightarrow D(*) | \nu$

$$m_{miss}^2 = p_{\nu}^2 = (p_{e^+e^-} - p_{Btag} - p_{D^*\ell})^2$$

 Train and fit signal MVA(NB) on high m²miss region, based on: E_{ECL}, p^{*}_l, m²miss and

others

• D ℓ modes with higher

background levels due to **"feed-down**" from

 $B \rightarrow (D^* \rightarrow D \pi_{slow}) \ell \nu$

10/04/2018

Giacomo Caria

R(D*), semileptonic tag at Belle

- Measure only the clean $B^{o} \longrightarrow D^{*^{+}} l^{-} \nu$
- No MVA tagging algorithm, reject signal in tag by choosing $-1 < cos \theta_{B,D^*I} < -1$
- Identity signal (normalization) as B candidate with lower (higher) cosθ_{B,D*I}

Giacomo Caria

Figure 3.1: Distributions of the NeuroBayes input parameters for signal (red) and normalization (black) events : $\operatorname{atan}(\cos \theta_{B-D^*\ell}^{\operatorname{low}})$ (left), $M_{\operatorname{miss}}^2$ (center), E_{vis} (right). For visualization, arctan is used for $\cos \theta_{B-D^*\ell}^{\operatorname{low}}$ in this plot.

Giaco

R(D*), semileptonic tag at Belle

 Discriminate between signal B → D(*) τ ν and normalization B → D(*) I ν using MVA based on (m²miss, COSθ_{BY}, E_{Btag} + E_{Bsig})

Systematic errors

$R(D^*)$ - semileptonic tag ($\tau \rightarrow I$)

Sources	$\ell^{\rm sig} = e, \mu$
MC size for each PDF shape	2.2
PDF shape of the normalization in $\cos \theta_{B-D^*\ell}$	$^{+1.1}_{-0.0}$
PDF shape of $B \to D^{**} \ell \nu_{\ell}$	$^{+1.0}_{-1.7}$
PDF shape and yields of fake $D^{(*)}$	1.4
PDF shape and yields of $B \to X_c D^*$	1.1
Reconstruction efficiency ratio $\varepsilon_{\rm norm}/\varepsilon_{\rm sig}$	1.2
Modeling of semileptonic decay	0.2
$\mathcal{B}(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau)$	0.2
Total systematic uncertainty	$+3.4 \\ -3.5$

- Dominated by:
 - B -> D** I nu uncertainty
 - MC statistics for PDFs
 - efficiency ratios (for R(D))

$R(D(^*))$ - hadronic tag ($\tau \rightarrow I$)

	R(D) [%]	$R(D^*)$ [%]
$D^{(*(*))}\ell\nu$ shapes	4.2	1.5
D^{**} composition	1.3	3.0
Fake D yield	0.5	0.3
Fake ℓ yield	0.5	0.6
D_s yield	0.1	0.1
Rest yield	0.1	0.0
Efficiency ratio f^{D^+}	2.5	0.7
Efficiency ratio f^{D^0}	1.8	0.4
Efficiency ratio $f_{\text{eff}}^{D^{*+}}$	1.3	2.5
Efficiency ratio $f_{\text{eff}}^{D^{*0}}$	0.7	1.1
CF double ratio g^+	2.2	2.0
CF double ratio g^0	1.7	1.0
Efficiency ratio $f_{\rm wc}$	0.0	0.0
$M_{\rm miss}^2$ shape	0.6	1.0
$o'_{\rm NB}$ shape	3.2	0.8
Lepton PID efficiency	0.5	0.5
Total	7.1	5.2

What can be improved

- Statistical uncertainty
 - Signal efficiency -> higher soft π efficiency, higher tag efficiency
 - Background rejection/ purity -> Better lep vs π PID at low p (tau-> I nu nu), better D(*) mass resolution, better treatment of missing/neutral particles in vertex fits for B/D(*) fake rejections

- Systematic uncertainty
 - Modelling of semileptonic B decays (form factors, branching ratios), especially B → D** I nu
 - MC statistics for PDFs
 - Detector modelling -> lepton ID efficiency and fake rate

New physics probes

Model dependent analysis (type-II 2HDM)

- kinematics of the decays depend on NP model and its free parameters
- different in kinematics → difference in **efficiency** and **fitted distributions**

BaBar@Hadronic($\tau \rightarrow I$)

New physics probes $R(D^{(*)})$

Model dependent analysis (type-II 2HDM)

- kinematics of the decays depend on NP model and its free parameters
- different in kinematics \rightarrow difference in **efficiency** and **fitted distributions**

New physics probes

Model independent analysis (type-II 2HDM)

examine the impact of each operator

10/04/2018

Giacomo Caria

University of Melbourne

New physics probes

Model independent analysis (type-II 2HDM)

examine the impact of each operator

10/04/2018

Giacomo Caria

10/04/2018

$R(D^*)$, hadronic tag and τ polarisation at Belle

- The τ polarisation depends on the mediator \rightarrow sensitive to NP
 - Two-body hadronic τ decays ($\tau \rightarrow \pi v$, ρv) used to measure the τ polarisation

Giacomo Caria

 New independent measurement of R(D*)

$$P_{\tau}(D^*) = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}$$

 Γ^{\pm} = decay rate of B \rightarrow D* τv with helicity of $\pm 1/2$

$R(D^*)$, hadronic tag and τ polarisation at Belle

10/04/2018

Giacomo Caria

10/04/2018

Giacomo Caria

After correction

le

$B \rightarrow \pi \tau v$ at Belle

- 72% of τ branching ratio ($\tau \rightarrow | \nu \nu, \pi$ v, q v)
- Hadronic tag to constrain signal side
 - Event selection through signal BDT, m^{2}_{miss} (reject $B \rightarrow \pi I \nu$) and tag quality
- PRD 93, 032007 (2016) Extract signal through fit to EECL distribution

90% CL upper limit: BR < 2.5×10^{-4}

Agreement with SM

10/04/2018

Giacomo Caria

Source	Relative error $(\%)$
Particle ID	2.4
Track efficiency	0.7
${ m N}(Bar{B})$	1.4
K_L veto	3.2
BG \mathcal{B}	2.8
Tagside	4.6
$ V_{ub} $	2.8
Rare processes	2.0
$B \to X_u \tau \nu$	2.2
Background fit	0.2
Signal model	1.8
Total	8.3

SuperKEKB and Belle II

- KEKB: accumulated 1 ab⁻¹ at Y(4S)
- SuperKEKB:
 - 40-fold increase in luminosity over KEKB
 - collect **50 ab**⁻¹ by 2025
- Belle II:
 - upgrade all sub detectors except for ECL and part of barrel KLM
 - expect similar/better performance w.r.t. Belle, despite much higher background levels

The Belle II detector

10/04/2018

Giacomo Caria

Lepton reconstruction @ Belle II

- e reconstruction based on CDC track + ECL cluster
- e from τ : low momentum \rightarrow low efficiency
- Small radius in B field doesn't reach ECL
- Only muons with p > 0.7 GeV are able to reach KLM and have good μ/π separation

Work in progress for improvements @ Belle II

Vertex fitting @ Belle II

- **2x** improvement for vertex fitting, w.r.t. Belle
- Mass resolution is improved by vertex fit → D and D* selection (-25%)
- Under development: TreeFitter, helps with decay trees with π° , Ks

Giacomo Caria

University of Melbourne

100 80

60 40 20

$B \rightarrow D(*) \tau v @ Belle II$

- Current measurements are statistically limited
- Dominant systematics from:
 - MC statistics \rightarrow larger at Belle II
 - limited knowledge of B ->D** I nu and B >D(*) Xc bkg → dedicated studies with large data sample at Belle II
- Study kinematic distributions, polarization

Errors @ Belle II

	5 ab ⁻¹	50 ab-1
R(D)	(6.0 +/- 3.9)%	(2.0 +/- 2.5)%
R(D*)	(3.0 +/- 2.5)%	(1.0 +/- 2.0)%
Рт (D*)	0.18 +/- 0.08	0.06 +/- 0.04

10/04/2018

Giacomo Caria

Differential measurements

- Currently very hard to compare signal observables due to limited statistics
- Expect improvement with Belle II luminosity

$B \longrightarrow \pi \tau v @ Belle II$

- Both tagged and untagged measurements report significant improvement in reconstruction
 efficiency (~ 2x)
- Measurements will be systematically limited at Belle
 Il statistics

$$R_{\pi}(5 \text{ ab}^{-1}) = 0.64 + /- 0.23$$

 $R_{\pi}(50 \text{ ab}^{-1}) = 0.64 + /- 0.09$

Conclusion

- B factories have discovered anomalies in b \rightarrow c tau nu, but also b \rightarrow u tau nu can be probed for charged Higgs effects
- SuperKEKB will have a 40-fold increase in luminosity w.r.t. to KEKB, Belle II expects improvement for reconstruction hardware and software sides
- A new BDT-based tagging algorithm with higher efficiency will be used on Belle (II) data
- Lepton efficiency and pion background rejection, together with mass resolution for D(*) are key reconstruction topics
- Expect much higher statistics for observables that are fundamental to distinguish new physics