
Baryonic           transitions 

Patrick Owen

Challenges in semileptonic B decays 

09/04/18

b ! c



What am I talking about
• Traditional                 decays well studied at B-factories.


• LHCb has unique capability with baryonic decays.
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Figure 4: Dependence of f⇤0
b
/fd on the (a) pT and (b) ⌘ of the beauty hadron. To obtain this

figure, the ratio of e�ciency-corrected event yields is scaled to the absolute value of f⇤0
b
/fd from

the semileptonic analysis [7]. The error bars include the statistical and systematic uncertainties
associated with the hadronic measurement. The dashed red lines indicate the uncertainty on the
scale of f⇤0

b
/fd from the semileptonic analysis.

The ⌘ dependence is described by the linear function

f⇤0
b
/fd(⌘) = a0 + b0 ⇥ (⌘ � ⌘) , (6)

with

a0 = 0.387± 0.013 +0.028
�0.030,

b0 = 0.067± 0.005 +0.012
�0.009,

where the first uncertainty is the combined statistical and the second is the combined
systematic from the hadronic and semileptonic measurements. The dependences of f⇤0

b
/fd

on the pT and ⌘ of the b hadron are shown in Fig. 4.
The absolute value for B(⇤0

b ! ⇤+
c ⇡

�) is obtained by substituting the results for S and
B(B0 ! D+⇡�) = (2.68± 0.13)⇥ 10�3 [10] into Eq. (2). The value for B(⇤+

c ! pK�⇡+)
is also used in the determination of f⇤0

b
/fd using semileptonic decays and therefore cancels

in the final result. The branching fraction for ⇤0
b ! ⇤+

c ⇡
� is measured to be

B(⇤0
b ! ⇤+

c ⇡
�) =

⇣
4.30± 0.03 +0.12

�0.11 ± 0.26± 0.21
⌘
⇥ 10�3,

where the first uncertainty is statistical, the second is systematic, the third is from
the previous LHCb measurement of f⇤0

b
/fd, and the fourth is due to the knowledge of

B(B0 ! D+⇡�). This value is in agreement with the current world average [10]. It
also agrees within 2.4 standard deviations with the recent LHCb measurement using
⇤0

b ! ⇤+
c (! pK0

S )⇡
� decays [29], taking into account the correlated uncertainty from the
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• Unique spin structure


• Large abundance of ground state


• Baryon number and isospin conservation 
offer additional protection.

• Today I will talk about LHCb analysis on ground state[1], and pheno 
analysis on Λc* state [2].

PDG 2016

[1] Phys. Rev. D 96, 112005 (2017) 
[2] Böer, Bordone, Graverini, Owen, Rotondo, van Dyk

http://dx.doi.org/10.1103/PhysRevD.96.112005
https://arxiv.org/find/hep-ph/1/au:+Boer_P/0/1/0/all/0/1


SL decays at a hadron collider

• General rule: ‘B-factories good at 
the X-axis, LHCb good at the Y-
axis’.

Selection for high q2
• Difficult to calculate q2 with missing neutrino.

26

3. Selection 7/17

The corrected mass

Fit the corrected mass:

Mcorr =
q

p2? +M2
pµ + p?

Determine its uncertainty.

Reject candidates if:
�Mcorr > 100MeV/c2

⇤b
PV SV

pµ

p

µ

⌫

p?

p?

Compare simulated signal and
background shapes for low and
high �Mcorr

All curves normalised to unit
area.

]2Corrected mass [MeV/c
3000 4000 5000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mcorrσ low νµp

mcorrσ high νµp

mcorrσ low νµc
+Λ

mcorrσ high νµc
+Λ

LHCb simulation

Moriond Electroweak 2015 William Sutcli↵e Vub from ⇤b ! pµ�⌫µ

• Use pointing and Λb mass 
constraints to solve for q2 up to a 
two-fold ambiguity. 

• Correct solution has a resolution 
of 1GeV2/c4 whereas incorrect is 
4GeV2/c4.

• Require both solutions to be 
above 15 GeV2 for                  to 
minimise migration from low q2. 
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⇤0
b ! pµ⌫

• Its more difficult to do SL decays at a hadron collider (duh).


• Less kinematic constraints than from Y(4S).

!3
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FIG. 8. (Color online). Comparison of the m2
miss and |p∗

ℓ | distributions of the D
(∗)ℓ samples (data points) with the projections of

the results of the isospin-unconstrained fit (stacked colored distributions). The region above the dashed line of the background
component corresponds to BB background and the region below corresponds to continuum. The peak at m2

miss = 0 in
the background component is due to charge cross-feed events. The |p∗

ℓ | distributions show the signal-enriched region with
m2

miss ≥ 1GeV2, thus excluding most of the normalization events in these samples.

B → D∗∗(τ−/ℓ−)ν branching fractions: As noted
above, the sharp peak in the m2

miss distribution of the
D(∗)π0ℓ samples constrains contributions from B →
D(∗)πℓν decays. Events with additional unreconstructed
particles contribute to the tail of the m2

miss distribution
and, thus, are more difficult to separate from other back-
grounds and signal events. This is the case for B →
D∗∗τ−ντ decays, which are combined with B → D∗∗ℓ−νℓ
decays in the D∗∗(ℓ/τ)ν PDFs with the relative propor-
tion R(D∗∗)PS = 0.18. This value has been derived
from the ratio of the available phase space. The same
estimate applied to B → D(∗)ℓ−νℓ decays results in
R(D)PS = 0.279 and R(D∗)PS = 0.251, values that are
58% and 32% smaller than the measured values. Tak-
ing this comparison as guidance for the error on R(D∗∗),
we increase R(D∗∗) by 50%, recalculate the D∗∗(ℓ/τ)ν
PDFs, and repeat the fit. As a result, the values of R(D)
and R(D∗) decrease by 1.8% and 1.7%, respectively. The
impact is relatively small, because B → D∗∗τ−ντ con-

tributions are small with respect to signal decays, which
have much higher reconstruction efficiencies.
Unmeasured B → D∗∗(→ D(∗)ππ)ℓνℓ decays: To as-

sess the impact of other potential B → D∗∗ℓ−νℓ contri-
butions, we modify the standard fit by adding an addi-
tional component. Out of the four contributions listed
in Table VI, the three-body decays of the D∗∗ states
with L = 1 give the best agreement in the fits to the
D(∗)π0ℓ samples. For this decay chain, the m2

miss distri-
bution has a long tail due to an additional undetected
pion. This could account for some of the observed excess
at 1 < m2

miss < 2GeV2 in Fig. 9. We assign the observed
change in R(D(∗)) as a systematic uncertainty.

2. Cross-feed Constraints

MC statistics: Constraints on the efficiency ratios
that link contributions from the same source are taken

2. Fit 10/25
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Combinatoric
µMisidentified 

• Fit to isolated data, used to determine ratio of B! D⇤⌧⌫ and
B! D⇤µ⌫

• Model fits data well
• Fit model uncertainties listed on next slide

2. Fit 10/25

Signal fit

Data
ντ D*→B 

X')Xν l→(c D*H→B 
ν D**l→B 
νµ D*→B 

Combinatoric
µMisidentified 

• Fit to isolated data, used to determine ratio of B! D⇤⌧⌫ and
B! D⇤µ⌫

• Model fits data well
• Fit model uncertainties listed on next slide

2. Fit 10/25

Signal fit

Data
ντ D*→B 

X')Xν l→(c D*H→B 
ν D**l→B 
νµ D*→B 

Combinatoric
µMisidentified 

• Fit to isolated data, used to determine ratio of B! D⇤⌧⌫ and
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BaBar [3] LHCb [4]

[3] Phys. Rev. D 88, 072012 (2013) [4] Phys.Rev.Lett.115, 111803 (2015)
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FIG. 8. (Color online). Comparison of the m2
miss and |p∗

ℓ | distributions of the D
(∗)ℓ samples (data points) with the projections of

the results of the isospin-unconstrained fit (stacked colored distributions). The region above the dashed line of the background
component corresponds to BB background and the region below corresponds to continuum. The peak at m2

miss = 0 in
the background component is due to charge cross-feed events. The |p∗

ℓ | distributions show the signal-enriched region with
m2

miss ≥ 1GeV2, thus excluding most of the normalization events in these samples.

B → D∗∗(τ−/ℓ−)ν branching fractions: As noted
above, the sharp peak in the m2

miss distribution of the
D(∗)π0ℓ samples constrains contributions from B →
D(∗)πℓν decays. Events with additional unreconstructed
particles contribute to the tail of the m2

miss distribution
and, thus, are more difficult to separate from other back-
grounds and signal events. This is the case for B →
D∗∗τ−ντ decays, which are combined with B → D∗∗ℓ−νℓ
decays in the D∗∗(ℓ/τ)ν PDFs with the relative propor-
tion R(D∗∗)PS = 0.18. This value has been derived
from the ratio of the available phase space. The same
estimate applied to B → D(∗)ℓ−νℓ decays results in
R(D)PS = 0.279 and R(D∗)PS = 0.251, values that are
58% and 32% smaller than the measured values. Tak-
ing this comparison as guidance for the error on R(D∗∗),
we increase R(D∗∗) by 50%, recalculate the D∗∗(ℓ/τ)ν
PDFs, and repeat the fit. As a result, the values of R(D)
and R(D∗) decrease by 1.8% and 1.7%, respectively. The
impact is relatively small, because B → D∗∗τ−ντ con-

tributions are small with respect to signal decays, which
have much higher reconstruction efficiencies.
Unmeasured B → D∗∗(→ D(∗)ππ)ℓνℓ decays: To as-

sess the impact of other potential B → D∗∗ℓ−νℓ contri-
butions, we modify the standard fit by adding an addi-
tional component. Out of the four contributions listed
in Table VI, the three-body decays of the D∗∗ states
with L = 1 give the best agreement in the fits to the
D(∗)π0ℓ samples. For this decay chain, the m2

miss distri-
bution has a long tail due to an additional undetected
pion. This could account for some of the observed excess
at 1 < m2

miss < 2GeV2 in Fig. 9. We assign the observed
change in R(D(∗)) as a systematic uncertainty.

2. Cross-feed Constraints

MC statistics: Constraints on the efficiency ratios
that link contributions from the same source are taken
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component corresponds to BB background and the region below corresponds to continuum. The peak at m2

miss = 0 in
the background component is due to charge cross-feed events. The |p∗

ℓ | distributions show the signal-enriched region with
m2

miss ≥ 1GeV2, thus excluding most of the normalization events in these samples.

B → D∗∗(τ−/ℓ−)ν branching fractions: As noted
above, the sharp peak in the m2

miss distribution of the
D(∗)π0ℓ samples constrains contributions from B →
D(∗)πℓν decays. Events with additional unreconstructed
particles contribute to the tail of the m2

miss distribution
and, thus, are more difficult to separate from other back-
grounds and signal events. This is the case for B →
D∗∗τ−ντ decays, which are combined with B → D∗∗ℓ−νℓ
decays in the D∗∗(ℓ/τ)ν PDFs with the relative propor-
tion R(D∗∗)PS = 0.18. This value has been derived
from the ratio of the available phase space. The same
estimate applied to B → D(∗)ℓ−νℓ decays results in
R(D)PS = 0.279 and R(D∗)PS = 0.251, values that are
58% and 32% smaller than the measured values. Tak-
ing this comparison as guidance for the error on R(D∗∗),
we increase R(D∗∗) by 50%, recalculate the D∗∗(ℓ/τ)ν
PDFs, and repeat the fit. As a result, the values of R(D)
and R(D∗) decrease by 1.8% and 1.7%, respectively. The
impact is relatively small, because B → D∗∗τ−ντ con-

tributions are small with respect to signal decays, which
have much higher reconstruction efficiencies.
Unmeasured B → D∗∗(→ D(∗)ππ)ℓνℓ decays: To as-

sess the impact of other potential B → D∗∗ℓ−νℓ contri-
butions, we modify the standard fit by adding an addi-
tional component. Out of the four contributions listed
in Table VI, the three-body decays of the D∗∗ states
with L = 1 give the best agreement in the fits to the
D(∗)π0ℓ samples. For this decay chain, the m2

miss distri-
bution has a long tail due to an additional undetected
pion. This could account for some of the observed excess
at 1 < m2

miss < 2GeV2 in Fig. 9. We assign the observed
change in R(D(∗)) as a systematic uncertainty.

2. Cross-feed Constraints

MC statistics: Constraints on the efficiency ratios
that link contributions from the same source are taken
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form factors
• First step: measurement                differential slope.


• Check the precise lattice results.


• Showcase the potential for LHCb form factor measurements.
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FIG. 15. Predictions for the ⇤b ! ⇤c `
�

⌫̄` di↵erential decay rates for ` = e, µ, ⌧ in the Standard Model. The inner bands show
the statistical uncertainty and the outer bands show the total uncertainty, calculated using Eq. (84).

Detmold, Lehner, Meinel, Phys. Rev. D 92, 034503 (2015) • In the heavy quark limit, form 
factors reduced to a single 
Isgur-Wise function. [Falk, Neuburt, ’92]


• Perform a Taylor expansion and 
fit first two terms:

where the constant factor G is given by

G =
2

3

G2
F

(2⇡)3
|Vcb|2(m⇤0

b
)4r2 with r = m⇤+

c
/m⇤0

b
, (3)

where GF represents the Fermi coupling constant [14], |Vcb| is the magnitude of the matrix
element describing the coupling of the c quark to the b quark, and the kinematic factor
K(w) is given by

K(w) = m⇤+
c

p
w2 � 1 [3w(1� 2rw + r2) + 2r(w2 � 1)]. (4)

The function ⇠B(w) cannot be determined from first principles in HQET, but calculations
based on a variety of approaches exist. The kinematic limit w = 1 is special in HQET, as
only modest corrections in the (1/mb, 1/mc) expansion are expected, due to the absence of
hyperfine corrections [15]. Thus it is interesting to express ⇠B as a Taylor series expansion

⇠B(w) = 1� ⇢2(w � 1) +
1

2
�2(w � 1)2 + . . . , (5)

where ⇢2 is the magnitude of the slope of ⇠B and �2 is its curvature at w = 1. Sum
rules provide constraints on ⇢2 and �2. In particular they require the slope at the
zero recoil point to be negative, and give bounds on the curvature and higher-order
derivatives [16, 17]. In addition they predict �2 � 3/5[⇢2 + (⇢2)2] [18] and ⇢2 � 3/4.
Table 1 summarizes theoretical predictions for ⇢2 from quenched Lattice QCD, QCD sum
rules, and a relativistic quark model.

Recently, state-of-the-art calculations of the six form factors describing the decay
⇤0

b ! ⇤+
c µ

�⌫µ have been obtained using Lattice QCD with 2 + 1 flavors of dynamical
domain-wall fermions [19]. These form factors are calculated in terms of q2. More details
on this formalism are given in Appendix I. The resulting theoretical uncertainty attached
to a measurement of |Vcb| using this form factor prediction is about 3.2%. The precision of
this calculation makes this approach an appealing alternative to the ones currently used,
all based on B-meson semileptonic decays such as B0 ! D⇤+µ�⌫µ. Thus it is important
to examine the model’s agreement with measured quantities such as the shape of the
d�/dq2 spectrum.

The experimental knowledge of ⇤0
b semileptonic decays is quite sparse, as this baryon

is too heavy to be produced at the e+e� B-factories. The only previous experimental
study of ⇠B(w) was performed by the DELPHI experiment at LEP, which obtained
⇢2 = 2.03± 0.46 (stat)+0.72

�1.00 (syst), with an overall uncertainty of the order of 50% [20].
In this paper we describe a determination of the shape of the w or q2 spectrum of

the decay ⇤0
b ! ⇤+

c µ
�⌫µ and compare it with functional forms related to a single form

factor, inspired by HQET, and the Lattice QCD prediction of Ref. [19]. Section 2 presents
the experimental procedure and simulated samples, while Sect. 3 describes the method
employed to reconstruct ⇤0

b ! ⇤+
c µ

�⌫µ candidates and to estimate the corresponding
kinematic variables w and q2. Section 4 describes the method adopted to isolate the
signal, the unfolding procedure used to account for experimental resolution e↵ects, and
the e�ciency corrections. The fit results for ⇠B(w) corresponding to di↵erent functional
forms are summarized in Sect. 5. The same analysis procedure is used in Sect. 6 to
derive the shape of the di↵erential decay width d�/dq2(⇤0

b ! ⇤+
c µ

�⌫µ) and compare
with the predictions of Ref. [19]. These data are also fitted with a single form-factor
parameterization that corresponds to the HQET infinite heavy-quark mass limit.

2

Slope Curvature

Phys. Rev. D 96, 112005 (2017)
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Lots of signal
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⇤+
c ! pK�⇡+ candidates, which can be interpreted as ⇤0

b ! ⇤+
c µ

�⌫µX decays, and we
determine the prompt ⇤+

c ! pK�⇡+ fraction to be 1.5%, which can be neglected. The
corresponding fit is shown in Fig. 1.

Our goal is the study of the ground-state semileptonic decay ⇤0
b ! ⇤+

c µ
�⌫µ, thus

we need to estimate the contributions from ⇤⇤+
c decaying into ⇤+

c ⇡⇡ states. Theoretical
predictions suggest that the inclusive rate ⇤0

b ! ⇤+
c µ

�⌫µX is dominated by the exclusive
channel ⇤0

b ! ⇤+
c µ

�⌫µ [38, 39]. The residual contribution is expected to be accounted for
by the ⇤0

b ! ⇤c(2595)+µ�⌫µ and ⇤0
b ! ⇤c(2625)+µ�⌫µ channels. Other modes, such as

⇤0
b ! ⌃+

c µ
�⌫µ, are suppressed in the static limit and to order 1/mQ, where mQ represents

the heavy quark mass (mc or mb) [40], with an additional stronger suppression factor of
the order (md �mu)/mc rather than (md �mu)/m⇤QCD [9].

We use ⇤0
b ! ⇤+

c ⇡
+⇡�µ�⌫µ decays to infer contributions from the excited ⇤+

c modes,
where the ⇤+

c candidates are selected as pK�⇡+ combinations whose invariant mass is
within ±20MeV of the nominal ⇤+

c mass. The ⇤+
c µ

�⌫µ candidates are combined with
pairs of opposite-charge pions that satisfy criteria similar to those used to select the pions
from the ⇤+

c decay. The minimum transverse momentum of these pions is required to be
0.2GeV and the transverse momentum of the ⇤+

c ⇡
+⇡� system is required to be greater

than 1.5GeV. Lastly, the �2 per degree of freedom of the vertex fit for the ⇤+
c ⇡

+⇡�

system must be smaller than 6.
The resulting spectrum, measured as the mass di↵erencem(pK�⇡+⇡�⇡+)�m(pK�⇡+)

added to the known ⇤+
c mass [14], is shown in Fig. 2. We see peaks corresponding to the

⇤c(2595)+, ⇤c(2625)+, ⇤c(2765)+, and ⇤c(2880)+ resonances. The ⇤c(2595)+ is only a few
MeV above the kinematic threshold and thus it is not well described by a Breit-Wigner
function. The baseline fit for this resonance uses a PDF consisting of the sum of two
bifurcated Gaussian functions. As a check, we use an S-wave relativistic Breit-Wigner
convolved with a Gaussian function with standard deviation � = 2 MeV that accounts
for the detector resolution. While the second parameterization is more accurate, the
fits to the invariant mass spectra in di↵erent kinematic bins are more stable with the
baseline parameterization. We fit the ⇤c(2625)+ signal with a double Gaussian PDF with
shared mean, as the natural width is expected to be well below the measured detector
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Figure 1: (a) The ln(IP/mm) distribution and (b) pK�⇡+
invariant mass for ⇤+

c candidate com-

binations with a muon. The red (dashed-dotted) curves show the combinatorial ⇤+
c background,

the green (dashed) curves the ⇤+
c from ⇤0

b and the blue-solid curves the total yields.
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Neutrino reconstruction
• Significant flight of the b-hadron allows to balance momentum 

transverse to the flight direction [5].

!6

9M.Rotondo CKM 2016

The q2 dependence 
● The knowledge of the Λb momentum is

needed to measure q2 

● Hypothesis of just 1-neutrino missing
and the well-measured Λb flight

direction gives the momentum with a 2-
fold ambiguity, P+ and P-

● Requiring both q2 from the two
solution above 15 GeV2 

Nature Phys.
11(2015)743

pT(Xq+μ)

B → Xq μ v

From Marcello’s talk at CKM

• Parent mass gives another 
(quadratic) constraint, can solve 
with two-fold ambiguity.

[5] S. Dambach, U. Langenegger, A. Starodumov, Nucl.Instrum.Meth. A569 (2006) 824-828

• For            decays it seems that 
the solution corresponding to 
the lowest neutrino momentum 
is more often correct than not.true/Ptrue-P-P
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Figure 7. The distribution of (P+�Ptrue)/Ptrue versus (P��Ptrue)/Ptrue in the subset of simulated
B0

s ! K�µ+⌫µ decays that satisfy the selection requirements as described in the text.
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various kinematic properties of the b.
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Figure 9. The rate at which the correct b-hadron momentum solution is chosen, as a function of q2.
Separate points are show for only the b-hadron level selection cuts, and for sequential application
of P, pT and ⌘ cuts on the charged final state particles from the simulated B0

s ! K�µ+⌫µ decays.

uncertainty. Fig. 10 compares the q2 resolution that is obtained with a random choice of
solutions versus a choice based on Pinf . A useful figure of merit in unfolding problems is the
bin purity. For a given bin in the true quantity, we define its purity as the fraction of entries
for which the reconstructed quantity also falls into the same bin. Fig. 11 compares the q2

bin purities for the random quadratic solution versus the best solution with our method.

– 9 –

b ! c

https://arxiv.org/find/hep-ph/1/au:+Dambach_S/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Langenegger_U/0/1/0/all/0/1
https://arxiv.org/find/hep-ph/1/au:+Starodumov_A/0/1/0/all/0/1


Unfolding
• Distribution unfolded using the SVD technique [6] with regularisation = 4.

!7

w
1 1.1 1.2 1.3 1.4

C
an
di
da
te
s

0

0.05

0.1

0.15

0.2

0.25

610×

LHCb(a)

w
1 1.1 1.2 1.3 1.4

C
an
di
da
te
s

0

0.1

0.2

0.3

0.4

0.5

610×

LHCb(b)

Figure 3: The spectra (a) dNmeas/dw before unfolding and (b) dNu/dw after unfolding, for the

decay ⇤0
b ! ⇤+

c µ
�⌫µ. The latter spectrum is then corrected for acceptance and reconstruction

e�ciency and fitted to the IW function ⇠B(w) with the procedure discussed in the text.

5 The shape of ⇠B(w) for ⇤0
b ! ⇤+

c µ
�⌫µ decays

In order to determine the shape of the Isgur-Wise function ⇠B(w), we use the square root
of dNcorr/dw divided by the kinematic factor K(hwi), defined in Eq. 4, evaluated at the
midpoint in the seven unfolded w bins. We derive the IW shape with a �2 fit, where the
�2 is formed using the full covariance matrix of dNcorr/dw.

We use various functional forms to extract the slope, ⇢2, and curvature, �2, of ⇠B(w).
The first functional form is motivated by the 1/Nc expansion [44], where Nc represents
the number of colors, and has an exponential shape parameterized as

⇠B(w) = exp[�⇢2(w � 1)]. (8)

The second functional form, the so called “dipole” IW function, which is more consistent
with sum-rule bounds [17], is given by

⇠B(w) =

✓
2

w + 1

◆2⇢2

. (9)

Finally, we can use a simple Taylor series expansion of the Isgur-Wise function and fit
for the slope and curvature parameters using the Taylor series expansion introduced in
Eq. 5. Figure 4 shows the measured ⇠B(w) and the fit results with this parameterization.
Table 3 summarizes the slope and curvature at zero recoil obtained with the three fit
models. Note that the curvature is an independent parameter only in the last fit, while in
the first two models it is related to the second derivative of the IW function.

9

• Different regularisation parameters checked for systematic.

• Efficiency generally low at the edges of the phase-space, due to low 
momentum muon (trigger) or hadron (reconstruction/selection).

Phys. Rev. D 96, 112005 (2017)

Before unfolding After unfolding

[6] Hoecker, Kartelishvili, Nucl.Instrum.Meth.A372:469-481,1996

http://dx.doi.org/10.1103/PhysRevD.96.112005


Results
• Fit slope (ρ) and curvature (σ) of the Isgur-Wise function.

!8

w
1 1.1 1.2 1.3 1.4

)
w(

K
dw

 / 
co

rr
dN

0

2000

4000

6000

8000

LHCb(a)

2ρ
1.4 1.6 1.8

22
σ

0.5

1

1.5 LHCb(b)

Figure 4: (a) The Isgur-Wise function fit for the decay ⇤0
b ! ⇤+

c µ
�⌫ with a Taylor series

expansion in (w � 1) up to second order. The black dots show the data and the solid (blue) line

shows the fitted function with the second-order Taylor series expansion model. The vertical

scale is in arbitrary units. (b) The correlation between slope ⇢2 and curvature �2/2: the three

ellipses correspond to the 1�, 2�, and 4� contours.

As the slope of the IW function is the most relevant quantity to determine |Vcb|
in the framework of HQET [13], we focus our studies on the systematic uncertainties
on this parameter. We consider several sources of systematic uncertainties, which are
listed in Table 4. The first two are determined by changing the fit models for ⇤+

c and
⇤c(2595)+ and ⇤c(2625)+ signal shapes in the corresponding candidate mass spectra. The
software trigger e�ciency uncertainty is estimated by using an alternative procedure to
evaluate this e�ciency using the trigger emulation in the LHCb simulation. In order to
assess systematics associated with the bin size, we perform the analysis with di↵erent
binning choices. The sensitivity to the ⇤0

b ! ⇤+
c µ

�⌫µ form factor modeling is assessed
by reweighting the simulated w spectra to correspond to di↵erent ⇠B functions with
slopes ranging from 1.5 to 1.7. The “phase space averaging” sensitivity is estimated by
comparing the fit to the expression for dNcorr/dw with the fit to 1/K(hwi)

p
dNcorr/dw.

The uncertainty associated with the ⇤0
b ! ⇤⇤+

c µ�⌫µ modeling is evaluated by changing
the relative fraction of ⇤+

c ⇡
+⇡� versus ⇤+

c ⇡
0⇡0 of the ⇤⇤+

c spectrum by ± 20%. Finally,
we use the alternative evaluation of the fraction of ⇤0

b ! ⇤+
c ⇡

+⇡�µ�⌫µ which includes
the maximum possible nonresonant component to assess the sensitivity to residual ⇤⇤+

c

Table 3: Summary of the values for the slope and curvature of the Isgur-Wise function with

di↵erent parameterizations. The quoted uncertainties are statistical only. The models marked

with “*” have only the slope at zero recoil as a free parameter, thus the curvature is derived

from the fitted ⇢2.

Shape ⇢2 �2 correlation coe�cient �2/ DOF
Exponential* 1.65 ± 0.03 2.72 ± 0.10 100% 5.3/5
Dipole* 1.82 ± 0.03 4.22 ± 0.12 100% 5.3/5
Taylor series 1.63 ± 0.07 2.16 ± 0.34 97% 4.5/4

10

• Not possible to disentangle the two parameters with only the 
recoil information.

Phys. Rev. D 96, 112005 (2017)

http://dx.doi.org/10.1103/PhysRevD.96.112005


Comparison with LQCD
• Also would like to compare with lattice predictions.

!9

• Fits look good, so data/LQCD/HQET agree.


• Higher order corrections in HQET don’t have large effect on shape.


• Next step would be to add angular information.

p-value of 97%. This shows that the predicted shape is in good agreement with our
measurement.

The form factor decomposition in Ref. [19] does not allow a straightforward extrapola-
tion to the HQET limit of infinite heavy-quark masses. However, we know that in the
static limit all the form factors are proportional to a single universal function. In order to
assess how well our data are consistent with the static limit, we perform a second �2 fit
assuming that all the form factors are proportional to a single z-expansion function [46].
Fits with di↵erent pole masses used in the six form factors determined in Ref. [19] are
performed. The overall shape does not change appreciably; the pole mass of 6.768GeV
is preferred. The two fit parameters are the coe�cients a0 and a1, giving the strength
of the first two terms in the z-expansion. The resulting fitted shape is shown in Fig. 5.
This fit has a �2 equal to 1.85 for 5 degrees of freedom, with a corresponding p-value of
87%. Note that the shape obtained with a single form-factor is very similar to the one
predicted in Ref. [19]. This is consistent with the HQET prediction [15] that the shape of
the di↵erential distribution is well described by the static approximation, modulo a scale
correction of the order of 10%, reflecting higher-order contributions. Further details of
this fit and the fit using the Lattice QCD calculation can be found in the Appendix.
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Figure 5: Comparison between the fit to the seven experimental data points using either the

Lattice QCD calculation of Ref. [19], shown as grey points with a shaded area corresponding to

the binned 1� theory uncertainty, or a single form factor fit in the z-expansion, shown as the

solid blue curve. The data points, modulo a scale factor, are shown as black points with error

bars.

7 Conclusions

A precise measurement of the shape of the Isgur-Wise function describing the semileptonic
decay ⇤0

b! ⇤+
c µ

�⌫µ has been performed. The measured slope is consistent with theoretical
models and the bound ⇢2 � 3/4 [16]. The measured curvature �2 is consistent with the
lower-bound constraint �2 � 3/5[⇢2 + (⇢2)2] [18]. The shape of d�/dq2 is studied and
found to be well described by the unquenched lattice QCD prediction of Ref. [19], as well
as by a single form-factor parameterization. Further studies with a suitable normalization
channel will lead to a precise independent determination of the CKM parameter |Vcb|.
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• Two fits performed:


• Repeat of IW fit in q2 bins


• Fit single form factor 
parametrised with z-expansion.

Phys. Rev. D 96, 112005 (2017)

http://dx.doi.org/10.1103/PhysRevD.96.112005


The excited state
• In the background studies for the ground state, see many                     decays

!10

⇤0
b ! ⇤⇤+

c µ⌫Why Λb → Λ∗
cℓν?

Λ∗
c forms an isospin doublet:
! Λc (2625) with JP = 3/2−

! Λc (2595) with JP = 1/2−

Smaller yield than for mesons, but:
! the widths of the two Λ∗

c states are
narrow

! Λ∗
c → Λcππ eases vertex

reconstruction
! little or no downfeed from Λ∗∗

c
! baryon number conservation

reduces sources of background

Little theory input for the form factors!
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• Plenty of signal, great opportunity to study. 


• Important for LFU determinations in 
baryon sector.



Λc* differential decay rate

!11

• Consider only the Λb0 decay for now.

Physik Institut

Observables

For each of the J = 1/2�, 3/2� we have

• 2-dim normalised distribution in in q2 and cos ✓`

1
�0

d2�J

dq2 d cos ✓`
=
⇣
a(J)` + b(J)

` cos ✓` + c (J)` cos2 ✓`
⌘

• 1-dim normalised distribution in q2

1
�0

d�J

dq2
= 2

 
a(J)` +

c (J)`

3

!

where
• ✓` helicity angle of the charged lepton with the ⇤b in the dilepton rest frame
• a`, b`, c` depend on the form factors and kinematics
• b` / AFB

13.11.2017 ⇤b ! ⇤⇤c form factors Page 8

• Strategy:


• Decompose the decay rate and parameterise the resulting form 
factors.


• Generate/fit toy datasets to assess experimental sensitivity.


• Compute SM uncertainty on LU ratio RΛc*

Böer et al, arXiv:1801.08367

https://arxiv.org/find/hep-ph/1/au:+Boer_P/0/1/0/all/0/1


Form factor decomposition
• Following the work from [7], decompose the               decay rate in 

helicity basis.


• End up with 6 and 8 form factors for the 1/2 and 3/2 states.


• Up to 1/m corrections can reduce down to two IW functions using 
equations of motion.


• Same functions describe both states.

!12

Form factor decomposition
Form factors fi(q2) and Fi(q2) arise in Lorentz decomposition of
hadronic matrix elements. E.g. for the vector current:

⟨Λc(2595)| c̄γµb |Λb⟩ =
∑

i

fi(q2)ūα
c,1/2(k)Γ

(i)
µα(p, k)ub(p)

⟨Λc(2625)| c̄γµb |Λb⟩ =
∑

i

Fi(q2)ūα
c,3/2(k)Γ

(i)
µα(p, k)ub(p)

where the Dirac structures
{
Γ(i)
µα

}
and kinematic factors are chosen to:

! achieve a helicity decomposition of form factors [Feldmann/Yip 1111.1844]

ϵ∗µ(λ; p − k) ⟨Λc(2625)| c̄γµb |Λb⟩ ∝ Fλ(q2)

! ensure FFs do not vanish at zero recoil q2 = q2
max ≡ (MΛ∗

c − MΛb)
2

4 vector + 4 axialvector FF for Λc(2625)
3 vector + 3 axialvector FF for Λc(2595)

4 / 13[7] Leibovich, Stewardt, Phys. Rev. D 57, 5620 (1998)

⇤0
b ! ⇤⇤

c

Böer et al, arXiv:1801.08367

https://arxiv.org/find/hep-ph/1/au:+Boer_P/0/1/0/all/0/1


IW parameterisation
• Inspired by work on the ground-state [8], we parameterise IW function 

with an exponential function.

!13[8] Phys. Rev. D 57, 5620 (1998)

Physik Institut

Parametrisation of the IW functions

• No first principle in HQET to obtain the functional form of IW functions for the
excited states

• We need to infer a parametric dependence of the leading and subleading IW
functions:

• Exponential Model [Jenkins, Manohar, Wise, Nucl.Phys. B396 (1993) 38-52]

⇣(q2)

����
exp

⌘ ⇣(q2

max) exp


⇢

✓
q2

q2
max

� 1

◆�
,

⇣SL(q
2)

����
exp

⌘ ⇣(q2

max)�SL exp


⇢SL

�SL

✓
q2

q2
max

� 1

◆�
.

• Linear Parametrisation: expansion up to the first order in q2
of the exponential

model around the point q2 = q2
max

13.11.2017 ⇤b ! ⇤⇤c form factors Page 6

• As it is not expected to make an absolute measurement, we ignore the 
overall normalisation 𝛇(q2max) (and it cancels in the LU ratio).


• The slopes ρ and also a relative normalisation for (sub-)leading functions.

Böer et al, arXiv:1801.08367

[8] Jenkins, Manohar, Wise, Nucl. Phys. B396:38-52,1993

https://arxiv.org/find/hep-ph/1/au:+Boer_P/0/1/0/all/0/1


Benefits of using all information

• Using both states and angular information key gets best sensitivity.
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FIG. 1. Purity as a function of q2 and cos ✓l, defined as the fraction of candidates which belong in a particular kinematic bin.
The purity for cos ✓l is better than for q2 due to the better resolution.
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FIG. 2. Distribution of the IW parameters as fitted from an ensemble of pseudo-experiments. The distributions are shown for
the cases when one of the two ⇤⇤+

c states is fitted, as well as the combination of both.

used to determine the parameters of interest. This means that the absolute normalisation of the form factors cannot
be constrained experimentally. As a consequence we do not report any sensitivity for the form factor parameter
⇣(q2

max
), which corresponds to this absolute normalisation.

B. Fits to the di↵erential decay rate

We generate ensembles of pseudo-experiments according to the conditions outlined above, using both parameterisations
of the IWFs given in Sec. III A, and using the common benchmark points defined in Sec. III B. We start by fitting the
one-dimensional q2 distribution of the ⇤0

b
! ⇤c(2625)+µ�⌫̄µ decay, ⇤0

b
! ⇤c(2595)+µ�⌫̄µ decay or a combination

thereof. The resulting one-dimensional distributions of the form factor parameters are shown in Fig. 2. When fitting
a single decay mode, we find that there is a degeneracy between the two slope parameters ⇢ and ⇢SL due to a strong
correlation that is positive for the ⇤0

b
! ⇤c(2625)+µ�⌫̄µ decay and negative for the ⇤0

b
! ⇤c(2595)+µ�⌫̄µ decay.

Only by combining both states in a single fit can the interference between the positive and negative correlation break
this degeneracy.

In order to maximise the sensitivity to all three form factor parameters and make full use of the LHCb dataset, we
investigate fits to the two-dimensional q2 and cos ✓l. The resulting one-dimensional and two-dimensional distributions
of the parameters are shown in Appendix G. A comparison between the distributions of the IW parameters for the
one- and two-dimensional fits are shown in Fig. 3. The results show that a two-dimensional fit improves the precision
on all three parameters with reduced correlations between them. This strongly motivates a full two-dimensional fit
to both ⇤⇤+

c
states simultaneously for any future LHCb analysis to give the best possible precision on the form factor

parameters.

13

0.2 0.25 0.3
 (GeV)ρ

0

0.05

0.1

0.15

0.2

0.25

0.3 2D

1D

0.15 0.2 0.25 0.3 0.35
 (GeV)

SL
ρ

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2 2D

1D

0.3− 0.2− 0.1− 0
 (GeV)SLδ

0

0.1

0.2

0.3

0.4

0.5
2D

1D
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FIG. 4. Expected theoretical precision of the R⇤c(2625)+ ratio as a function of the data collected by the LHCb experiment.

C. Projected precision on the R⇤⇤
c
predictions

Finally, by using the expected precision on the form factors, one can calculate the precision on the ratio R⇤⇤
c
, which

denotes both the R⇤c(2595)
+ and R⇤c(2625)

+ ratios as they are derived from the same parameters and therefore have
similar uncertainties. The precision as a function of the luminosity collected by the LHCb experiment is shown in
Fig. 4. Assuming the exponential model3 describes the data well, a statistical precision of ⇠ 7% can be expected from
run I+II data. A reduction to ⇠ 2% can be expected after upgrade 1 of the LHCb detector. For the linear model, we
find in general smaller uncertainties than for the exponential model. Our estimates for the uncertainties ignore power
suppressed terms in the HQET expansion and experimental systematic uncertainties, which could become relevant at
that level of precision.
Similar to what has been done in the literature for RD⇤ , we can estimate the impact of the dominant unknown 1/m2

c

corrections to the HQET relations on the theory predictions for the R⇤⇤
c
. Following the discussion [36], we wish to

separate the term involving the timelike form factors from the term that can be taken directly from data on the
semimuonic decay mode. We therefore decompose

d�(⌧)

J

dq2
=

d�(⌧,1)

J

dq2
+

d�(⌧,2)

J

dq2
(70)

3
With exponential model we indicate the exponential parametrisation described in section IIIA together with the benchmark points

obtained in section III B.

• Generate toys with LHCb yields and resolution, plot central values 
of ensemble. 


• Benchmark point obtained from ZSCRs

Böer et al, arXiv:1801.08367

https://arxiv.org/find/hep-ph/1/au:+Boer_P/0/1/0/all/0/1


Sensitivity to RΛc*
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to both the one-dimensional q2 and two-dimensional q2 ⇥ cos ✓l distributions.
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FIG. 4. Expected theoretical precision of the R⇤c(2625)+ ratio as a function of the data collected by the LHCb experiment.

C. Projected precision on the R⇤⇤
c
predictions

Finally, by using the expected precision on the form factors, one can calculate the precision on the ratio R⇤⇤
c
, which

denotes both the R⇤c(2595)
+ and R⇤c(2625)

+ ratios as they are derived from the same parameters and therefore have
similar uncertainties. The precision as a function of the luminosity collected by the LHCb experiment is shown in
Fig. 4. Assuming the exponential model3 describes the data well, a statistical precision of ⇠ 7% can be expected from
run I+II data. A reduction to ⇠ 2% can be expected after upgrade 1 of the LHCb detector. For the linear model, we
find in general smaller uncertainties than for the exponential model. Our estimates for the uncertainties ignore power
suppressed terms in the HQET expansion and experimental systematic uncertainties, which could become relevant at
that level of precision.
Similar to what has been done in the literature for RD⇤ , we can estimate the impact of the dominant unknown 1/m2

c

corrections to the HQET relations on the theory predictions for the R⇤⇤
c
. Following the discussion [36], we wish to

separate the term involving the timelike form factors from the term that can be taken directly from data on the
semimuonic decay mode. We therefore decompose

d�(⌧)

J

dq2
=

d�(⌧,1)

J

dq2
+

d�(⌧,2)

J

dq2
(70)

3
With exponential model we indicate the exponential parametrisation described in section IIIA together with the benchmark points

obtained in section III B.

Böer et al, arXiv:1801.08367

https://arxiv.org/find/hep-ph/1/au:+Boer_P/0/1/0/all/0/1


Higher order corrections
• What about 1/m2 corrections? 


• Conservative (?) estimate from [9] suggests 30% correction.


• Leading to 7/8% on RΛc* ratios.


• Lattice input would be very useful indeed.


• Perhaps one could also get an idea by comparing the lattice/
HQET for the ground-state.
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Böer et al, arXiv:1801.08367

[9] Bigi, Gambino, Schacht, J. High Energ. Phys. (2017) 2017: 61

https://arxiv.org/find/hep-ph/1/au:+Boer_P/0/1/0/all/0/1


Summary
• The programme is moving with baryonic SL decays at LHCb.


• Still plenty of things to do, but hope to get similar SM 
uncertainty on LU ratios to mesonic versions.


• We are also working on the related LU ratios, but those are 
longer term.


• As always LQCD is an essential component in this.


• Very much looking forward to any results on this.
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