

$B \rightarrow D^{(*)} l v$ Belle, Babar, Belle II Phillip Urquijo, Eiasha Waheed

MITP April 2018

Recent (past 2 years) & upcoming measurements

- $B \rightarrow D | v$
 - Hadron tagged, Belle (2016 PRD)
- $B \rightarrow D^* l v$
 - Hadron tagged, Belle (2017 preliminary)
- $B \rightarrow D^{**} \downarrow v$
 - $B \rightarrow D(*)\pi\pi l v$, Hadron tagged, Babar (2016 PRL)
 - $B \rightarrow D^{(*)}\pi l \nu$, Hadron tagged, Belle (2018 submitted to PRD)
- Expected from B-factories
 - $B \rightarrow D^* l v$ full differentials (untagged), more tests for new physics in e/μ channels.
 - + many more studies from Belle II

and Form Factors V_{cb}

$$\frac{d\Gamma}{dw}(B \to D\ell\nu) \sim (\text{Phase Space})|V_{cb}|^2 G(w)^2$$
$$\frac{d\Gamma}{dw}(B \to D^*\ell\nu) \sim (\text{Phase Space})|V_{cb}|^2 F(w)^2 \sum_{i=+,0,-} |H_i(w)|^2$$

BGL, Boyd, Grinstein, Lebed Phys.Rev.Lett

$$F_i(w) = \frac{p_i(w)}{B_i(z)\phi_i(z)} \sum_{n=0}^N a_n^{(i)} z^n \qquad z = (\sqrt{w+1} - \sqrt{2})/(\sqrt{w+1} + \sqrt{2})$$

Coefficient a_n^i free parameters: Unitarity bounds the sum of a_n^i .

CLN, Caprini, Lellouch, Neubert Nucl.Phys.B530, 153 (1998)

 $G(w) = G(1)[1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3]$

Use HQET to reduce number of free parameters.

$$w = \frac{m_B^2 + m_D^2 - m_B m_d}{2m_B m_d}$$

Belle II General Status and Timeline

Phillip URQUIJO

THE UNIVERSITY OF **MELBOURNE**

Detector installation activities

Belle II Roll-in

SVD Ladder mount

MITP 2018, Belle II

Phillip URQUIJO

QCS solenoid

ARICH installation

<image>

Readout integration: cosmic

Start of Phase II

<u>Control room, 14/2/2018</u>

1234

24 25 26 27 28

= = 1 2 3 4

19 20 21 22 23 24 25 26 27 28 29 30 31

678

1 2 3 4 5 6 7 = 1 2 3 4 8 9 10 11 12 13 14 5 6 7 8 9 10 11

LER and HER current: 8 April 2018

HER

LER

http://wwwlinac.kek.jp/skekb/ snapshot/ring.html

Belle I

Phillip URQUIJO

SuperKEKB / Belle II Luminosity projections

Phase 2:

Peak luminosity reaches **1 x 10³⁴ cm⁻²s⁻¹** (Belle) **20 fb**⁻¹ for physics near Y(4S)

Feb 2018: Global cosmic ray runs.

March 2018: First beams.

April 2018: First collisions

July 2018: End of commissioning run.

Phase 3: **50 ab⁻¹** by 2025 50x Belle, 100x Babar

Early 2019: "Phase 3"

All 2018 dates are tentative

Phillip URQUIJO

Analysis requirements

Reconstruction

- Low p_T tracking for D*
- Curling track rejection for excess track veto
- e/μ ID, particularly < 1 GeV leptons from τ
- γ clusters for E_{ECL}
- Beam background mitigation
- π^0 selection for D and D*- π^0_{slow}

Analysis

- B tagging methods
- Vertex fitting (B, D ... τ maybe)
- MVA's used in all recent signal analyses
- I discuss current reconstruction performance, new algorithms under development and naive projections.

Muon identification

- Muons are the easiest to identify
 - Little to **no radiation** (heavy)
 - **Stable** within particle detectors
 - No strong interactions in absorber material
 - In B-factories, need p > 700 MeV/c to reach muon detectors
- ECL not used for μ ID at Belle \rightarrow to be used in Belle II.

Phillip URQUIJQ

1.5 2 2.5 3 3.5

4.5

4

φ [deg]

Electron identification

- Electrons are light: **Final state radiation**
 - Bremsstrahlung in material is likely
 - Measure too low momentum, Too low energy in calorimeter
 - Bremsstrahlung recovery partial fixes this
- Belle: dE/dx + ECL + ACC + TOF used for e.
- Belle II: TOP, ARICH, dE/dx, ECL-shower depth & Zernike moments > development for low momentum in progress.

MITP 2018, Belle II

13

Phillip URQUIJO

MELBOURNE

Beam background (MC 2017)

- Increases occupancy in inner Si layers can degrade tracking.
- Increases off-time energy deposition in the calorimeter.

Track reconstruction

- Impact parameters: σ_{d0} Belle II ~ 0.5 x σ_{d0} Babar
- Vertex: σ_z Belle II ~ 0.5 x σ_z Belle
- Mass: σ_M Belle II ~ 0.7 x σ_M Belle
- Novel silicon—dedicated tracking. Good for D* efficiencies $< p_{\pi-slow} > ~ 100$ MeV.

econstruction

• Beam background mitigated with wave form sampling, timing.

ECL resolution

E_{true} [GeV]

Photon and π^0 efficiencies

B-factory Approaches to Measuring $B \rightarrow X l v$

Untagged

initial 4-momentum known missing 4-momentum = vReconstruct $B \rightarrow X_q l v$ Use other side to constrain B flight direction.

Fully Reconstructed Tag One B reconstructed completely in a known b \rightarrow c mode without v. "B-meson Beam"

B-factory Approaches to Measuring $B \rightarrow X l v$

initial 4-momentum known missing 4-momentum = vReconstruct $B \rightarrow X_q l v$ Use other side to constrain B flight direction.

Fully Reconstructed Tag One B reconstructed completely in a known b \rightarrow c mode without v. "B-meson Beam"

$$\begin{bmatrix} \frac{n}{\overline{n}} p^{D^*} - p_\ell \end{bmatrix}^2 = (p_\nu)^2 = m_{\text{miss}}^2 \backsim 0$$

Hadronic tagging

Tag algorithm date	MVA	Efficiency	Purity
Belle v1 (2004)	Cut-based (Vcb)	_	_
Belle v3 (2007)	Cut-based	0.1	0.25
Belle NB (2011)	Neurobayes	0.2	0.25
Belle II FEI (2016)	FastBDT	0.5	0.25

 D^0, D^{*0} modes B^0 modes D^+, D^{*+}, D^+_s modes B^+ modes $D^+ \to K^- \pi^+ \pi^+$ $\overline{D^0 \to K^- \pi^+}$ $B^+ \to \overline{D}{}^0 \pi^+$ $B^0 \to D^- \pi^+$ $B^+ \to \overline{D}{}^0 \pi^+ \pi^0$ $B^0 \to D^- \pi^+ \pi^0$ $D^0 \to K^- \pi^+ \pi^0$ $D^+ \to K^- \pi^+ \pi^+ \pi^0$ $B^+ \to \overline{D}{}^0 \pi^+ \pi^0 \pi^0$ $B^0 \to D^- \pi^+ \pi^+ \pi^ D^0 \rightarrow K^- \pi^+ \pi^+ \pi^ D^+ \to K^- K^+ \pi^+$ ty $B^+ \to \overline{D}{}^0 \pi^+ \pi^+ \pi^ B^0 \to D_s^+ D^ D^0 \to \pi^- \pi^+$ $D^+ \to K^- K^+ \pi^+ \pi^0$ $B^+ \to D_s^+ \overline{D}{}^0$ $B^0 \rightarrow D^{*-} \pi^+$ $D^+ \to K^0_s \pi^+$ $D^0 \to \pi^- \pi^+ \pi^0$ $B^+ \to \overline{D}^{*0} \pi^+$ $B^0 \to D^{*-} \pi^+ \pi^0$ $D^+ \to K^0_{\rm s} \pi^+ \pi^0$ $D^0 \to K^0_s \pi^0$ $B^0 \to D^{*-} \pi^+ \pi^+ \pi^ B^+ \to \overline{D}^{*0} \pi^+ \pi^0$ $D^0 \to K^0_{\rm s} \pi^+ \pi^ D^+ \rightarrow K^0_{\rm s} \pi^+ \pi^+ \pi^ B^+ \to \overline{D}^{*0} \pi^+ \pi^+ \pi^ B^0 \to D^{*-} \pi^+ \pi^+ \pi^- \pi^0$ $D^{*+} \rightarrow D^0 \pi^+$ $D^0 \rightarrow K^0_s \pi^+ \pi^- \pi^0$ $B^+ \to \overline{D}^{*0} \pi^+ \pi^+ \pi^- \pi^0$ $B^0 \rightarrow D_s^{*+} D^ D^{*+} \rightarrow D^+ \pi^0$ $D^0 \to K^- K^+$ $B^+ \to D_s^{*+} \overline{D}{}^0$ $B^0 \rightarrow D_s^+ D^{*-}$ $B^+ \to D_s^+ \overline{D}^{*0}$ $D^+_s \to K^+ K^0_s$ $D^0 \to K^- K^+ K^0_{\rm s}$ $B^0 \to D_s^{*+} D^{*-}$ $B^+ \to \overline{D}{}^0 K^+$ $B^0 \to J\!/\psi K_s^0$ $D^{*0} \rightarrow D^0 \pi^0$ $D_s^+ \to K^+ \pi^+ \pi^ B^+ \to D^- \pi^+ \pi^+$ $B^0 \to J/\psi K^+ \pi^+$ $D_s^+ \to K^+ K^- \pi^+$ $D^{*0} \to D^0 \gamma$ $B^0 \rightarrow J/\psi K^0_{\rm s} \pi^+ \pi^ B^+ \to J/\psi K^+$ $D_s^+ \to K^+ K^- \pi^+ \pi^0$ $B^+ \to J/\psi K^+ \pi^+ \pi^ D_s^+ \to K^+ K_s^0 \pi^+ \pi^ B^+ \to J/\psi K^+ \pi^0$ $D_s^+ \to K^- K_s^0 \pi^+ \pi^+$ $B^+ \rightarrow I/_2, K^0 \pi^+$ $\pi^+\pi^+\pi^ B^+$ Belle II MC % 0.7 B^+ efficiency 9.0 B^+ B^+ • BGx0 $D^0 \to K^- \pi^+ \pi^0 \pi^0$ • BGx1 B^+ $D^0 \to K^- \pi^+ \pi^+ \pi^- \pi^0$ B^+ $-\pi^0$ $D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-$ 0.4 B^+ K_{s}^{0} $D^0 \to \pi^- \pi^+ \pi^0 \pi^0$ 0.3 B^+ $D^0 \to K^- K^+ \pi^0$ B^+ 0.2 B^+ 0.1 .0 B^+ B^+ 30 50 20 40 60 70 80 90 purity (%) purity (%) Below line: not used in Belle NB tag.

Phillip URQUIJO

$B \rightarrow D l v$

- Use both $B \rightarrow D^{0}lv$ and $B \rightarrow D^{+}lv$
- Signal extract in 10 bins of w from M_{miss}²
- Fit ~17000 signal events
- Largest background $B \rightarrow D^* l v$
- Use B tagging: calibration with $B \rightarrow X l v$
- First BGL analysis of $b \rightarrow c l v$

Belle PRD 93, 032006 (2016)

B→ D e v

 $B \rightarrow D \mu v$

$B \rightarrow D l v$

- Consistent results between the existing measurements.
- Challenge is that a lot of information comes from w=1 but d $\Gamma/dw \rightarrow 0$ at this point
- form factor shape

MITP 2018, Belle II

Belle PRD 93, 032006 (2016)

	N = 2	N = 3	N = 4
$a_{+,0}$	0.0127 ± 0.0001	0.0126 ± 0.0001	0.0126 :
$a_{+,1}$	-0.091 ± 0.002	-0.094 ± 0.003	-0.094 =
$a_{+,2}$	0.34 ± 0.03	0.34 ± 0.04	$0.34~\pm$
$a_{+,3}$	_	-0.1 ± 0.6	-0.1 ± 0.1
$a_{+,4}$	_	_	0.0 ± 1
$a_{0,0}$	0.0115 ± 0.0001	0.0115 ± 0.0001	0.0115 :
$a_{0,1}$	-0.058 ± 0.002	-0.057 ± 0.002	-0.057 =
$a_{0,2}$	0.22 ± 0.02	0.12 ± 0.04	$0.12~\pm$
$a_{0,3}$		0.4 ± 0.7	0.4 ± 0
$a_{0,4}$		_	0.0 ± 1
$\eta_{\rm EW} V_{cb} $	40.01 ± 1.08	41.10 ± 1.14	$41.10 \pm$
$\overline{\chi^2/n_{ m df}}$	24.7/16	11.4/16	11.3/16
Prob.	0.075	0.787	0.787

Belle Unfolded spectrum fitted with the Lattice from FNAL & HPQCD points to extract |Vcb| and the

$B \rightarrow D l \nu$ Systematics and LFU

- Tag correction dominates use only the cleaner modes at Belle II, e.g. lower multiplicity, fewer modes with γ or K_s.
- Despite overall stat error, low recoil bin is highly stat limited
- Ratio not explicitly measured in Belle. Errors should cancel. $R_{\mu/e}$ stat±6%, sys±1% (estimated).

In Belle II: $R_{\mu/e}$ stat±<1%, sys±<1%. = total±1%

Sample	Signal yield	\mathcal{B} [%]
$B^0 \to D^- e^+ \nu_e$	$2848 \pm 72 \pm 17$	$2.44\pm0.06\pm$
$B^0 \to D^- \mu^+ \nu_\mu$	$2302\pm63\pm13$	$2.39\pm0.06\pm$
$B^+ \to \bar{D}^0 e^+ \nu_e$	$6456 \pm 126 \pm 66$	$2.57\pm0.05\pm$
$B^+ \to \bar{D}^0 \mu^+ \nu_\mu$	$5386 \pm 110 \pm 51$	$2.58\pm0.05\pm$
$B^0 \to D^- \ell^+ \nu_\ell$	$5150 \pm 95 \pm 29$	$2.39\pm0.04\pm$
$B^+ \to \bar{D}^0 \ell^+ \nu_\ell$	$11843 \pm 167 \pm 120$	$2.54\pm0.04\pm$
$B \to D\ell\nu_\ell$	$16992 \pm 192 \pm 142$	$2.31 \pm 0.03 \pm$

- 0.12
- 0.11
- 0.13
- 0.13
- 0.11
- 0.13
- 0.11

Tag Method	tag
Br [10 ⁻²]	2.
Errors	C
Track	1
B→D**lv, FF	0
B→D**lv, Bfs	0
D(*) Bfs	1
PDFs	0
particle ID	1
Tag calibration	3
Luminosity	1
τ _Β	0
π ⁰ efficiency	0
Total	4
Stat	1

THE UNIVERSITY OF MELBOURNE

Tag mode calibration Data/MC $B_{sig} \rightarrow X l \nu @ Belle$

Moderately clean

High multiplicity, lower purity modes

$B \rightarrow D^* l \nu$ status

Reasonable consistency among Belle and Babar

B+ and B0 (isospin constraint)

MITP 2018, Belle II

Phillip URQUIJO

$B \rightarrow D^* l \nu untagged$

- $B^{0} \rightarrow D^{*} lv (D^{*} \rightarrow D^{0}\pi^{-}, D^{0} \rightarrow K\pi)$ both e and μ modes (120k signal events)
- - Take the sum of momenta of non-signal side of the decay, pincl
- Fit 1D projections in w, cos θ l, cos θ V, χ (P-value of CLN fit = 47%)

Not unfolded

MITP 2018, Belle II

Conservation of momentum: p_B is on a cone around (D^{*}l) axis making an opening angle $cos\theta_{B,D^*l}$.

- Continuum subtracted On-Resonance data
- Signal prediction after fit
- MC background, D**
- MC background, Signal correlated
- MC background, Uncorrelated
- MC background, Fake lepton
- MC background, Fake D*

$$\mathcal{F}(1)|V_{cb}| = (34.5 \pm 0.2 \pm 1.0) \times 10^{-3},$$

$$\rho^2 = 1.214 \pm 0.034 \pm 0.009,$$

$$R_1(1) = 1.401 \pm 0.034 \pm 0.018,$$

$$R_2(1) = 0.864 \pm 0.024 \pm 0.008,$$

$B \rightarrow D^* l v$

- Based on 79 fb⁻¹ Find 52.8 K signal events
- $B^0 \rightarrow D^* l_V (D^* \rightarrow D^0 \pi, D^0 \rightarrow \{K\pi, K3\pi, K\pi\pi^0\})$
- Fit projections, accounting for bin-bin correlations directly from data
- CLN analysis only.

Subsample	$ ho^2$	$R_{1}(1)$	$R_{2}(1)$	$\mathcal{F}(1) V_{cb} \times 1$
$K\pi e$	0.971 ± 0.163	1.166 ± 0.182	0.977 ± 0.107	$34.76 \pm 0.61 \pm$
$K\pi\mu$	1.013 ± 0.175	1.193 ± 0.206	0.922 ± 0.123	$34.55\pm0.66\pm$
$K\pi\pi\pie$	1.581 ± 0.151	2.043 ± 0.384	0.405 ± 0.232	$33.30 \pm 1.27 \pm$
$K\pi\pi\pi\mu$	1.146 ± 0.258	1.156 ± 0.351	0.946 ± 0.197	$34.14 \pm 1.10 \pm$
$K\pi\pi^0 e$	1.042 ± 0.165	1.217 ± 0.206	0.926 ± 0.118	$34.86\pm0.64\pm$
$K\pi\pi^0 \mu$	1.170 ± 0.155	1.439 ± 0.228	0.838 ± 0.131	$34.38 \pm 0.74 \pm$

Babar PRD 77:032002,2008

$B \rightarrow D^* l \nu tagged$

- Hadronic tag, tag calibration with $B \rightarrow X l v$
- Signal from un-binned maximum likelihood fit
 - Yields extracted in 4x10 bins
 - Spectrum unfolded for later analysis in BGL parameterisation first unfolded spectrum.

urther one introduces the implicit assumption that the fraction of wrongly and correctly reconstructed

t to M²_{miss}

$$\frac{\ell}{e + \mu} \frac{\nu^{\text{sig}} \nu^{\text{sig}}_{\text{MC}} \epsilon_{\text{reco}} \epsilon_{\text{tag}}}{e + \mu} \frac{2374 \pm 53}{2310.1} \frac{2310.1}{3.19 \times 10^{-5}} \\
e 1306 \pm 40 1248.8 \frac{3.45 \times 10^{-5}}{4.1061.3} \\
\mu 1066 \pm 34 1061.3 2.93 \times 10^{-5}$$

$$\mathcal{B}(\bar{B}^0 \to D^{*+} e^- \bar{\nu}_e) = (5.04 \pm 0.15 \pm 0.23) \times 10^{-2}$$

 $\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_\mu) = (4.84 \pm 0.15 \pm 0.22) \times 10^{-2}$

 $R_{e\mu} = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} e^- \bar{\nu}_e)}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_\mu)} = 1.04 \pm 0.05 \pm 0.01$

Model independent measurements

BGL expansion. More reliable $B \rightarrow D(*) \mid v$ differentials & errors for |Vcb| and for background modelling in $B \rightarrow D(*) \tau v$.

Bigi et al., arXiv:1703.06124

$$\begin{aligned} H_0(w) &= \mathcal{F}_1(w) / \sqrt{q^2}, \\ H_{\pm}(w) &= f(w) \mp m_B m_{D^*} \sqrt{w^2 - 1} g(w). \end{aligned} \qquad f(z) &= \frac{1}{P_{1^+}(z) \phi_f(z)} \sum_{n=0}^N a_n^f z^n \\ \mathcal{F}_1(z) &= \frac{1}{P_{1^+}(z) \phi_{\mathcal{F}_1}(z)} \sum_{n=0}^N a_n^g z^n \end{aligned}$$

BGL Fit:	Data + lattice	Data + lattice + LCSR
$\chi^2/{ m dof}$	27.9/32	31.4/35
$ V_{cb} $	$0.0417 \left({^{+20}_{-21}} ight)$	$0.0404 \begin{pmatrix} +16\\ -17 \end{pmatrix}$
a_0^f	0.01223(18)	0.01224(18)
a_1^f	$-0.054\left(^{+58}_{-43} ight)$	$-0.052\left(^{+27}_{-15} ight)$
a_2^f	$0.2 \begin{pmatrix} +7 \\ -12 \end{pmatrix}$	$1.0 \begin{pmatrix} +0 \\ -5 \end{pmatrix}$
$a_1^{\mathcal{F}_1}$	$-0.0100\left(^{+61}_{-56} ight)$	$-0.0070\left(^{+54}_{-52} ight)$
$a_2^{\mathcal{F}_1}$	0.12(10)	$0.089 \begin{pmatrix} +96\\ -100 \end{pmatrix}$
a_0^g	$0.012 \begin{pmatrix} +11 \\ -8 \end{pmatrix}$	$0.0289 \begin{pmatrix} +57\\ -37 \end{pmatrix}$
a_1^g	$0.7\left(\substack{+3\\-4} ight)$	$0.08 \begin{pmatrix} +8\\ -22 \end{pmatrix}$
a_2^g	$0.8 \left(^{+2}_{-17}\right)$	$-1.0 \begin{pmatrix} +20 \\ -0 \end{pmatrix}$

CLN Fit:	Data + lattice	Data + lattice +
$\chi^2/{ m dof}$	34.3/36	34.8/39
$ V_{cb} $	0.0382(15)	0.0382(14)
$ ho_{D^*}^2$	$1.17 \begin{pmatrix} +15\\ -16 \end{pmatrix}$	1.16(14)
$R_1(1)$	$1.391 \begin{pmatrix} +92\\ -88 \end{pmatrix}$	1.372(36)
$R_{2}(1)$	$0.913 \begin{pmatrix} +73 \\ -80 \end{pmatrix}$	$0.916 \begin{pmatrix} +65\\ -70 \end{pmatrix}$
$h_{A_1}(1)$	0.906(13)	0.906(13)

 z^n - LCSR

THE UNIVERSITY OF MELBOURNE

Comparison of approaches @ Y(4S)

- Untagged measurement predates tracking update in Belle: Δε_{track} reduced by 3.
- Errors on tracking, PID, π^0 efficiencies are data driven.
 - Slow pion Tracking in Belle II ~2x efficiency < 100 MeV
- Br needs better measure of N_{BB} , f_{+0} limited by precision of integrated luminosity measurement.
- Tag calibration error can be improved by choosing cleaner tags in larger data sets. *But we still need control modes!*
- Most errors cancel in **LFUV** measurement.
 - Belle tagged: stat±5%, sys±1%
 - Belle untagged (estimated reanalysis in progress): stat±1%, sys±1%
 - Belle II total ±< 1%.

Tag Method	untagged	tagge
Br [10 ⁻²]	4.58	4.95
Errors	%	%
Track	4.50	1.6
Slow track	1.29	0.1
elD	0 10	0.2 (in
μ ID	2.10	0.1 (in
fake leptons	0.07	<0.1
B→D**lv, FF	0.24	<0.1
B→D**lv, Bfs	0.57	0.2
D(*) Bfs	1.48	0.5
PDFs	0.22	0.9
Tag calibration	0.00	3.6
N _{BB}	1.38	1.4
f +0	1.35	1.1
τ _B	0.59	0
π ⁰ efficiency	0.00	0.5
Total	5.8	4.5
Stat	0.7	2.2

THE UNIVERSITY OF

More model independent

- 4D differentials, not 4 x 1D are preferable if feasible to measure. Any changes to the generated spectra should minimally affect the signal efficiency in the 4D case.
- If we analyse in 4D, we need to understand background in 4D.
- Tagged analysis ~3k events/ab, untagged analysis ~ 170k/ab

• Any substantial modifications to the signal shape (CLN \rightarrow BGL, or NP) will affect acceptance.

Low efficiency where lepton or πslow has relatively low momentum

Kinematic endpoint

• BGL - CLN difference most striking at low recoil - high q².

• We should study this carefully for $B \rightarrow D^*$, $B \rightarrow D$ at the lepton endpoint.

$B \rightarrow D^{**} l v$

• No absolute Br of exclusive $B \rightarrow D^{**} l v$ decay modes.

- D** branching ratios need complementary information from hadronic B decays. • Unmeasured $D^{**} \rightarrow$ modes, for saturation of $B \rightarrow X l v$

- $B \rightarrow D(*)n\pi Iv + B \rightarrow D(*)\eta Iv$ etc. No attempts at neutral modes, or modes with $\pi 0$. • Scarce information on $B \rightarrow D^{**} l v$ differentials - statistics limited.

	J	Observed	Possible
)	1/2	Dπ	Dη
)	1/2	D*π	Dππ, Dη
)	3/2	D*π, Dππ	D ₀ *π, D ₀ *ρ, D ₀ *f ₀
)	3/2	D*π, Dπ	Dππ
5			D(ρ,ππ), D*(η,π)
)			D*(ρ,ππ), D(η,π)

THE UNIVERSITY OF MELBOURNE

$B \rightarrow D^{(*)}\pi l \nu$ (NEW)

- Hadron tag
- $B^+ \rightarrow D^{(*)} \pi^0 l \nu$ (1.4k signal)
- $B^+ \rightarrow D^{(*)} \pi^+ l \nu (1.1k signal)$
- Binned fit to m²miss/v to D and D* simultaneously (B⁺, B⁰ separately)

•
$$\mathcal{B}(B^+ \to D^- \pi^+ \ell^+ \nu)$$

= [4.55 ± 0.27 (stat.) ± 0.39 (syst.)] ×10⁻³,

- $\mathcal{B}(B^0 \to \bar{D}^0 \pi^- \ell^+ \nu)$ $= [4.05 \pm 0.36 \text{ (stat.)} \pm 0.41 \text{ (syst.)}] \times 10^{-3},$
- $\mathcal{B}(B^+ \to D^{*-}\pi^+\ell^+\nu)$ $= [6.03 \pm 0.43 \text{ (stat.)} \pm 0.38 \text{ (syst.)}] \times 10^{-3},$
- $\mathcal{B}(B^0 \to \bar{D}^{*0} \pi^- \ell^+ \nu)$ $= [6.46 \pm 0.53 \text{ (stat.)} \pm 0.52 \text{ (syst.)}] \times 10^{-3}.$

B \rightarrow D^(*) ππ l ν

- Gap between inclusive $B \rightarrow Xc$ lv sum of known exclusive decays
- Good candidates: $B \rightarrow D(*)\pi\pi(X) lv$ (could also be $B \rightarrow D(*)\eta lv$)
- Hadronic tag, normalise to $B \rightarrow D(*) \mid v$
- Unbinned ML fit
- Closes exclusive-inclusive gap to about 1% (10% of SL rate).

Channel	$R_{\pi^{+}\pi^{-}}^{(*)} \times 10^3$	$\mathcal{B} \times 10^5$
$D^0 \pi^+ \pi^- \ell^- \overline{\nu}$	$71 \pm 13 \pm 8$	$161 \pm 30 \pm 18 =$
$D^+\pi^+\pi^-\ell^-\overline{\nu}$	$58 \pm 18 \pm 12$	$127 \pm 39 \pm 26 =$
$D^{*0}\pi^+\pi^-\ell^-\overline{\nu}$	$14 \pm 7 \pm 4$	$80 \pm 40 \pm 23 =$
$D^{*+}\pi^+\pi^-\ell^-\overline{\nu}$	$28 \pm 8 \pm 6$	$138 \pm 39 \pm 30 =$
$D\pi^{+}\pi^{-}\ell^{-}\overline{\nu}$	$67 \pm 10 \pm 8$	$152 \pm 23 \pm 18$ =
$D^*\pi^+\pi^-\ell^-\overline{\nu}$	$19 \pm 5 \pm 4$	$ 108 \pm 28 \pm 23 =$

Babar PRL 116, 041801 (2016)

$B \rightarrow D^{**} l v$

- Reconstruct $B \rightarrow D(*)\pi^{\pm}lv$ in events tagged with hadronic B decays
- Simultaneous fit to $M(D(*)\pi)$ or $M(D(*)\pi)$ -M(D(*)), including cross-feeds
- Background yield constrained from fit to B_{tag} mass. Shapes checked on wrong-sign data combinations
- Large rate for broad states!

Decay Mode	Yield	$\epsilon_{\rm sig}(\times 10^{-4})$	$\mathcal{B}(\overline{B} \to D^{**}\ell^- \overline{\nu}_\ell) \times \mathcal{B}(D^{**} - \overline{\nu}_\ell)$
$B^- \to D_1^0 \ell^- \bar{\nu}_\ell$	165 ± 18	1.24	$0.29 \pm 0.03 \pm 0.03$
$B^- \to D_2^{*0} \ell^- \bar{\nu}_\ell$	97 ± 16	1.44	$0.15 \pm 0.02 \pm 0.01$
$B^- \to D_1^{\prime 0} \ell^- \bar{\nu}_\ell$	142 ± 21	1.13	$0.27 \pm 0.04 \pm 0.05$
$B^- \to D_0^{*0} \ell^- \bar{\nu}_\ell$	137 ± 26	1.15	$0.26 \pm 0.05 \pm 0.04$
$\overline{B}{}^0 \to D_1^+ \ell^- \bar{\nu}_\ell$	88 ± 14	0.70	$0.27 \pm 0.04 \pm 0.03$
$\overline{B}{}^0 \to D_2^{*+} \ell^- \bar{\nu}_\ell$	29 ± 13	0.91	$0.07 \pm 0.03 \pm 0.01 \ (< 0.11 \ @$
$\overline{B}{}^{0} \to D_{1}^{\prime +} \ell^{-} \bar{\nu}_{\ell}$	86 ± 18	0.60	$0.31 \pm 0.07 \pm 0.05$
$\overline{B}{}^0 \to D_0^{*+} \ell^- \overline{\nu}_\ell$	142 ± 26	0.70	$0.44 \pm 0.08 \pm 0.06$

Babar PRL 101:261802 (2008)

 $\mathcal{B}(D^{**} \to D^{(*)}\pi^{\pm}) \%$ 0.03 ± 0.03 02 ± 0.01 04 ± 0.05 05 ± 0.04 04 ± 0.03 (< 0.11 @90% CL) 0.07 ± 0.05

$B \rightarrow D^{**} l \nu$ exclusive measurements

- $B \rightarrow D^{(*)} \pi l \nu$ ultimately want to measure form factors
- Normalised with DlvorXlv
- Strong model dependence in systematics particularly broad J=1/2 modes.
- Highly stats limited (modelling errors can be overcome by measuring differentials)

Babar PRL 101:261802 (2008) Babar PRL 103:051803 (2009) Belle PRD 77:091503 (2008)

	Belle tagged J=3/2 & 1/2	Babar tagg J=3/2 & 1
N _{BB} [10 ⁶]	657	460
Error	%	%
Tracking		1.8-2.4
Particle ID	2	1.2-1.6
$\pi^0 \& \gamma Eff.$		0.2-4.8
MC stats.	in stat.	_
Comb.&Cont.	-	0.2-10.4
Helicity corr.		1 5 1 2 0
Signal model	12-22	4.3-13.0
PDFs		0.2-8.7
N _{BB}	-	-
D(*) Bfs	10	3-4.5
Norm	10	4-6
Bkg	6	-
total sys	14-25	5.5-17
total stat	14-40	10-20

Future measurements of $B \rightarrow D(*) l v$

- Direct measurements with BGL in 4x1D and 4D.
 - 4-dimension binning: What binning is best? Can we model background in 4D? Method of moments?
- *Forward* folding Vs. unfolding.
- Model independent + NP fits (particularly V_R), accounting for modified acceptance and PDFs.
- Studies of $B \rightarrow D^* l v$ and $B \rightarrow D l v$ near the kinematic endpoint. Can the BGL-CLN differences have an impact on inclusive $|V_{ub}|$, $B \rightarrow X \tau v$ studies?
- Differential measurements of $B \rightarrow D^{**} l v$ (resonant).
- Precise e/µ LFUV tests.
- More tests of B+ vs. B0 (different EM corrections)

36

Belle II considerations

Systematics dominated analyses.

Reconstruction

- Tracking trade off between efficiency and purity. We can choose cleaner tracks! Systematics due to small differences between data/MC. eID, μ ID errors extracted from studies of ee $\rightarrow \mu\mu(\gamma)$, ee \rightarrow ee(γ), J/ $\psi \rightarrow$ l⁺l⁻.
- Data driven, therefore can be improved with more data.

Normalisation

- Tag uncertainties due to low purity modes (dominant) and due to tag calibration modes. We can use cleaner tagging.
- NBB and f+0 must be remeasured at Belle II. Dominated by luminosity errors - due to trigger stability & can be studied with extra triggers.

Background

Better vertex fitting, neutral reconstruction should better mitigate background.

Tag Method	untagged	tag
Br [10 ⁻²]	4.58	4
Errors	%	
Track	4.50	
Slow track	1.29	
elD	2.18	0.2
μID		0.1
fake leptons	0.07	<
B→D**lv, FF	0.24	<
B→D**lv, Bfs	0.57	
D ^(*) Bfs	1.48	
PDFs	0.22	
Tag calibration	0.00	
N _{BB}	1.38	
f ₊₀	1.35	
τ _B	0.59	
π ⁰ efficiency	0.00	
Total	5.8	
Stat	0.7	

Naive Belle II projections

- $B \rightarrow D^* l v$,
 - $|V_{cb}|$ Experiment Error : $3\% \rightarrow 1\%$
 - $R_{e/\mu}: 5\% \to 1\%$
- $B \rightarrow D l v$,
 - $|V_{cb}|$ Experiment Error $3\% \rightarrow 1\%$
 - $R_{e/\mu}$: (6% approx.) $\rightarrow 1\%$
- $B \rightarrow D^{**} | v$
 - Exclusive modes never done comprehensively at B-factories. A long way to go to eliminate this as bias on $B \rightarrow D(*) \tau v$.

Summary

- Recent results:
 - $B \rightarrow D^* l v$ (Belle preliminary 2017), $B \rightarrow D l v$ (Belle 2016)
 - $B \rightarrow D(*) \pi I \nu$ (Belle New 2018), $B \rightarrow D(*) \pi \pi I \nu$ (Babar 2016)
- Experiments working on more model independent data preparation particularly B \rightarrow D* l v.
- Belle II will have a challenge in improving precision,
 - Focus for Vcb will be on improved systematic errors from particle reconstruction and tagging.
 - $B \rightarrow D^{**} | v will clearly benefit from >> 1 ab^{-1}$.

Dlv(Belle 2016) *) ππlv(Babar 2016) independent data preparation -

ving precision, vstematic errors from particle

Belle II Upgrades

Central beam pipe: decreased diameter from 3cm to 2cm (Beryllium)

Vertexing: new 2 layers of pixels, upgraded 4 double-sided layers of silicon strips

Tracking: drift chamber with smaller cells, longer lever arm, faster electronics

PID: new time-of-flight (barrel) and proximity focusing aerogel (endcap) Cherenkov detectors

EM calorimetry: upgrade of electronics and processing with legacy CsI(Tl) crystals

K_L and μ: scintillators replace RPCs (endcap and inner two layers of barrel)

