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AIM: improved accuracy and reach

Lattice QCD allows calcln of 
hadron correlation functions 
that give masses and form 
factors for simple decay 
processes. Combined with expt. 
can test SM and determine 
parameters e.g. VCKM



Parameters for gluon field configurations for 
state-of-the-art calculations

real 
world

mass 
of u,d 
quarks

Volume:

mu,d ⇡ ms/10

mu,d ⇡ ms/27

“2nd generation” 
lattices inc. c 
quarks in sea

m⇡L > 3

HISQ = Highly 
improved 
staggered quarks -
very accurate 
discretisation 

135 MeV
m⇡0 =

E.Follana et al, 
HPQCD, hep-lat/
0610092.
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Calculate quark propagators on background glue,  combine 
into correlation functions. Average over ensemble.

Issue: how to handle b/c quarks
B D⇤

⌫
µ

Systematic errors: 

Current choices for                    :  
c:  Wilson-type (‘Fermilab’, RHQ, OK) 
      HISQ 
      twisted-mass, Mobius domain-wall …  
b:  Wilson-type (‘Fermilab’, RHQ, OK) 
      HISQ 
      NRQCD 
       twisted-mass

B ! D(⇤)

FNAL/
MILC 
LANL/
SWME

RBC/UKQCDHPQCD

2) Operator matching effects - problem for nonrel. actions
1) Discretisation  - problem for relativistic actions  

ETMC

J
Obtain                   from combined 2pt/3pt fit.hD(⇤)|J |Bi



1) Discretisation - ‘seeing’ the lattice spacing
M(a) = M(0)⇥ (1 + c1(⇤a)

2 + c2(⇤a)
4 + . . .)

For relativistic actions Λ can be mq

withNm ¼ Na ¼ 4 [15]. We choose c0000 ¼ 1. This expan-
sion is in powers of quark masses and the QCD scale
parameter !QCD " 0:5 GeV divided by the ultraviolet cut-
off for the lattice theory: !UV " !=a. The fit parameters
are the coefficients cijkl for each of which we use a prior of
0# 1:5, which is conservative [16]. The lattice spacing
effects are dominated by the amh terms. We include both
ams and a!QCD for completeness, but they have a very
small effect because a is small for most of our data. Leaving
out either or both makes no difference to our results.

Our data for five different lattice spacings and a wide
range of masses mHs

are presented with our fit results in
Fig. 1. The reach in mHs

grows as the lattice spacing
decreases (since we restrict amh < 1), and deviations
from the continuum curve get smaller. The fit is excellent,
with a "2 per degree of freedom of 0.36 while fitting all 17
measurements. The small "2 results from our conservative
priors (we get excellent fits and smaller errors with priors
that are half the width).

Having determined the parameters in Eq. (1), the
second step in our analysis is to set MHs

¼ MBs
, a ¼ 0,

andm#s
¼ m#s;phys in that formula to obtain our final value

for fBs
,

fBs
¼ 0:225ð4Þ GeV; (3)

which agrees well with the previous best NRQCD result of
0.231(15) GeV [17] but is almost 4 times more accurate.
Our result also agrees with the recent result of 0.232
(10) GeV from the ETM collaboration, although that
analysis includes only two of the three light quarks in the
quark sea [18]7 (see [8]).

Our total error is split into its component parts following
the procedure described in [19] to give the error budget in
Table III. It shows that the dominant errors come from
statistical uncertainties in the simulations, the mHs

! mBs

extrapolation, the a2 ! 0 extrapolation, and uncertainties
in the scale-setting parameter r1. Our analysis of fDs

in [6]
indicates that finite volume errors, errors due to mistuned
sea-quark masses, errors from the lack of electromagnetic
corrections, and errors due to lack of c quarks in the sea are
all significantly less than 1%, and so negligible compared
with our other uncertainties. Our final result is also insen-
sitive to the detailed form of the fit function; for example,
doubling the number of terms has negligible effect (0:03$)
on the errors and value.
We have also included in Fig. 1 (right) a plot of

ffiffiffiffiffiffiffiffiffi
mHs

p
fHs

for different values of mHs
. This shows that there are large

nonleading terms in fHs
, beyond the leading 1=

ffiffiffiffiffiffiffiffiffi
mHs

p
behavior predicted by HQET. Our simulation nevertheless
provides evidence for the leading term. Treating exponent
bin Eq. (1) as a fit parameter, rather than setting it equal to
& 0:5, we find a best-fit value of b¼ & 0:51ð13Þ, in ex-
cellent agreement with the HQET prediction. This is the
first empirical evidence for this behavior.

FIG. 1 (color online). The leptonic decay constant fHs
for pseudoscalar h "s mesons Hs, plotted on the left versus the Hs mass

as the h-quark’s mass is varied. The solid line and gray band show our best-fit estimates for the decay constants extrapolated
to zero lattice spacing. Best-fit results (dashed lines) and simulation data are also shown for five different lattice spacings, with
results for smaller lattice spacings extending to higher masses (since we restrict amh < 1). The simulation data points have
been corrected for small mistunings of the s quark’s mass. On the right the same simulation data and fits are plotted for

ffiffiffiffiffiffiffiffiffi
mHs

p
fHs

versus 1=mHs
.

TABLE III. Dominant sources of uncertainty in our determi-
nations of the Bs decay constant and the Bs & #b mass differ-
ence. Contributions are shown from the extrapolations inmHs

, a2

and ms, as well as statistical errors in the simulation data and
errors associated with the scale-setting parameter r1. Other
errors are negligible.

fBs
mBs

& m#b
=2

Monte Carlo statistics 1.30% 1.49%
mHs

! mBs
extrapolation 0.81 0.05

r1 uncertainty 0.74 0.33
a2 ! 0 extrapolation 0.63 0.76
m#s

! m#s;phys extrapolation 0.13 0.18
r1=a uncertainties 0.12 0.17
Total 1.82% 1.73%

HIGH-PRECISION fBs
AND HEAVY QUARK . . . PHYSICAL REVIEW D 00

RAPID COMMUNICATIONS

3

Can be controlled up 
to b for HISQ

HPQCD: C. McNeile et al,
1110.4510 

agrees w. 
NRQCD b

Some disc. effects  
suppressed by HQ 
effects, or 
can be cancelled 
between related 
quantities. 

For NRQCD disc. effects αs(Λa)2 or higher
For Fermilab disc. effects αs(Λa) or αs(ma)



2) Operator matching

J = (1 + ↵sz0 + . . .)⇥ [J (0)+

(1 + ↵sz1 + . . .)J (1)+

(↵sz2 + . . .)J (2) + . . .]

rel. corrns

z0 (only) known for NRQCD b ! c

HISQ action allows absolute current normalisation 

zi ⌘
zi(amb, amc)

 c� b

 c�� ·r b/mb

 c� ·r�0� b/mb

NRQCD

Fermilab

 x = (1 + d1� ·r) x

tree-level field ‘rotation’

d1 ⌘ d1(ma)

ma ! 0

matched to O(αs) after  
normalising by c and b vector currents

TM. uses ratios where normln. cancels

J = (1 + ↵sz0 + . . .)[ c� b + . . .]

! 0
as



B ! D⇤`⌫

In zero-recoil limit, only A1 form factor contributes. 
Calculate in lattice QCD: 

hA1(1) =
MB +MD⇤

2
p
MBMD⇤

A1(q
2
max)

Extrapolation of exptl rate gives ⌘EWhA1(1)|Vcb|

hD⇤(~p = 0)|c�j�5b|B(~p = 0)i = (MB +MD⇤)A1(q
2
max)✏

j

Combine lattice and expt. to get Vcb

HQS (Luke’s theorem) : result not sensitive to first-order 
rel. corrns., gives confidence in robustness



a constant over a range of 5 time slices, and that the fit range where an acceptable fit is
obtained is roughly the same in physical units across ensembles. The correlated �

2/d.o.f.
ranges from 0.08 to 0.85, with one exception. On the 0.06 fm, 0.15ms ensemble, the �2/d.o.f.
is 1.71, a bit higher than one might expect, based on fits to the same physical time range on
other ensembles. Also, the double ratio R(t) appears somewhat asymmetric under the inter-
change of source and sink on this ensemble, but this must be a statistical fluctuation, since
R(t) is symmetric by construction. For this ensemble, we adopt the Particle Data Group
(PDG) prescription and rescale the statistical error by the square root of the �2/d.o.f. Time
ranges for fits, their p values, and the raw values for hA1(1) are given in Table IV. We take
the good quality of our fits as evidence that systematic errors due to excited states are small
compared to other errors, and aside from the inflation of the error on one of our data points,
we assign no further error to fitting and excited states.

B. Heavy-quark mass and lattice-scale dependence

As discussed in Sec. V, the simulation values for b,c di↵er from the best tuned values for
these quantities, since the initial tuning analysis was supplemented by additional data and
improved methodology. We use Eq. (5.5) to perform the shift in the form factor given the
tuned values of b,c in Table VI. The dependence of hA1 on  (or m2) can also be used to
propagate the errors in  shown in Table VI to the form factor. This is done by inflating
the di↵erence from the mean under a jackknife for the data points on di↵erent ensembles.
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a ≅ 0.045 fm
extrapolated value

FIG. 7. The full QCD points for hA1(1) versus m
2
⇡ at five lattice spacings are shown in comparison

to the continuum curve. The cross is the extrapolated value, where the solid line is the statistical
error, and the dashed line is the total systematic error added to the statistical error in quadrature.
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clover action b and c *SAME*

asqtad light on nf = 2+1 
asqtad cfgs

TABLE X. Final error budget for hA1(1) where each error is discussed in the text. Systematic
errors are added in quadrature and combined in quadrature with the statistical error to obtain the
total error.

Uncertainty hA1(1)

Statistics 0.4%

Scale (r1) error 0.1%

�PT fits 0.5%

gD⇤D⇡ 0.3%

Discretization errors 1.0%

Perturbation theory 0.4%

Isospin 0.1%

Total 1.4%

between the D⇤0 and the D⇤+ is a much smaller e↵ect. Thus, we quote an error of 0.1% due
to isospin e↵ects.

VIII. ELECTROWEAK EFFECTS

In this section, we discuss the electroweak and electromagnetic e↵ects in the semileptonic
rate, Eq. (1.3). They do not enter the lattice-QCD calculation but are needed, in addition
to the hadronic form factor F(1) = hA1(1), to obtain |Vcb|. The factor ⌘EW (written as ⌘em
in Ref. [1]) takes the form [10]

⌘EW = 1 +
↵

⇡


ln

MW

µ
+ tan2

✓W
M

2
W

M
2
Z
�M

2
W

ln
MZ

MW

�
, (8.1)

where the weak mixing angle is specified via cos ✓W = g2/(g22 + g
2
1)

1/2; g2 and g1 are the
gauge couplings of SU(2)⇥U(1). The first (second) term stems from W -photon (W -Z) box
diagrams plus associated parts from vertex and wavefunction renormalization. This form
assumes that GF in Eq. (1.3) is defined via the muon lifetime, which is the case for GF

in Ref. [1]. In the SM, MW = MZ cos ✓W , and the bracket simplifies to ln(MZ/µ). With
this assumption, taking the factorization scale µ = MB± , and varying µ by a factor of 2 to
estimate the error, one finds

⌘EW,SM = 1.00662(16). (8.2)

To reiterate, it is theoretically cleaner not to include this factor in F(w). This way makes
it more straightforward to study or remove the µ dependence in future work.

In the experiments [76], the charged-lepton energy spectrum is corrected for bremsstrahl-
ung with the PHOTOS [77] generator. For charged B decay, this package has been shown [78]
to reproduce the exact formula [79]. For neutral B decay, the charged D

� and l
+ in the

final state attract each other, which is reflected in a slightly di↵erent formula for the ra-
diation [11]. Reference [12] recommends treating this e↵ect with a Coulomb correction,
1 + ↵⇡/2 = 1.01146 on the amplitude, which is larger than the electroweak correction and
similar in size to the uncertainties from experiment and from QCD. Note, however, that a
detailed study of radiative corrections in K ! ⇡l⌫ finds that QCD-scale e↵ects reduce the

28

hA1(1) = 0.906(4)(12)

‘Ratio trick’ improves 
stat. error, cancels systs. 

Fermilab/MILC 1403.0635

= |hA1 |2

O(αs) matching coeff. (z0) small  
- argue good control from large m limit  

0.5ms

a⇤2

mc
, a2⇤2

cusp
D⇤D⇡

- take error 0.1(αs)2

R =
hD⇤|Aj |BihB|Aj |D⇤i
hD⇤|V4|D⇤ihB|V4|Bi
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FIG. 2: Fit to our data using staggered chiral perturbation
theory. Finite volume corrections are included in the data
points, visible only for the physical pion mass points. The
blue line and grey band are the continuum chiral perturbation
theory result and error extrapolated from our lattice data.
The error band includes systematic errors coming from match-
ing uncertainties and hence has a much larger error than any
of the data points, which are only shown with their statistical
error.

with �mb = mb � mphys

b where mphys

b is determined from
the spin-averaged kinetic mass of the ⌥ and ⌘b[46]. ci,
di, and fi are given prior values of 0(0.5). We neglect
the e↵ects of the very small mistuning of the light quark
masses from their physical value which we expect to be
small.

Finite volume corrections to the staggered chiral per-
turbation theory are given in [60]. Evaluating these ex-
pressions on our lattices, we have found that finite volume
e↵ects are at least an order of magnitude smaller than the
leading O(↵2

s) error on the unphysical lattices. On sets
3, 6 and 8 the finite volume e↵ects are larger, around
half a percent in size. This is significant at the order to
which we work. To account for these e↵ects we subtract
the finite volume correction to hA1

(1) from our data for
these ensembles. We further discuss finite volume e↵ects
in Appendix F.

The calculation on each ensemble of the form factor
for Bs ! D⇤

s decay is equivalent to the B ! D⇤ calcu-
lation, with the light quark propagator replaced with a
strange quark propagator. The analysis is substantially
more straightforward, both because the data is less noisy
and because no chiral extrapolation is required. Before
fitting the lattice data, we include a term to account for
the absence of O(⇤2

QCD
/m2

b) and O(↵s⇤QCD/mb) e↵ects,
as in (20), using the same Gaussian variables e4, e5, e6,
e7, e8, and e9.

For the continuum-chiral fit to the hs
A1

(1) we take the
functional form to be the following, where �sBa Bs has
the same form and priors as the term included for the

FIG. 3: Plot showing the a
2 dependence of our B ! D

⇤ data.
Finite volume corrections are included in the data points, vis-
ible only for the physical pion mass points. The blue line with
grey error band shows the physical result for the form factor
determined by the fit described in the text.

FIG. 4: Lattice spacing dependence of our results for the
Bs ! D

⇤
s zero recoil form factor. The blue line with grey error

band shows the physical result for the form factor determined
by the fit described in the text.

B ! D⇤:

hs
A1

(1)
��
fit

= (1 + Bs)�sBa

+ �1↵
2

s

h
1 +

�5
2

(amb � 2) +
�6
4

(amb � 2)2
i
V (0) (27)

where �1, �5 and �6 are the same as in (21) because
these terms represent the same higher order matching
corrections. We run the Bs ! D⇤

s fit simultaneously
with the B ! D⇤ fit.

The NRQCD and HISQ systematics are the same as

HPQCD: J. Harrison et 
al,1711.11013 

B ! D⇤`⌫

Bs ! D⇤
s`⌫

u/d phys mass
hs
A1

(1) = 0.879(12)(26)

imp. NRQCD b,  
HISQ u/d,s,c

nf = 2+1+1 cfgs 
inc. phys u/d

10

TABLE VIII: Results for parameters in the chiral-continuum fits, Eq. (21) and (27). Higher order terms retain their prior
values and are not shown while 

B
2 = �0.17(25) and 

B
2 = �0.05(42) for hA1

(1) and h
s
A1
(1) respectively.

c1 c2 d1 d2 f1 f2

hA1
(1) �

B
a0 �0.15(12) 0.27(29) 0.24(40) 0.0(5) 0.24(40) 0.0(5)

h
s
A1
(1) �

B
a0 �0.03(22) 0.05(35) 0.0(5) 0.0(5) 0.0(5) 0.0(5)

B C g �1 �5 �6

hA1
(1) �0.091(27) �0.02(24) 0.521(78) �0.14(44) 0(1) -0.15(97)

h
s
A1
(1) �0.117(31) – – �0.14(44) 0(1) -0.15(97)

TABLE IX: Partial errors (in percentages) for h
(s)
A1

(1). A full
accounting of the breakdown of systematic errors is made dif-
ficult by the fact that smaller priors not well constrained by
the data are mixed in a correlated way by the fitter; these
are reflected in the total systematic uncertainty. Note that
the uncertainty from missing ↵

2
s terms in the matching for

hA1
(1) and h

s
A1
(1) is constrained somewhat by the fit; a naive

estimate would give 3.5% on the fine lattices.

Uncertainty hA1
(1) h

s
A1
(1) hA1

(1)/h
s
A1
(1)

↵
2
s 2.1 2.5 0.4

↵s⇤QCD/mb 0.9 0.9 0.0

(⇤QCD/mb)
2 0.8 0.8 0.0

a
2 0.7 1.4 1.4

gD⇤D⇡ 0.2 0.03 0.2

Total systematic 2.7 3.2 1.7

Data 1.1 1.4 1.4

Total 2.9 3.5 2.2

zero-recoil, i.e. about w = 1. (See Appendix G for expres-
sions relating experimental observables to form factors.)
In the case of the hA1

(w) form factor it was found that
the kinematic variable z gives a more convergent series.
Given a specific choice of t0, z depends on the t = q2 as

z(t, t0) =

p
t+ � t �

p
t+ � t0

p
t+ � t +

p
t+ � t0

(32)

with t± = (MB ±MD⇤)2. Usually one takes t0 = t�, and
this is the choice assumed throughout this paper.1

1 One can express z(t, t�) as a function of w as

z(w) =

p
w + 1 �

p
2

p
w + 1 +

p
2

.

The CLN form factors are given as follows

hA1
(w) = hA1

(1)[1 � 8⇢2z + (rh2r⇢
2 + rh2)z

2

+ (rh3r⇢
2 + rh3)z

3]

R1(w) = R1(1) + r11(w � 1) + r12(w � 1)2

R2(w) = R2(1) + r21(w � 1) + r22(w � 1)2 (33)

with the coe�cients computed to be [21]

rh2r = 53 , rh2 = �15 ,

rh3r = �231 , rh3 = 91 ,

r11 = �0.12 , r12 = 0.05 ,

r21 = 0.11 , r22 = �0.06 . (34)

These numbers are the result of a calculation in HQET,
using QCD sum rules and neglecting contributions of
↵s⇤QCD/mc and (⇤QCD/mc)2, as well as smaller e↵ects.
Until recently e↵ects of neglecting these terms have not
been included in fitting the experimental data.

Ref. [21] claims an accuracy of 2%; however this is
based on comparing an expansions in z against some full
expressions. While this tests the convergence of the ex-
pansions, it does not test the accuracy of numerical fac-
tors computed in truncated HQET. In fact the data do
not require any higher order terms in z or w�1. We found
no e↵ect when including a z4 term or (w � 1)3 terms in
(33) with Gaussian priors allowing the coe�cient rh4 to
be up to O(103) and r13, r23 to be up to O(1).

Nevertheless none of this accounts for higher order
terms in the HQET. We can get some idea of how the
fit is a↵ected by allowing the r coe�cients (34) to be fit
parameters with Gaussian priors, with means equal to
the CLN values but with widths which we vary. Table X
shows the results of fitting to the CLN parametrization.
We present six variations, which we describe below. In
order to infer |Vcb| from the lattice hA1

(1) and the fit to
data, the main output is the combination

I = |⌘̄EWVcb| hA1
(1) . (35)

In the first fit, we treat the r-coe�cients (34) as pure
numbers; this has been the standard treatment until re-
cently. The value of I we obtain agrees with the unfolded
fit result of Belle [16], I = 34.9(1.5).

fully rel. 

Allow 0.5(αs)2 in fit 
test Λ/mb current corn MEs:  
J1 (inc.) ~0.5%; J2 (not inc.) ~1%

0.06 < z0 < 0.24HQ limit  
not useful

a=0.15fm 
a=0.09fm 

αsa2-
accurate

hA1 = 0.895(10)(24)
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FIG. 7: Comparison of fit results to experimental data [16]. The binned fit results are slightly o↵set from the bin midpoints
for clarity. See Appendix G and Ref. [16] for definitions.

0.0350 0.0375 0.0400 0.0425 0.0450 0.0475 0.0500 0.0525 0.0550
|Vcb|

Inclusive

B ! D��

B ! D���, this work

FIG. 8: Comparison of the |Vcb| from (41) with the latest
determinations from B ! Xc`⌫ [19, 20] and B ! D`⌫ [33].

A reanalysis of BaBar data for the di↵erential decay
rate would complement the unfolded Belle data used
here. We can also look forward to new data from Belle
II, after which the the precision of |Vcb| from B ! D⇤`⌫
is likely to be much improved. Lattice QCD data away
from zero recoil will also help reduce the uncertainties.
Preliminary results from the Fermilab/MILC collabora-

tion were presented at the Lattice 2017 conference [69].
Our result for the Bs ! D⇤

s form factor is the first
complete calculation of hs

A1
(1). In the future, measure-

ments of the exclusive decays with a strange specta-

tor, Bs ! D(⇤)
s `⌫, could also provide a constraint on

|Vcb|. LHCb has reconstructed B0

s ! D⇤�
s µ+⌫µ decays

[70]. Eventually, with properly normalized branching
fractions, these will also provide a method of constraining
|Vcb|.

Spectator quark mass e↵ects are bounded by our cal-
culation of of the ratio hs

A1
(1)/hA1

(1) and its consistency
with unity. We find deviations from d $ s symmetry in
the zero recoil B(s) ! D⇤

(s) form factors to be no more

than 2-3%.
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TABLE XII: Results of z-expansion fits (36), either using the BGL (37) or BCL (40) parametrization. Unitarity constraints
are not enforced in the fit, but the sums Sg and SfF (38) are given for reference (see text). The number of 1+

/1� resonances
included in the Blaschke factor is n

+
B/n

�
B . Terms up to O(zK�1) are included in the fits. Coe�cients of higher order terms are

consistent with zero.

fit n
+
B n

�
B K I a

(f)
0 a

(f)
1 a

(F1)
0 a

(F1)
1 a

(g)
0 a

(g)
1 SfF Sg

BGL 2 2 2 0.0366(14) 0.03005(39) �0.120(51) 0.005031(65) �0.0146(40) 0.032(15) 0.88(50) 0.015(12) 0.78(89)

BGL 2 2 3 0.0376(16) 0.03004(39) �0.148(62) 0.005031(65) �0.030(13) 0.029(14) 0.99(50) 0.13(32) 0.98(98)

BGL 2 2 4 0.0376(16) 0.03004(39) �0.148(62) 0.005031(65) �0.030(13) 0.029(14) 0.99(50) 0.13(33) 0.98(98)

BGL 3 3 2 0.0368(15) 0.01913(25) �0.069(36) 0.003204(41) �0.0073(27) 0.0138(85) 0.63(30) 0.0052(49) 0.40(38)

BGL 3 3 3 0.0379(17) 0.01913(25) �0.088(47) 0.003204(41) �0.0181(86) 0.0125(82) 0.68(31) 0.06(21) 0.46(41)

BGL 3 3 4 0.0379(17) 0.01913(25) �0.088(47) 0.003204(41) �0.0181(87) 0.0125(82) 0.68(31) 0.06(22) 0.46(42)

BGL 4 3 2 0.0369(15) 0.01228(16) �0.035(24) 0.002057(26) �0.0032(18) 0.0138(84) 0.63(30) 0.0014(17) 0.39(38)

BGL 4 3 3 0.0380(17) 0.01228(16) �0.049(36) 0.002057(26) �0.0102(57) 0.0129(86) 0.66(33) 0.04(25) 0.44(43)

BGL 4 3 4 0.0380(17) 0.01228(16) �0.049(36) 0.002057(26) �0.0102(59) 0.0129(85) 0.66(33) 0.04(25) 0.44(42)

BCL – – 2 0.0367(15) 0.01502(19) �0.047(27) 0.002946(38) �0.0029(27) 0.028(13) 0.78(44) 0.0025(26) 0.60(69)

BCL – – 3 0.0378(17) 0.01502(19) �0.066(40) 0.002946(38) �0.0136(82) 0.026(13) 0.82(46) 0.08(38) 0.67(75)

BCL – – 4 0.0382(18) 0.01502(19) �0.311(42) 0.002946(38) �0.0152(83) 0.109(16) �0.29(38) 0.144(67) 0.10(22)

BCL – – 5 0.0382(18) 0.01502(19) �0.311(42) 0.002946(38) �0.0152(83) 0.109(16) �0.29(38) 0.144(67) 0.10(22)

additional input the mass of a single resonance, available
to very good precision from lattice QCD. In the future,
fits to the BCL simplified z-expansion could provide a
clean, benchmark fit.

Fig. 6 summarizes the consequences to I of di↵erent
fitting choices selected from Tables X and XII. The top
two points show results from CLN fits including no un-
certainties on the coe�cients (34), or 10% errors on the
rh coe�cients and allowing the coe�cients in the expan-
sions of R1,2(w) to be 0 ± 1. The bottom two points are
respectively BGL and BCL fits with K = 4, and n+

B = 4,
n�
B = 3 for the BGL fit.
In Fig. 7 we compare the fit results, integrated over the

experimental bins, of the tightly constrained CLN fit and
the BGL and BCL fits (with K = 4) to the Belle data
[16]. The agreement is generally good, with the notable
exception of the d�/dw in the smallest w bin, where the
CLN result is in greater tension with the data than the
BGL and BCL results.

For the time being, with only one experimental data
set available to carry out these investigations, deter-
minations of |Vcb| from B ! D⇤`⌫ are less certain
than has been thought. The BGL and BCL fits to
Belle data indicate I = 0.038(2). Ref. [18] cites a pri-
vate communication with C. Schwanda giving ⌘̄EW =
⌘EW ⌘Coulomb = 1.0182(16) as the product of the elec-
troweak factor ⌘EW = 1.0066(16) and a term accounting
for electromagnetic interactions between the charged D⇤

and lepton in the final state. Combining this with the
weighted average for hA1

(1) from Fermilab/MILC [18]
and this work, we arrive at

|Vcb| = (41.3 ± 2.2) ⇥ 10�3 (41)

where the error is dominated by the experimental and re-
lated fitting uncertainty. This determination agrees well

0.032 0.034 0.036 0.038 0.040 0.042 0.044
I

CLN 0%

CLN h : 10%, R : 0(1)

BGL 4 + 3

BCL

FIG. 6: Values of I = |⌘̄EWVcb|hA1
(1) obtained from di↵erent

fit ansätze (see text).

with both those from inclusive and exclusive B ! D`⌫
decays as shown in Fig. 8.

One may ultimately obtain a more precise determina-
tion of |Vcb| by including all relevant information, from
HQET, by imposing stronger unitarity bounds [25], and
including light cone sum rule calculations of form fac-
tors at large recoil [68]. Comparison of the di↵erent ap-
proaches would be helpful to highlight the impact of in-
cluding di↵erent ingredients.

Our fits to unfolded Belle data

|⌘EWVcb|hA1(1)

|⌘EWVcb|hA1(1) = 0.038(2)

uncty 4x larger than HFAG 16

Vcb = 41.3(2.2)⇥ 10�3



In progress: LANL/SWME calc. using improved (Oktay-
Kronfeld) Fermilab action for b+c (+HISQ light)
Current status of Vcb project Simulation details

Limitation of Fermilab action calculation ! OK action

Using the OK action, we expect the improvement in charm quark
discretization error from the current Fermilab-MILC results of
hA1(w = 1), semileptonic form factor for B̄ ! D

⇤
`⌫̄ at zero recoil.

hA1(w = 1)

source error (%)
statistics 0.4
matching 0.4
�PT 0.5
gD⇤D⇡ 0.3

c discretization 1.0 ! (0.2)OK

others 0.1
total 1.4 ! (0.8)OK

Belle II starts running fully on Dec. 2018 and the target statistics is
50 times larger than the previous Belle experiment.

Weonjong Lee (LANL-SWME Collaboration) (SNU) 2018 MITP Workshop 3 / 17

Add higher dimension operators to action and current with 
tree-level m-dependent coefficients. 
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(a) Total view

−0.1

−0.05

 0

 0.05

 0.1

 1  1.1  1.2  1.3  1.4  1.5

I

aM2Q
−

q
PS

Ds

(b) Zoomed-in view

Figure 2. (a) Inconsistency parameter I as a function of pseudo-scalar heavy-light meson mass and (b) Zoomed-
in view of the box near the Ds region. Here, we use NP

crit to measure the 2-point meson correlation functions.
The black circles represents results obtained using the Fermilab action with the asqtad strange quark. For more
details, refer to Ref. [10]. The red squares represent results obtained using the OK action with the HISQ strange
quark. Vertical dotted lines indicate the physical Bs and Ds pseudoscalar mesons.

quarks. We find that the inconsistency parameter vanishes within statistical uncertainty near the Bs

region and it is smaller than that of Fermilab action by order of magnitude near the Ds region. This
improvement is due to the combination of using the OK action on HISQ ensembles and smeared
sources. It is observed for both tree

crit and NP
crit.

4 Form factor hA1(1)/⇢A j
at zero recoil

To extract the form factor hA1 (1) at zero recoil, we calculate the double ratio R on the lattice [13–15]:

R(t, t f ) ⌘
C

B!D
⇤

A1
(t, t f )CD

⇤
!B

A1
(t, t f )

C
B!B

V4
(t, t f )CD⇤!D⇤

V4
(t, t f )

t f!1

����!
t!1

������
hA1 (1)
⇢A j

������

2
V!1

����!
a!0

|hA1 (1)|2 . (7)

Here, ⇢Aj
is the matching factor at a , 0. C

X!Y

Jµ
(t, t f ) is a 3-point correlation function: for example, if

X = B, Y = D
⇤ and Jµ = Aj,

C
B!D

⇤

A j
(t, t f ) =

X

x,y
hO

D
⇤

j
(0)†Acb

j
(y, t)OB(x, t f )i (8)

We define the axial and vector currents as follows:

A
cb

j
=  ̄c� j�5 

b, V
bb

4 =  ̄
b�4 

b (9)

 (x) =
X

m=0

dmRm (x)

=
h
1 + d1a� · D + d2a

2�(3) + dBa
2
i⌃ · B � dEa

2↵ · E + drEa
3
{� · D,↵ · E}

� d3a
3
X

i

�iDi�i � d4a
3
{� · D,�(3)

} � d5a
3
{� · D, i⌃ · B}

first runs on coarse lattices: extend to finer lattices.  
still to do: perturbative matching of current (z0) W.Lee

improvement demo - I is inconsistency between HH 
and HL masses from errors at p4/m3 terms

1711.01777, 01786



In progress :                     away from zero recoil, Fermilab/
MILC, clover action on 2+1 asqtad cfgs. 

B ! D⇤

1710.09817

(a) hV (w) form factor. (b) hA1 (w) form factor.

Figure 4: Preliminary results for hV (w) and hA1 (w) from XV and the double ratio RA1 . The contribution
of hV (w) to F (w) is suppressed due to kinematic factors, and the final result is clearly dominated by
hA1 (w).

(a) hA2 (w) form factor. (b) hA3 (w) form factor.

Figure 5: Preliminary results for hA2 (w) and hA3 (w) from R0 and R1. We expect to reduce the errors
in these form factors when we refine the analysis. However, the contribution of hA2 (w) and hA3 (w)
to F (w) is highly suppressed by kinematic factors at low recoil. Therefore the final total error is
dominated by the errors coming from hA1 (w).
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pD* ~ 1 GeV

multiple form factors : 
A1, A2, A3, V 
but A1 dominates.

zero recoil

use double ratio for A1
double ratio was used to get rid of the exponential and some overlap factors, reducing the errors and
improving the quality of the fit [8, 9]. Here we can do the same,

���RA1 (p)
���2 =

D
D⇤(p?)

���A1
���B(0)

E D
B(0)
���A1
���D⇤(p?)

E

D
D⇤(0)

���V4
���B(0)

E D
B(0)
���V4
���D⇤(0)

E . (18)

From this quantity we can directly extract hA1 (w) = 2/(1+w)RA1 . As we don’t have any measurements
for the matrix element

D
B(0)
���A1
���D⇤(p?)

E
, we use time reversal T to reconstruct it from known data,

CD⇤!B(p?, t,T )
T

��! CB!D⇤
A1

(p?,T � t,T ). (19)

Our preliminary results for hA1 (w), computed from eq. (18) is shown in the right pane of fig. 4.

5.2.2 Ratios R0 and R1

The quantities R0 and R1

R0(p) =

D
D⇤(pk)

���A4
���B(0)

E

D
D⇤(p?)

���A1
���B(0)

E , (20) R1(p) =

D
D⇤(pk)

���A1
���B(0)

E

D
D⇤(p?)

���A1
���B(0)

E , (21)

encode the behavior of hA2 (w) and hA3 (w) as

R0 =

p
w2 � 1(1 � hA2 + whA3 )

(1 + w)hA1

, (22) R1 = w �
(w2
� 1)hA3

(1 + w)hA1

. (23)

Preliminary results for hA2 (w) and hA3 (w) are reported in fig. 5.

5.3 Vector form factor

The previously defined quantity XV (w) can be measured as the following ratio of matrix elements:

hV =
RA1
p
w � 1

XV (24) XV (p) =

D
D⇤(p?)

���V1
���B(0)

E

D
D⇤(p?)

���A1
���B(0)

E . (25)

When this ratio is expressed in terms of lattice 3-point correlation functions, all the exponentials and
overlap factors are cancelled, and the result yields directly the quotient of form factors we are looking
for. Our preliminary result for hV (w) is shown in the left pane of fig. 4.

5.4 Results for the form factors as a function of the recoil parameter

In figs. 4,5 we show the preliminary results for the axial and vector form factors, with statistical errors
only, without rho factors, and before taking the chiral-continuum extrapolation. It is important to
notice that near zero recoil (for small w � 1), F (w) is dominated by hA1 , because the contributions
from hV , hA2 , and hA3 are suppressed by kinematic factors (see eqs. (7), (8) and (6)).

6 Summary and future work

In this paper we have presented first preliminary results from our lattice QCD calculations of the form
factors for B ! D⇤`⌫ at non-zero recoil. Still to be completed are further improvements in the fits
to the correlation functions, after which we plan to study the chiral-continuum extrapolations, use the
z-expansion to parametrize the shape, and construct a complete, systematic error budget.

and ratio to A1 for others. 

Now systematic errors larger from missing current 
corrections …
Test HQET relations between form factors 

Bernlochner et al, 
1708.07134



B(s) ! D(s)`⌫
For light leptons, only f+(q2) contributes to rate

f+(!) =
1 + r

2
p
r
G(!)

r = mD/mB = 0.354

1 < ! = vB · vD < 1.59
0 < q2 < 11.6GeV2

r
d�

d!
/ |⌘EW ||Vcb|(!2 � 1)3/4G(!)

kinematics makes zero recoil 
less useful for combn with 
expt. - need to cover  
more of q2 range. Map q2 to 
z for fitting/comparison 

z(!) =

p
1 + ! �

p
2

p
1 + ! +

p
2

0 < z < 0.0644



Fermilab/MILC 1503.07237 
clover action b+c +asqtad on nf =2+1, a= 0.12 - 0.045 fm. 

ETM, 1310.5238  
twisted-mass on nf=2, with mass ‘step-scaling’ up to b. 
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z(q2, topt)
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f +(q
2 )

FNAL/MILC 15C
HPQCD 15
Belle 2016
BaBar 2009
BCL fit

Figure 28: Lattice and experimental data for fB→D
+ (q2) versus z. The filled green symbols

denote lattice-QCD points included in the fit, while blue and indigo points show experimental
data divided by the value of |Vcb| obtained from the fit. The grey band shows the preferred
three-parameter BCL fit to the lattice-QCD and experimental data with errors.

Figure 29: Left: Summary of |Vub| determined using: i) the B-meson leptonic decay branching
fraction, B(B− → τ−ν̄), measured at the Belle and BaBar experiments, and our averages for
fB from lattice QCD; and ii) the various measurements of the B → πℓν decay rates by
Belle and BaBar, and our averages for lattice determinations of the relevant vector form
factor f+(q2). Right: Same for determinations of |Vcb| using semileptonic decays. The HFAG
inclusive results are from Ref. [196].

170

FLAG:1607.00299

GB!D(1) = 1.054(4)(8)

GB!D(1) = 1.035(40)

Lattice calcs. so far:  
small recoil, simple current ops, O(αs) renormln. 

Use 3pt ratios. Take non-zero recoil matching error < 1% 

HPQCD 1505.03925, 
1703.09728 NRQCD b,  
HISQ c, on nf =2+1, a=0.12 - 
0.09 fm . Matching error 2% 
[inc. O(Λ/mb) corrns only]

|Vcb| = 40.85(98)
⇥10�3



Bc ! ⌘c`⌫
as a testbed

HPQCD: Lytle, Colquhoun, McLean 

f0(q2)/fHc from HISQ.
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NRQCD-HISQ: O(αs) 
relativistic corrns  
from  
grow with c momentum  - 
affect ff shape

 c� ·r�0� b/mb

Using HISQ for 
all quarks gives 
form factors with 
absolute normln. 
Test vs NRQCD 
at zero and max. 
recoil.  
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Bs ! Ds`⌫ preliminary, using all HISQ 
HPQCD: McLean et al

cover full q2 range for mh  
values at each lattice spacing
a=0.09 fm 

On finer lattices, mh inc. 
towards b . Dividing by fBc 
will reduce disc. effects 
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Ongoing/Future : provide lattice calculations for other form 
factors giving access to Vcb  

A1(q2 = 0)
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Bc ! J/ `⌫e.g.
can cover the full q2 range 
for this decay accurately 
and compare relativistic and 
non relativistic approaches. 
A. Lytle, B. Colquhoun 
et al, HPQCD

⌘ mQ b

axial 
form 
factor Lattice QCD form factors 

also needed for SM result 
for R(J/ψ)

R =
B(Bc ! J/ ⌧⌫)

B(Bc ! J/ µ⌫)

LHCb, 1711.05623

tests lepton universality, cf R(D(*)) 



• lots still to do on semileptonic decays - extend 
processes studied (e.g. to Bc) and range in q2.

Conclusion
Lattice QCD form factors for                               under  
good control (1.5-3%) at zero recoil.  

  

Relativistic methods for b quark e.g. using HISQ are 
possible on very fine lattices, underway. 

Future

B(s) ! D(⇤)
(s)`⌫

Multiple methods agree
*BUT* results at non-zero recoil are needed for overlap 
with exptl data. This is harder and J in existing methods 
missing full shape info. from               operators br c


