Silvano Simula INFN - Roma Tre Challenges in Semileptonic B decays MITP, J. Gutenberg University Mainz, April 9-13, 2018

Heavy-quark masses and HQE matrix elements from Lattice QCD

in collaboration with: Paolo Gambino (Torino) and Aurora Melis (Valencia)

outline

- the extraction of the CKM element V_{cb} from the OPE analysis of inclusive semileptonic B-meson decay rates requires the precise knowledge of c-quark and b-quark masses and of the matrix elements of some dimension-five and dimension-six operators
- * state-of-art of the lattice determinations of charm and bottom quark masses (FLAG based)
- * the aim of the talk is to present recent (unquenched) lattice determinations of the matrix elements of dimension-four and dimension-five operators obtained by studying the HQE of pseudoscalar and vector heavy-light meson masses (an estimate of the matrix elements of dimension-six operators will be also presented)

Gambino, Melis, SS: PRD 96 (2017) 014511 [1704.06105] based on ETMC $N_f = 2 + 1 + 1$ configurations

FNAL/MILC/TUMQCD: 1802.04248 based on PRD 97 (2018) 0340503 and MILC $N_f = 2 + 1 + 1$ configurations

motivations

* extraction of V_{cb}: exclusive versus inclusive determinations

- exclusive semileptonic decays + LQCD@w=1 (FNAL) + shape parameterizations

$$\begin{split} V_{cb} &|= (39.0 \pm 0.8) \cdot 10^{-3} & (B \rightarrow D^* \ell \nu, LQCD, CLN) \\ &= (39.2 \pm 1.0) \cdot 10^{-3} & (B \rightarrow D \ell \nu, LQCD, CLN) \\ &= (41.9^{+2.0}_{-1.9}) \cdot 10^{-3} & (B \rightarrow D^* \ell \nu, LQCD, BGL) \\ &= (40.5 \pm 1.0) \cdot 10^{-3} & (B \rightarrow D \ell \nu, LQCD, BGL/BCL/CLN) \end{split}$$

- inclusive semileptonic decays + OPE + HQE parameters from experimental data

 $|V_{cb}| = (42.11 \pm 0.74) \cdot 10^{-3}$ Gambino, Healey, Turczyk '16

* improving of the precision and clarifications of open issues:

- (dis)favours new physics interpretations (in connection with new physics effects in rare decays)
- is interesting in view of the R(D) and $R(D^*)$ anomalies

$$R(D)^{SM} = 0.299(3) \qquad R(D)^{\exp} = 0.407(46)$$

$$R(D^{*})^{SM} = 0.252(3) \qquad R(D^{*})^{\exp} = 0.304(15)$$

PDG '17

inclusive semileptonic decay rate

* OPE \rightarrow Heavy Quark Expansion (HQE) [see Benson et al. '03]

$$\begin{split} \Gamma_{sl} &= \Gamma_{tree} \left\{ 1 + a^{(1)} \frac{\alpha_s}{\pi} + a^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \frac{\mu_{\pi}^2 |_B}{m_b^2} \left(-\frac{1}{2} + b^{(1)} \frac{\alpha_s}{\pi} \right) + \frac{\mu_{g}^2 |_B}{m_b^2} \left(c^{(0)} + c^{(1)} \frac{\alpha_s}{\pi} \right) \right. \\ &+ \frac{\rho_b^3 |_B}{m_b^3} \left(d^{(0)} + d^{(1)} \frac{\alpha_s}{\pi} \right) + \frac{\rho_{LS}^3 |_B}{m_b^3} \left(e^{(0)} + e^{(1)} \frac{\alpha_s}{\pi} \right) + O\left(\frac{1}{m_b^4} \right) \right\} \\ \Gamma_{tree} &= \left| V_{cb} \right|^2 \frac{G_r^2 m_b^5}{192 \pi^3} \eta_{ew} \left(1 - 8r + 8r^3 - r^4 - 12r^2 \ln r \right) \qquad r = \frac{m_c^2}{m_b^2} \qquad a^{(1,2)}, b^{(1)}, c^{(0,1)}, d^{(0,1)}, e^{(0,1)} \text{ are functions of } r \end{split}$$

 $\mu_{soft} \sim 1 \ GeV$

* the main ingredients are the charm and bottom quark masses and the HQE matrix elements of dimension-5 and dimension-6 operators in the B-meson

$$\mu_{\pi}^{2}\Big|_{B} = \frac{1}{2M_{B}} \langle B | \overline{b} (i\overline{D})^{2} b | B \rangle \quad (kinetic) \qquad \mu_{G}^{2}\Big|_{B} = \frac{1}{2M_{B}} \langle B | \overline{b} (\frac{i}{2}\sigma_{\mu\nu}G^{\mu\nu}) b | B \rangle \quad (chromomagnetic) \\ \rho_{D}^{3}\Big|_{B} = \frac{1}{2M_{B}} \langle B | \overline{b} (-\frac{1}{2}\overline{D} \cdot \overline{E}) b | B \rangle \quad (Darwin) \qquad \rho_{LS}^{3}\Big|_{B} = \frac{1}{2M_{B}} \langle B | \overline{b} (\overline{\sigma} \cdot \overline{E} \times i\overline{D}) b | B \rangle \quad (convection)$$

fits of experimental semileptonic moments

$$\begin{split} m_{b}^{kin} \left(1 \, GeV\right) &= 4.546 \left(21\right) GeV & m_{c}^{\overline{MS}} \left(3 \, GeV\right) &= 0.987 \left(13\right) GeV & Gambino \ et \ al. \ '16 \\ (kinetic \ mass \ scheme) \\ \mu_{\pi}^{2} \Big|_{B} &= 0.432 \left(68\right) GeV^{2} & \rho_{B}^{3} \Big|_{B} &= 0.145 \left(61\right) GeV^{3} & \mu_{C}^{3} \Big|_{B} \\ \mu_{G}^{2} \Big|_{B} &= 0.355 \left(60\right) GeV^{2} & (from \ B^{*} - B \ splitting) & \rho_{LS}^{3} \Big|_{B} &= -0.17 \left(10\right) GeV^{3} & (from \ HQ - SR) \end{split}$$

charm quark mass from lattice QCD

FLAG-3 review (Nov. '15)

$$\begin{split} \overline{m}_{c}(3\,GeV) &= 0.996(25)GeV & N_{f} = 2 + 1 + 1 \quad \left(\sim 2.5\%\right) \\ &= 0.986(6)GeV & N_{f} = 2 + 1 \quad \left(\sim 0.6\%\right) \\ &= 1.03(4)GeV & N_{f} = 2 \quad \left(\sim 4\%\right) \end{split}$$

- moment method (HPQCD 10, HPQCD 14, JLQCD 15B) (independent on mass RCs)

- based on charmed meson or baryon masses (and on mass RCs)

updates / new results

 $\overline{m}_{c}(3 \, GeV) = 0.9843(55) GeV \qquad N_{f} = 2 + 1 + 1 \qquad \begin{bmatrix} \text{FNAL/MILC/TUMQCD 18} \\ \text{meson masses} \end{bmatrix}$ $\overline{m}_{c}(3 \, GeV) = 1.003(10) GeV \qquad N_{f} = 2 + 1 \qquad \begin{bmatrix} \text{JLQCD 16} \end{bmatrix}$ $= 0.988(9) GeV \qquad N_{f} = 2 + 1 \qquad \begin{bmatrix} \text{Maezawa&Petreczky 16} \end{bmatrix}$ moment method

my personal estimates

$$\overline{m}_{c}(3 \, GeV) = 0.990(11) GeV \qquad N_{f} = 2 + 1 + 1 \quad (\sim 1.1\%)$$
$$= 0.991(4) GeV \qquad N_{f} = 2 + 1 \quad (\sim 0.4\%)$$

ratio m_b / m_c from lattice QCD

- FLAG scrutiny
- full treatment of QED effects

HQE of PS and V heavy-light meson masses

$$\begin{split} M_{av} &= \frac{M_{pS} + 3M_{v}}{4} \quad \left(spin - averaged\right) \\ & \Delta M = M_{v} - M_{pS} \quad \left(hyperfine \; splitting\right) \\ & \frac{M_{av}}{m_{h}} = 1 + \frac{\overline{\Lambda}}{m_{h}} + \frac{\mu_{\pi}^{2}}{2m_{h}^{2}} + \frac{\rho_{D}^{3} - \rho_{\pi\pi}^{3} - \rho_{S}^{3}}{4m_{h}^{3}} + \frac{\sigma^{4}}{m_{h}^{4}} + O\left(\frac{1}{m_{h}^{5}}\right) \\ & m_{h}\Delta M = \frac{2}{3}c_{g}\mu_{g}^{2} + \frac{\rho_{\pi g}^{3} + \rho_{A}^{3} - \rho_{LS}^{3}}{3m_{h}} + \frac{\Delta\sigma^{4}}{m_{h}^{2}} + O\left(\frac{1}{m_{h}^{3}}\right) \end{split}$$

 $\mu_{\pi}^2, \mu_G^2, \rho_D^3, \rho_{LS}^3 = \text{dim-5}$ and dim-6 matrix elements appearing in Γ_{sl} but in the static limit $\overline{\Lambda} = (\text{dim-4})$ binding energy of the light quark and gluons $\rho_{\pi\pi}^3, \rho_S^3, \rho_{\pi G}^3, \rho_A^3 = \text{dim-6}$ (non-local) matrix elements not appearing in Γ_{sl} $\sigma^4, \Delta\sigma^4 = \text{dim-7}$ matrix elements

* until 2004 few lattice determinations of HQE matrix elements only for $N_f = 0$ (quenched approx.) [UKQCD '96, Gimenez et al. '97, Kronfeld&Simone '00, Ali-Khan et al. '00, JLQCD '04]

* after 13 years the first unquenched calculation [Gambino, Melis, SS: PRD 96 (2017) 014511 [1704.06105]] followed by the second one [FNAL/MILC/TUMQCD: 1802.04248]

which heavy-quark mass m_h?

the meaning of the HQE matrix elements and the size of the perturbative corrections in Γ_{sl} or $M_{PS(V)}$ depend strongly on the definition of m_h

the natural choice is the **pole mass** (same meaning in QCD and HQET), but the perturbative series is not convergent (*n*! growth at large order n) and has an intrinsic IR renormalon ambiguity

short-distance masses

- \overline{MS} mass at a renormalization scale μ : $\overline{m}_h(\mu)$

- the mass in the 1S scheme [Hoang et al. '99] based on Y(1S) and the potential subtracted mass [Beneke '98]

explicit subtraction of leading (and subleading) IR renormalons

- the Renormalon Subtracted (RS) mass [Pineda '01]

- the MS-R mass [Hoang et al '08]
- the kinetic mass [Bigi et al. '97, Uraltsev '97] Gambino, Melis, SS: PRD 96 (2017) 014511 [1704.06105]

kinetic scheme

- it is based on the small velocity sum rules in which the separation between soft and hard effects, μ_{soft} , is introduced as a cutoff over the excitation energy of the hadronic states [Bigi et al. '97, Uraltsev '97]
- the kinetic mass is defined by subtracting from the pole mass the perturbative contributions of the HQE parameters calculated from the SV sum rules cut at μ_{soft}
- the kinetic mass enters the non-relativistic kinetic energy in the (renormalized) heavy-quark Hamiltonian

$$\tilde{m}_{h} = m_{h}^{kin} \left(\mu_{soft}\right) = m_{h}^{pole} - \left[\bar{\Lambda}\left(\mu_{soft}\right)\right]_{pert} - \frac{\left[\mu_{\pi}^{2}\left(\mu_{soft}\right)\right]_{pert}}{2\tilde{m}_{h}} - \frac{\left[\rho_{D}^{3}\left(\mu_{soft}\right)\right]_{pert}}{4\tilde{m}_{h}^{2}} - \dots$$

$$\begin{bmatrix} \overline{\Lambda} \left(\mu_{soft} \right) \end{bmatrix}_{pert} = \frac{4}{3} C_F \frac{\alpha_s}{\pi} \mu_{soft} \left\{ 1 + \frac{\alpha_s}{\pi} \lambda_0 \right\}$$

$$\begin{bmatrix} Czarnecki et al. '98, Benson et al. '03 \end{bmatrix}$$

$$\begin{bmatrix} \mu_{x}^2 \left(\mu_{soft} \right) \end{bmatrix}_{pert} = \frac{3}{4} \mu_{soft} \left[\overline{\Lambda} \left(\mu_{soft} \right) \right]_{pert} - C_F \left(\frac{\alpha_s}{\pi} \right)^2 \beta_0 \mu_{soft}^2$$

$$\lambda_0 = 2\beta_0 \left(\frac{8}{3} - \ln \frac{2\mu_{soft}}{m_h} \right) - C_A \left(\frac{\pi^2}{6} - \frac{13}{12} \right)$$

$$\begin{bmatrix} \rho_D^3 \left(\mu_{soft} \right) \right]_{pert} = \frac{1}{2} \mu_{soft}^2 \left[\overline{\Lambda} \left(\mu_{soft} \right) \right]_{pert} - \frac{8}{9} C_F \left(\frac{\alpha_s}{\pi} \right)^2 \beta_0 \mu_{soft}^3$$

$$\beta_0 = \frac{33 - 11n_\ell}{12}$$

- leading and subleading IR renormalons subtracted \rightarrow improvement of the perturbative convergence

lattice QCD simulations

ETMC gauge configurations with $N_f = 2 + 1 + 1$ dynamical quarks (two light mass-degenerate quarks, strange and charm quarks close to their physical values)

ensemble	β	V/a^4	$N_{\rm cfg}$	$a\mu_{\ell}$	$a\mu_c$	$a\mu_h > a\mu_c$
A30.32	1.90	$32^3 \times 64$	150	0.0030	{0.21256, 0.25000, 0.29404}	$\{0.34583, 0.40675, 0.47840, 0.56267, \}$
A40.32			150	0.0040		0.66178, 0.77836, 0.91546},
A50.32			150	0.0050		
A40.24		$24^{3} \times 48$	150	0.0040		
A60.24			150	0.0060		
A80.24			150	0.0080		
A100.24			150	0.0100		
<i>B</i> 25.32	1.95	$32^{3} \times 64$	150	0.0025	$\{0.18705, 0.22000, 0.25875\}$	$\{0.30433, 0.35794, 0.42099, 0.49515, \}$
<i>B</i> 35.32			150	0.0035		0.58237, 0.68495, 0.80561}
<i>B</i> 55.32			150	0.0055		· · · · · · · · · · · · · · · · · · ·
<i>B</i> 75.32			75	0.0075		
<i>B</i> 85.24		$24^{3} \times 48$	150	0.0085		
D15.48	2.10	$48^{3} \times 96$	90	0.0015	$\{0.14454, 0.0150, 0.19995\}$	$\{0.23517, 0.27659, 0.32531, 0.38262, \}$
D20.48			90	0.0020		0.45001, 0.52928, 0.62252}
D30.48			90	0.0030		, , , ,

TABLE I. Values of the valence-quark bare masses considered for the 15 ETMC gauge ensembles with $N_f = 2 + 1 + 1$ dynamical quarks (see Ref. [27]). N_{cfg} stands for the number of (uncorrelated) gauge configurations used in this work.

 $a \approx 0.06, 0.08, 0.09 \ fm$

$$\mathbf{M}_{\pi} \approx \left(210 - 450\right) MeV$$

$$(D-450)MeV$$
 $L \approx (2-3) fm$

ETMC: NPB '14

 $m_{h} \approx (1.1 - 3.3) m_{c}^{phys} \approx (0.25 - 0.75) m_{h}^{phys}$ $m_{\ell} \approx (3-12) m_{\ell}^{phys}$ $m_c \approx (0.7 - 1.1) m_c^{phys}$

extraction of ground-state PS and V meson masses

ground-state PS and V meson masses M_{PS(V)} can be determined from the large-time plateaus of the effective mass

$$M_{PS(V)}^{eff}(t) = \operatorname{arcosh}\left[\frac{C_{PS(V)}(t-1) + C_{PS(V)}(t+1)}{2C_{PS(V)}(t)}\right] \xrightarrow{t \ge t_{\min}^{PS(V)}} M_{PS(V)}$$

Gaussian-smeared interpolating fields (and APE smearing of the gauge links) are adopted to suppress excited states check with the Generalized EigenValue Problem method [Blossier et al. '09] using C^{LL}, C^{SL}, C^{LS} and C^{SS} correlators

FIG. 2. Left panel: Effective masses of the correlator $C_{\text{PS}}^{SL}(t)$ calculated for various $(h\ell)$ mesons using Eq. (8) in the case of the ETMC gauge ensemble A40.32 (corresponding to a pion mass ≈ 320 MeV). Right panel: The same as in the left panel, but for the vector correlator $C_{\text{V}}^{SL}(t)$. The solid lines identify the plateau region $t_{\min} \leq t \leq t_{\max}$ selected for each value of the heavy-quark mass.

ETMC ratio method

the ETMC ratio method [Blossier et al. '09] has been developed in order to reach the b-quark region from the charm one: <u>step 1</u>: calculation of the observable around the charm scale employing dynamical simulations with controlled discretization effects <u>step 2</u>: construction of appropriate ratios at increasing values of m_h up to ~ 3 m_c ; the ratios must go to 1 in the static limit <u>step 3</u>: smooth interpolation of the ratios from m_c to the static limit and evaluation of the observable at the b-quark mass

1. the same relativistic action setup is used for both light and heavy quarks

features/advantages 2. extra simulations in the static limit are not necessary

3. discretization effects are reduced in the ratios (better control of their continuum limit)

applied both at $N_f = 2$ and $N_f = 2 + 1 + 1$ for evaluating:

- the b-quark mass [JHEP '09, JHEP '12, PRD '16]
- the leptonic decay constants of B and Bs mesons [JHEP '09, JHEP '12, PRD '16] as well as of B* and B*s mesons [PRD '17]
- the bag parameters for neutral B-meson oscillations [JHEP '14]

* interpolation of the lattice data at a sequence of heavy-quark masses $\tilde{m}_{h}^{(n+1)} = \lambda \tilde{m}_{h}^{(n)}$ (n = 1, 2, ..., K)* λ is tuned so that $\tilde{m}_{h}^{(K+1)} = \tilde{m}_{h}^{phys}$ starting from $\tilde{m}_{h}^{(1)} = \tilde{m}_{c}^{phys}$

spin-averaged masses

- triggering point at the charm scale: extrapolation to the physical pion point and to the continuum limit

$$M_{av} \left[\tilde{m}_{c}^{phys} = 1.219 \left(41 \right) GeV \right] = 1.967 \left(25 \right) GeV$$
PDG: $\frac{M_{D} + 3M_{D^{*}}}{4} = 1.973 GeV$

- ratios of spin-averaged meson masses:

$$y_{M}\left(\tilde{m}_{h}^{(n)},\lambda\right) = \frac{M_{av}\left(\tilde{m}_{h}^{(n)}\right)}{M_{av}\left(\tilde{m}_{h}^{(n-1)}\right)} \frac{\tilde{m}_{h}^{(n-1)}}{\tilde{m}_{h}^{(n)}} = \frac{1}{\lambda} \frac{M_{av}\left(\tilde{m}_{h}^{(n)}\right)}{M_{av}\left(\tilde{m}_{h}^{(n-1)}\right)} \qquad (n = 2, 3, ...) \qquad y_{M} = 1 + O\left(\frac{1}{\tilde{m}_{h}}\right)$$

- extrapolation imposing the known static limit:

$$y_{M}(\tilde{m}_{h},\lambda) = 1 + \frac{\varepsilon_{1}(\lambda)}{\tilde{m}_{h}} + \frac{\varepsilon_{2}(\lambda)}{\tilde{m}_{h}^{2}} + O\left(\frac{1}{\tilde{m}_{h}^{3}}\right)$$

- correlations between lattice points taken into account through the covariance matrix
- a bootstrap analysis is used for taking care of the various determinations of all the input parameters of the analysis (lattice spacing, physical quark masses, RCs, ...)

- chain equation:
$$M_{av}\left(\tilde{m}_{h}^{(1)} = \tilde{m}_{c}^{phys}\right) \cdot y_{M}\left(\tilde{m}_{h}^{(2)}, \lambda\right) \cdot y_{M}\left(\tilde{m}_{h}^{(3)}, \lambda\right) \dots \cdot y_{M}\left(\tilde{m}_{h}^{(K+1)}, \lambda\right) = \lambda^{K} M_{av}\left(\tilde{m}_{h}^{(K+1)}\right)$$

 $\tilde{m}_{b}^{phys} = \lambda^{K} \tilde{m}_{c}^{phys}$ obtained (iteratively) by imposing that $M_{av} \left(\tilde{m}_{h}^{(K+1)} \right) = \frac{M_{B} + 3M_{B^{*}}}{4}$ after K=10 steps

$$\underline{\text{ETMC '14 value:}} \quad \tilde{m}_{c}^{phys} = 1.219 (41) GeV \quad \Rightarrow \quad \overline{m}_{c} (\overline{m}_{c}) = 1.348 (46) GeV \quad \text{error} \sim 3 \%$$

$$r^{kin} = \frac{\tilde{m}_{b}^{phys}}{\tilde{m}_{c}^{phys}} = 3.780 (34) \quad \Rightarrow \quad \overline{r} = \frac{\overline{m}_{b}}{\overline{m}_{c}} = 4.436 (39) \quad \text{correlation } \rho(\tilde{m}_{c}^{phys}, \tilde{m}_{b}^{phys}) = 1$$

$$\tilde{m}_{b}^{phys} = 4.605 (120)_{stat} (57)_{syst} GeV = 4.605 (132) GeV \quad \Rightarrow \quad \overline{m}_{b} (\overline{m}_{b}) = 4.257 (120) GeV$$

* consistent with other ETMC determinations of the b-quark mass and with the FLAG-3 average within 1σ

* fits of semileptonic moments: $\tilde{m}_{b}^{phys} = 4.546(21)GeV$ [Gambino et al. '16]

$$\frac{M_{av}\left(\tilde{m}_{h}^{(n)}\right)}{\tilde{m}_{h}^{(n)}} = \frac{\prod_{i=2}^{n} y_{M}\left(\tilde{m}_{h}^{(i)},\lambda\right)}{\prod_{i=2}^{\infty} y_{M}\left(\tilde{m}_{h}^{(i)},\lambda\right)}$$

up to
$$n \sim 20 \rightarrow \tilde{m}_h \sim 4 \tilde{m}_b$$

very precise (and correlated) data

$$\frac{M_{av}\left(\tilde{m}_{h}\right)}{\tilde{m}_{h}} = 1 + \frac{\overline{\Lambda}}{\tilde{m}_{h}} + \frac{\mu_{\pi}^{2}}{2\tilde{m}_{h}^{2}} + \frac{\rho_{D}^{3} - \rho_{\pi\pi}^{3} - \rho_{S}^{3}}{4\tilde{m}_{h}^{3}}$$

$$\overline{\Lambda} = 0.552 (13)_{stat} (2)_{syst} GeV$$
$$\mu_{\pi}^{2} = 0.325 (17)_{stat} (2)_{syst} GeV^{2}$$
$$\rho_{D}^{3} - \rho_{\pi\pi}^{3} - \rho_{S}^{3} = 0.133 (34)_{stat} (6)_{syst} GeV^{3}$$
$$\sigma^{4} = 0.0072 (55)_{stat} (10)_{syst} GeV^{4}$$

$$\overline{\Lambda} = 0.551 (13)_{stat} (2)_{syst} GeV$$
$$\mu_{\pi}^{2} = 0.314 (14)_{stat} (2)_{syst} GeV^{2}$$
$$\rho_{D}^{3} - \rho_{\pi\pi}^{3} - \rho_{S}^{3} = 0.174 (12)_{stat} (2)_{syst} GeV^{3}$$

hyperfine splitting

- triggering point at the charm scale: extrapolation to the physical pion point and to the continuum limit

$$\Delta M \left[\tilde{m}_{c}^{phys} = 1.219 \left(41 \right) GeV \right] = 140 \left(11 \right) MeV$$

PDG: $M_{D^{*}} - M_{D} = 141.4 MeV$

- ratios of hyperfine splittings:

$$\Delta y_{M}\left(\tilde{m}_{h}^{(n)},\lambda\right) = \frac{\tilde{m}_{h}^{(n)}\Delta M\left(\tilde{m}_{h}^{(n)}\right)}{\tilde{m}_{h}^{(n-1)}\Delta M\left(\tilde{m}_{h}^{(n-1)}\right)} \frac{c_{G}\left(\tilde{m}_{h}^{(n-1)},\tilde{m}_{b}\right)}{c_{G}\left(\tilde{m}_{h}^{(n)},\tilde{m}_{b}\right)} \qquad \left(n = 2, 3, \ldots\right) \qquad \Delta y_{M} = 1 + O\left(\frac{1}{\tilde{m}_{h}}\right)$$
$$\tilde{m}_{h}\Delta M\left(\tilde{m}_{h}\right) = \frac{2}{3}c_{G}\left(\tilde{m}_{h},\tilde{m}_{b}\right)\mu_{G}^{2}\left(\tilde{m}_{b}\right) + O\left(\frac{1}{\tilde{m}_{h}}\right)$$

- c_G is the short-distance Wilson coefficient of the HQE chromomagnetic operator:

$$C_{G} = \overline{C}_{G}(\overline{m}_{h}) \cdot \mathbb{R}(\overline{m}_{h}, \overline{m}_{b}) \cdot \frac{\widetilde{m}_{h}(\overline{m}_{h})}{m_{h}^{pole}(\overline{m}_{h})} \rightarrow \text{ known up to } \alpha_{s}^{2}$$
matches HQE with QCD
evolution in the MS scheme
replace the pole mass with
the kinetic one in the HQE

discretization effects on ratios of hyperfine splittings larger than the corresponding ones of the spin-averaged masses, but still under good control

- extrapolation imposing the known static limit:

$$y_{\Delta M}\left(\tilde{m}_{h},\lambda\right) = 1 + \frac{\Delta\varepsilon_{1}\left(\lambda\right)}{\tilde{m}_{h}} + \frac{\Delta\varepsilon_{2}\left(\lambda\right)}{\tilde{m}_{h}^{2}} + O\left(\frac{1}{\tilde{m}_{h}^{3}}\right)$$

correlations between lattice points and bootstrap samplings taken into account

$$\Delta M\left(\tilde{m}_{b}^{phys}\right) = 40.2(2.1) MeV$$

PDG: $M_{B^{*}} - M_{B} = 45.42(26) MeV$

- extension of the chain equation:

$$\frac{\tilde{m}_{h}^{(n)}\Delta M\left(\tilde{m}_{h}^{(n)}\right)}{c_{g}\left(\tilde{m}_{h}^{(n)},\tilde{m}_{b}\right)} = \frac{\tilde{m}_{c}\Delta M\left(\tilde{m}_{c}\right)}{c_{g}\left(\tilde{m}_{c},\tilde{m}_{b}\right)} \cdot \prod_{i=2}^{n} y_{\Delta M}\left(\tilde{m}_{h}^{(i)},\lambda\right)$$

up to n~20 \rightarrow \tilde{m}_{h} ~4 \tilde{m}_{b}

dimension-6 fit

$$\tilde{m}_h \Delta M\left(\tilde{m}_h\right) = \frac{2}{3} c_G\left(\tilde{m}_h, \tilde{m}_b\right) \mu_G^2\left(\tilde{m}_b\right) + \frac{\rho_{\pi G}^3 + \rho_A^3 - \rho_{LS}^3}{3\tilde{m}_h}$$

$$\mu_{G}^{2}\left(\tilde{m}_{b}\right) = 0.250\left(18\right)_{stat}\left(8\right)_{syst}GeV^{2}$$
$$\rho_{\pi G}^{3} + \rho_{A}^{3} - \rho_{LS}^{3} = -0.143\left(57\right)_{stat}\left(21\right)_{syst}GeV^{3}$$

$$\tilde{m}_{h}\Delta M(\tilde{m}_{h}) = \frac{2}{3}c_{G}(\tilde{m}_{h},\tilde{m}_{b})\mu_{G}^{2}(\tilde{m}_{b}) + \frac{\rho_{\pi G}^{3} + \rho_{A}^{3} - \rho_{LS}^{3}}{3\tilde{m}_{h}} + \frac{\Delta\sigma^{4}}{\tilde{m}_{h}^{2}}$$

$$\mu_{G}^{2}(\tilde{m}_{b}) = 0.254 (20)_{stat} (9)_{syst} GeV^{2}$$

$$\rho_{\pi G}^{3} + \rho_{A}^{3} - \rho_{LS}^{3} = -0.173 (74)_{stat} (25)_{syst} GeV^{3}$$

$$\Delta \sigma^{4} = 0.0092 (58)_{stat} (14)_{syst} GeV^{4}$$

two brief comments

- in the (so-called) BPS limit [Uraltsev '04] one has: $\mu_{\pi}^2 = \mu_G^2 \left(\tilde{m}_b \right)$ and $\rho_D^3 + \rho_{LS}^3 = 0$ $\left[\vec{\sigma} \cdot \vec{\pi} | B \right\rangle = 0 \right]$

$$\mu_{\pi}^{2} - \mu_{G}^{2} \left(\tilde{m}_{b}^{} \right) = 0.064 \left(19 \right) GeV^{2} \qquad \left[\sim 3\sigma \right]$$
$$\rho_{D}^{3} + \rho_{LS}^{3} \ge 0.317 \left(65 \right) GeV^{3} \qquad \left[\sim 5\sigma \right]$$

- difference between HQE matrix elements in the B-meson and in the static limit

 $\mu_{G}^{2}\left(\tilde{m}_{b}\right)_{B} = 0.35(7)GeV^{2} \quad (from B^{*}-B splitting)$

$$\mu_{\pi}^{2}\Big|_{B} = \mu_{\pi}^{2} - \frac{\rho_{\pi\pi}^{3} + \frac{1}{2}\rho_{\pi G}^{3}}{\tilde{m}_{b}} + O\left(\frac{1}{\tilde{m}_{b}^{2}}\right) \qquad \rho_{\pi\pi}^{3} + \frac{1}{2}\rho_{\pi G}^{3} = 0 \quad \text{(in the BPS limit)}$$
$$\mu_{G}^{2}\left(\tilde{m}_{b}\right)\Big|_{B} = \mu_{G}^{2}\left(\tilde{m}_{b}\right) + \frac{\rho_{S}^{3} + \rho_{A}^{3} + \frac{1}{2}\rho_{\pi G}^{3}}{\tilde{m}_{b}} + O\left(\frac{1}{\tilde{m}_{b}^{2}}\right)$$

using our $\mu_{\pi}^2 = 0.325(17) GeV^2$ and $\mu_{\pi}^2 \Big|_{B} = 0.432(68) GeV^2$ from fits of semileptonic moments: $\rho_{\pi\pi}^3 + \frac{1}{2}\rho_{\pi G}^3 = -0.51(35) GeV^3$

$$\rho_{S}^{3} + \rho_{A}^{3} + \rho_{\pi G}^{3} + \rho_{\pi \pi}^{3} \ge 0 \qquad \longrightarrow \qquad \rho_{S}^{3} + \rho_{A}^{3} + \frac{1}{2}\rho_{\pi G}^{3} \ge 0.51(35)GeV^{3} \qquad = \text{only in the BPS limit}$$

$$\mu_{G}^{2}\left(\tilde{m}_{b}\right)_{B} \ge \mu_{G}^{2}\left(\tilde{m}_{b}\right) + 0.11\left(8\right)GeV^{2} = 0.25\left(2\right)GeV^{2} + 0.11\left(8\right)GeV^{2} = 0.36\left(8\right)GeV^{2}$$

~ 30 % difference between the static limit and the B-meson CMO matrix element

heavy-light (u/d) mesons

heavy-strange mesons

dimension-6 fit

$$\overline{\Lambda} = 0.551 (13)_{stat} (2)_{syst} GeV$$
$$\mu_{\pi}^{2} = 0.314 (14)_{stat} (2)_{syst} GeV^{2}$$
$$\rho_{D}^{3} - \rho_{\pi\pi}^{3} - \rho_{S}^{3} = 0.174 (12)_{stat} (2)_{syst} GeV^{3}$$
$$\mu_{G}^{2} (\tilde{m}_{b}) = 0.250 (18)_{stat} (8)_{syst} GeV^{2}$$
$$\rho_{\pi G}^{3} + \rho_{A}^{3} - \rho_{LS}^{3} = -0.143 (57)_{stat} (21)_{syst} GeV^{3}$$

dimension-6 fit

$$\overline{\Lambda} = 0.637 (15)_{stat} (6)_{syst} GeV$$

$$\mu_{\pi}^{2} = 0.414 (19)_{stat} (8)_{syst} GeV^{2}$$

$$\rho_{D}^{3} - \rho_{\pi\pi}^{3} - \rho_{S}^{3} = 0.281 (20)_{stat} (9)_{syst} GeV^{3}$$

$$\mu_{G}^{2} (\tilde{m}_{b}) = 0.299 (14)_{stat} (5)_{syst} GeV^{2}$$

$$\rho_{\pi G}^{3} + \rho_{A}^{3} - \rho_{LS}^{3} = -0.289 (46)_{stat} (14)_{syst} GeV^{3}$$

SU(3) breaking

$$\sim 15\% \quad \text{for } \overline{\Lambda}$$

$$\sim 25\% \quad \text{for } \mu_{\pi}^{2}$$

$$\sim 40\% \quad \text{for } \rho_{D}^{3} - \rho_{\pi\pi}^{3} - \rho_{S}^{3}$$

~15% for
$$\mu_{G}^{2}$$

~50% for $\rho_{\pi G}^{3} + \rho_{A}^{3} - \rho_{LS}^{3}$

dimension-7 fit

dimension-7 fit

$$\begin{split} \overline{\Lambda} &= 0.552 \left(13 \right)_{stat} \left(2 \right)_{syst} GeV \\ \mu_{\pi}^{2} &= 0.325 \left(17 \right)_{stat} \left(2 \right)_{syst} GeV^{2} \\ \rho_{D}^{3} - \rho_{\pi\pi}^{3} - \rho_{S}^{3} &= 0.133 \left(34 \right)_{stat} \left(6 \right)_{syst} GeV^{3} \\ \sigma^{4} &= 0.0072 \left(55 \right)_{stat} \left(10 \right)_{syst} GeV^{4} \\ \mu_{G}^{2} \left(\widetilde{m}_{b} \right) &= 0.254 \left(20 \right)_{stat} \left(9 \right)_{syst} GeV^{2} \\ \rho_{\pi G}^{3} + \rho_{A}^{3} - \rho_{LS}^{3} &= -0.173 \left(74 \right)_{stat} \left(25 \right)_{syst} GeV^{3} \\ \Delta \sigma^{4} &= 0.0092 \left(58 \right)_{stat} \left(14 \right)_{syst} GeV^{4} \end{split}$$

$$\frac{M_{av}\left[\tilde{m}_{b}^{phys}\right] = 5.403(12)GeV}{\frac{M_{B_{s}} + 3M_{B_{s}^{*}}}{4} = 5.403(2)GeV \quad (PDG)$$

$$\Delta M \left[\tilde{m}_{b}^{phys} \right] = 45.1 \left(1.1 \right) MeV$$
$$M_{B_{s}^{*}} - M_{B_{s}} = 46.1 \left(1.5 \right) MeV \quad (PDG)$$

open issue

- conversion to the kinetic scheme at the charm mass

 $\tilde{m}_{h} = 4.605(132)(150)_{mm} GeV$

 $\overline{\Lambda} = 0.552(13)(22)_{conv} GeV$

 $\mu_{\pi}^2 = 0.321(17)(27)_{conv} GeV^2$

 $\mu_{G}^{2}(\tilde{m}_{b}) = 0.253(21)(13)_{conv} GeV^{2}$

- the kinetic mass should depend only on the Wilsonian cut μ_{soft}

- instead, because of perturbative truncations it has a slight dependence on $\boldsymbol{\mu}$

estimate:
$$\left(\delta \tilde{m}_{c}\right)_{conv} \approx 40 \, MeV$$

ratio of bottom/charm quark masses slightly sensitive to ()_{conv}

$$r^{kin} = \frac{\tilde{m}_b}{\tilde{m}_c} = 3.78 \left(4\right) \left(2\right)_{conv}$$

correlation $\rho(\tilde{m}_c, \tilde{m}_b) \cong 1$

**** removal of the
$$()_{conv}$$
 uncertainty \rightarrow conversion to the kinetic scheme at α_s^3 *****

 $\rho_D^3 - \rho_{\pi\pi}^3 - \rho_S^3 = 0.153(30)(17)_{conv} GeV^3$ $\rho_{\pi G}^3 + \rho_A^3 - \rho_{LS}^3 = -0.158(71)(45)_{conv} GeV^3$

averages over dimension-6 and dimension-7 fits

Minimal Renormalon Subtraction scheme

[TUMQCD Coll.: Brambilla, Komijani, Kronfeld and Vairo: PRD '18]

* it is based on the subtraction of the leading IR renormalon in a way which is independent of the renormalization point μ

$$m_{pole} = \overline{m} \left(1 + \sum_{n=0}^{N} r_n \alpha_s^{n+1} (\overline{m}) + O(\alpha_s^{N+2}) \right)$$
$$m_{pole} = \overline{m} \left(1 + \sum_{n=0}^{\infty} \left[r_n - R_n \right] \alpha_g^{n+1} (\overline{m}) \right) + \delta m_{IR} + I_{MRS} (\overline{m})$$

 $I_{MRS}(\mu) = \frac{R_0}{2\beta_0} \mu \int_0^1 dz \frac{e^{-z/2\beta_0 \alpha_g(\mu)}}{(1-z)^{1+b}}$

 $\delta m_{IR} = -\left(-\right)^{b} \frac{R_{0}}{2^{1+b}\beta_{0}} \Gamma\left(-b\right) \Lambda_{\overline{MS}}$

$$r_n$$
 grows like n! at large n

 R_n compensates the large-n behavior of r_n

finite piece $\alpha_g = \text{strong couplin}$ $b = \beta_1 / 2\beta_0^2$

 α_g = strong coupling in the geometric scheme $b = \beta_1 / 2\beta_0^2$

it contains the leading IR renormalon and it is independent of $\boldsymbol{\mu}$

MRS mass:
$$m_{MRS} = m_{pole} - \delta m_{IR}$$

- * the MRS mass keeps the advantages of the pole mass (IR finite, gauge invariant at each order, independent on μ), while avoiding its ambiguity
- * the subtraction δm_{IR} is a small correction with respect to m_{MRS} , i.e. $\delta m_{IR} \ll m_{MRS}$ preserves the matching of HQET with QCD

* its relation with MS-mass is known up to $O(\alpha_s^4)$ and the convergence is stable $m_{MRS}/\overline{m} = (1.133, 1.131, 1.132, 1.132)$

FNAL/MILC/TUMQCD gauge ensembles

TABLE II. Valence-quark masses used in each ensemble. The first two columns identify the ensemble. The third column gives the lightest valence-quark mass in units of the sea strange-quark mass. (The full set of light valence-quark masses is listed in the text.) The fourth column shows the heavy valence-quark masses in units of the sea charm-quark mass. The last column shows the number of configurations and the number of source time slices used on each.

$\approx a \ (\text{fm})$	Key	$m_{ m min}/m_s'$	m_h/m_c^\prime		$N_{\rm conf} \times N_{\rm src}$
0.15	$m_s/5$	0.1	$\{0.9, 1.0\}$		1020×4
0.15	$m_s/10$	0.1	$\{0.9, 1.0\}$		1000×4
0.15	physical	0.037	$\{0.9, 1.0\}$		1000×4
0.12	$m_s/5$	0.1	$\{0.9, 1.0\}$		1040×4
0.12	unphysA	0.1	$\{0.9, 1.0\}$		1020×4
0.12	small	0.1	$\{0.9, 1.0\}$		1020×4
0.12	$m_s/10$	0.1	$\{0.9, 1.0\}$		1000×4
0.12	large	0.1	$\{0.9, 1.0\}$		1028×4
0.12	unphysB	0.1	$\{0.9, 1.0\}$		1020×4
0.12	unphysC	0.1	$\{0.9, 1.0\}$		1020×4
0.12	unphysD	0.1	$\{0.9, 1.0\}$		1020×4
0.12	unphysE	0.1	$\{0.9, 1.0\}$		1020×4
0.12	unphysF	0.1	$\{0.9, 1.0\}$		1020×4
0.12	unphysG	0.1	$\{0.9, 1.0\}$		1020×4
0.12	physical	0.037	$\{0.9, 1.0\}$		999×4
0.09	$m_s/5$	0.1	$\{0.9, 1.0\}$		1005×4
0.09	$m_s/10$	0.1	$\{0.9, 1.0\}$		999×4
0.09	physical	0.033	$\{0.9, 1.0, 1$	$5, 2.0, 2.5, 3.0\}$	484×4
0.06	$m_s/5$	0.05	$\{0.9, 1.0\}$		1016×4
0.06	$m_s/10$	0.05	$\{0.9, 1.0, 2$	$2.0, 3.0, 4.0\}$	572×4
0.06	physical	0.036	$\{0.9, 1.0, 1$	5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5	842×6
0.042	$m_s/5$	0.036	$\{0.9, 1.0, 1$		1167×6
0.042	physical	0.037	$\{0.9, 1.0, 1$	5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0	420×6
0.03	$m_{s}/5$	0.2	$\{0.9, 1.0, 1\}$.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0	724×4

[arXiv: 1712.09262 and 1802.04248]

_	HISQ	action	for	ferm	ions
	TTD X	action	101	101111	10110

- tadpole-improved one-loop Symanzik gauge action

- total no. of confs $\sim 20\ 000$
- 5 ensembles at the physical pion point
- 6 ensembles used with valence masses above the (physical) charm one

$$M_{PS}(m_{h},m_{x};a) = m_{h,MRS} + \overline{\Lambda}_{MRS} + \frac{\mu_{\pi}^{2} - c_{cm}(m_{h},m_{b})\mu_{G}^{2}(m_{b})}{2m_{h,MRS}} + \sum_{n=2}^{4} \frac{\rho_{n}}{m_{h,MRS}^{n}} + HMrAS\chi PT(m_{x};a) + \left[\alpha_{s}a^{2},a^{2k},(am_{h})^{2m},\dots\right]$$

heavy-strange mesons

- a total of **67 fitting parameters** with **priors** prior from B*-B splitting: $\mu_G^2(m_b) = 0.35(7)GeV$ but $\mu_G^2(m_b)$ is in the static limit
- 3 values of the lattice spacing up to $m_h \sim 1.7~m_c$
- 2 values of the lattice spacing up to $m_h \sim 2.4~m_c$
- * it is highly desirable to perform the continuum extrapolation at each simulated heavy-quark mass separately with at least 3 values of the lattice spacing

results

$$\begin{split} m_{b,MRS} &= 4.751 \left(13 \right)_{stat} \left(12 \right)_{syst} \left[18 \right] GeV \quad (\sim 0.4 \%) \\ \bar{\Lambda}_{MRS} &= 0.552 \left(25 \right)_{stat} \left(17 \right)_{syst} \left[30 \right] GeV \\ \mu_{\pi}^{2} &= 0.06 \left(16 \right)_{stat} \left(15 \right)_{syst} \left[22 \right] GeV \end{split}$$

 μ_{π}^2 is still plagued by a IR renormalon ambiguity of order $\Lambda_{_{QCD}}^2$

CONCLUSIONS

- * lattice determinations of charm and bottom quark masses have reached an impressive level of accuracy ($\sim 0.5 1 \%$)
- * the treatment of discretization effects is however a delicate point at the b-quark mass
- * the role of a working group like FLAG is crucial for assuring the quality of the lattice results for both the lattice and the flavor-physics communities
- * besides heavy-quark masses other hadronic quantities, which are relevant in the HQE of the inclusive decay rates of heavy hadrons, are now determined with good accuracy by lattice QCD simulations
- * using precise lattice data for the PS and V heavy-meson masses the matrix elements of operators of dimension-4, \overline{A} , dimension-5, μ_{π}^2 and μ_G^2 , and estimates for dimension-6, ϱ^3 , have been determined using ETMC or MILC gauge ensembles with N_f = 2+1+1 dynamical quarks in different renormalon subtraction schemes

kinetic scheme

$$\overline{\Lambda} = 0.552(26) \ GeV$$
$$\mu_{\pi}^{2} = 0.321(32) \ GeV^{2}$$
$$\mu_{G}^{2}(\widetilde{m}_{b}) = 0.253(25) \ GeV^{2}$$
$$\rho_{D}^{3} - \rho_{\pi\pi}^{3} - \rho_{S}^{3} = 0.153(34) \ GeV^{3}$$
$$\rho_{\pi G}^{3} + \rho_{A}^{3} - \rho_{LS}^{3} = -0.158(84) \ GeV^{3}$$

MRS scheme

$$\overline{\Lambda} = 0.552(30) GeV$$