Challenging Semileptonic Decays Mainz, 9-13 April 2018

Inclusive |V_{ub}|: Experimental Results & Prospects

Laboratori Nazionali di Frascati

Challenging SL Decays

Introduction

Eur.Phys.J. C77 (2017) no.12, 895

- Large discrepancy with exclusive Vub and CKM fit results
- Critical understanding of the error budgets and possible source of biases are needed
- Some of the source of backgrounds can be constrained from data

|V_{ub}| from inclusive decays

 $\frac{\Gamma(b \to c\ell\nu)}{\Gamma(b \to u\ell\nu)} \approx 50$

- $B \xrightarrow{P_X} X_{i}$
 - Large background from $B{\rightarrow} X_c \ell \nu$
 - Kinematics to extract the signal: m_u << m_c
 - Cut limited region of phase space (f_u)
 - Non perturbative shape-function needed
 - Universal only at leading order in A/m_b

M. Rotondo

|V_{ub}| from inclusive decays

 $\frac{\Gamma(b \to c\ell\nu)}{\Gamma(b \to u\ell\nu)} \approx 50$

• ℓ • Large background from $B \rightarrow X_c \ell v$

Challenging SL Decays

|V_{ub}| from inclusive decays

ekaround

- Avoid regions more sensitive to the Shape Function
- Avoid Weak Annihilation
 - We look at many kinematic regions and look for consistencies

d from $B \rightarrow X_c \ell v$

ract the signal: m_u << m_c

 $\frac{\Gamma(b \to c\ell\nu)}{\Gamma(b \to u\ell\nu)}$

 ≈ 50

of phase space (f_u)

bative shape-function needed nly at leading order in //m_b

$$E_{\ell}$$

$$q^{2} = (P_{B} - P_{X})^{2} = (P_{\ell} - P_{v})^{2}$$

$$M_{X} = X_{u} \text{ hadronic mass}$$

$$V_{ub} = \sqrt{\frac{\Delta \mathcal{B}(\overline{B} \to X_{u}\ell\overline{\nu})}{\tau_{B} \Delta \Gamma_{\text{theory}}}}$$
Not to scale!
$$b \to c$$

$$f_{u}$$

$$E_{\ell}$$

$$M_{X}$$

$$E_{\ell}$$

$$M_{X}$$

$$R_{X}$$

$$M_{X}$$

$$E_{\ell}$$

$$M_{X}$$

$$R_{X}$$

M. Rotondo

Analyses techniques

- Some observables are accessible from untagged measurements
 - Energy lepton spectrum
 - q²: from lepton and event missing momentum (neutrino reconstruction)
- Other observables (M_x, P₊=E_x-|P_x|) require the B-hadron tagging to reduce background and have enough kinematic information to separate signal from background

- Identify B momentum, B charge
- $p_{miss} = p_{\div(4S)} | p_{reco} 2 p_X 2 p_{lepton}$ - X: all remaining particles

Challenging SL Decays

Hadronic Tagging

- Reconstruct a B
- High momentum lepton
- Veto on Kaons, require total charge Q=0, D* rejected using soft pions (charged and neutrals), require a small MM2
- The combinatorial and the continuum are subtracted using the fit to the mES in bins of the variable considered, or using the MC
- Fit to the various kinematic quantities to determine the signal yields

$$\frac{\Delta B(X_u\ell\nu)}{B(X\ell\nu)} = \frac{N_{b\to u}}{N_{X\ell\nu}}\cdot\frac{F}{\epsilon_{sel}}$$

M. R

Fit results in limited regions of phase space

BABAR PRD.86:032004,2012

Into the $b \rightarrow c$ region

- Thanks to a better understanding of the B→Xc backgrounds, could it be possible to extract B→ Xu in the "almost" full phase space
- Theoretical uncertainties strongly reduced fu ~ 90% Babar obtained very similar results

BELLE PRL 104:021801,2010

Into the $b \rightarrow c$ region

$p_{\ell}^{*B} > 1.0 \text{ GeV}$	$\Delta {\cal B} / {\cal B}$ (%)
$\mathcal{B}(D^{(*)}\ell\nu)$	1.2
$(D^{(*)}\ell\nu)$ form factors	1.2
$\mathcal{B}(D^{**}e\nu)$ & form factors	0.2
$B \to X_u \ell \nu$ (SF)	3.6
$B \to X_u \ell \nu \ (g \to s\bar{s})$	1.5
$\mathcal{B}(B \to \pi/\rho/\omega\ell\nu)$	2.3
$\mathcal{B}(B o \eta, \ \eta' \ell \nu)$	3.2
$\mathcal{B}(B \to X_u \ell \nu)$ un-meas.	2.9
Cont./Comb.	1.8
Sec./Fakes/Fit.	1.0
PID/Reconstruction	3.1
BDT	3.1
Systematics	8.1
Statistics	8.8

- $B \rightarrow DIv$ and D*Iv are described by CLN with parameters from HFLAV
- Resonant $B \rightarrow D^{**}Iv$ using LLSW
- Goity-Roberts for non-resonant
- Signal model is an hydrid mix of exclusive and inclusive contributions

- Unmeasured resonances modeled with ISGW2
- Inclusive part uses De Fazio-Neubert SF parameterization
- The inclusive part is varies to have same moments of q² and Mx of the GGOU model
- Gluon-splitting simulated by PYTHIA (about 12% of the signal)

Challenging SL Decays

Systematics

Phase space restriction	$M_X < 1.55$	$M_X < 1.70$	$P_{+} < 0.66$	$M_X < 1.70 \mathrm{GeV},$	M 2	$p_{\ell}^* > 1.0$	$p_{\ell}^* > 1.3$
	GeV	${ m GeV}$	${ m GeV}$	$q^2 > 8 \text{ GeV}^2$	$M_X - q^2$	GeV	GeV
Data statistical uncertainty	7.1	8.9	8.9	8.0	7.1	9.4	8.8
MC statistical uncertainty	1.3	1.3	1.3	1.6	1.1	1.1	1.2
Detector effects							
Track efficiency	0.4	1.0	1.1	1.7	0.7	1.2	1.0
Photon efficiency	1.3	2.1	4.0	0.7	1.0	0.9	0.9
π^0 efficiency	1.2	0.9	1.1	0.9	0.9	2.9	1.1
Particle identification	1.9	2.4	3.3	2.9	2.3	2.9	2.2
K_L production/detection	0.9	1.3	1.1	2.1	1.6	1.3	0.6
K_S production/detection	0.8	1.4	1.7	2.1	1.2	1.3	0.3
Signal simulation							
Shape function parameters	2.0	1.3	1.2	0.7	5.4	6.4	6.6
Shape function form	1.2	1.6	2.6	1.2	1.5	1.1	1.1
Exclusive $\overline{B} \to X_u \ell \bar{\nu}$	0.6	1.3	1.6	0.7	1.9	5.3	3.4
$s\overline{s}$ production	1.2	1.6	1.1	1.0	2.7	3.1	2.4
Background simulation							
B semileptonic branching ratio	0.9	1.4	1.5	1.4	1.0	0.8	0.7
D decays	1.1	0.6	1.1	0.6	1.1	1.6	1.5
$B \to D\ell\nu$ form factor	0.5	0.5	1.3	0.4	0.4	0.1	0.2
$B \to D^* \ell \nu$ form factor	0.7	0.7	0.9	0.7	0.7	0.7	0.7
$B \to D^{**} \ell \nu$ form factor	0.8	0.9	1.3	0.4	0.9	1.0	0.3
$B \to D^{**}$ reweighting	0.5	1.4	1.5	1.0	1.9	0.4	1.5
$m_{\rm ES}$ background subtraction							
m_{ES} background subtraction	2.0	2.7	1.9	2.6	1.9	2.0	2.5
combinatorial backg.	1.8	1.8	2.6	1.8	1.0	2.1	0.5
Normalization							
Total semileptonic BF	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Total systematic uncertainty	5.5	6.7	8.3	6.6	8.4	11.0	9.3
Total experimental uncertainty	9.0	11.1	12.2	10.4	11.0	14.4	12.8

Challenging SL Decays

B Kowalewski @ CKM16 **Challenging SL Decays**

M. Rotondo

2

4

 $|V_{ub}| [\times 10^{-3}]$

Status of inclusive |V_{ub}|

Most recent measurements is dated 2012

New study of lepton end-point

Inclusive electron spectrum measurement

Fit Strategy

- Fit simultaneously on-Y(4S) and off-Y(4S)
 - 5 separate $b \rightarrow c$ components
 - Secondary leptons $b \rightarrow c \rightarrow e$
 - b→X_u e v
- Spectrum range [p_{min}, 2.7] GeV, p_{min} from 0.8 GeV

• Dataset: 467M Y(4S)

Large statistics: >10⁶ events / 50 MeV bin; statistical uncertainties dominated by continuum subtraction

Challenging SL Decays

Results on total rate and |V_{ub}|

- Highest sensitivity to $B \rightarrow X_u ev$ in the wide bin 2.1-2.7 GeV
- Models make different predictions for the fractional rate in this bin
 - The normalization of the B→X_uev is fixed by this bin!
- This dependence on the signal model can impact measurement that extends in the $B \rightarrow X_u ev$ region

- Results are lower than previous measurement (not for BLNP!)
- The effect observed in this study, could be smaller in other analyses that look into other observables

Required improvements

- Future extraction of |Vub| from inclusive B → Xu decays, would require measurements of the signal spectra (SIMBA, Florian's talk)
 - The challenge is to extract spectra that are independent from the underlying signal model
- Future measurements should also give informations on the signal model itself:
 - Tune the Hybrid to mix exclusive states with inclusive
 - JETSET/PYTHIA for the hadronisation of the u-quark
 - Hadronisation parameters have been tuned on high pT events from LEP!
 - Xu multiplicity affects the signal efficiency
 - Gluon→ss splitting
- Not to mention obviously the requirements imporvements on B—Xc and Xc \rightarrow I decays

Required improvements

- Future extraction of |Vub| from inclusive B → Xu decays, would require measurements of the signal spectra (SIMBA, Florian's talk)
 - The challenge is to extract spectra that are independent from the underlying signal model
- Future measurements should also give informations on the signal model itself:
 - Tune the Hybrid to mix exclusive states with inclusive
 - JETSET/PYTHIA for the hadronisation of the u-quark
 - Hadronisation parameters have been tuned on high pT events from LEP!

Yu multiplicity affacts the signal officionay

Ongoing measurements in Belle ^{info from F. Bernlochner and} P. Urquijo

- Ongoing measurement in Belle: prototype of measurements that will be done in Belle-II
- Mx, q² spectrum measurements
- Signal Fragmentation:
 - Studying exclusive channels B \rightarrow X I v

- X = ππ⁰, 2π, 2ππ⁰...

- Production of ss-quarks
 - Untagged $B \rightarrow KK I$ nu is ongoing
 - This is a channel that could be accessible at LHCb: study the KK mass till the $B \rightarrow D(KK) \mid v$, feasible ?
- Hadronic Tagged $B \rightarrow \pi\pi I$ nu is ongoing
- Weak Annihilation:
 - Study with high statistics the q² spectrum separately for B⁰ and B⁺