

$ar{B} ightarrow X_u \, I \, ar{ u}$ theory

Gil Paz

Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA

Charge

"We would like to invite you to give a review talk on the $B->Xu \ l v$ theory, discussing (very quickly) the available methods, [and] the (very little) recent progress and the open problems."

Outline

- Reminders
- Available methods
- Recent progress
- Open problems and future progress

• For *B* decays: $5 \text{ GeV} \sim m_b \gg \Lambda_{\text{QCD}} \sim 0.5 \text{ GeV}$ Observables expandable in $\Lambda_{\text{QCD}}/m_b \sim 0.1$

- For *B* decays: $5 \text{ GeV} \sim m_b \gg \Lambda_{\text{QCD}} \sim 0.5 \text{ GeV}$ Observables expandable in $\Lambda_{\text{QCD}}/m_b \sim 0.1$
- If we could measure total $\Gamma(\bar{B} \to X_u \, | \, \bar{\nu})$ we could use a local OPE

$$d\Gamma\sim\sum_{n}c_{n}rac{\langle O_{n}
angle}{m_{b}^{n}}$$

 c_n perturbative, $\langle O_n \rangle$ non-perturbative numbers

- For *B* decays: $5 \text{ GeV} \sim m_b \gg \Lambda_{\text{QCD}} \sim 0.5 \text{ GeV}$ Observables expandable in $\Lambda_{\text{QCD}}/m_b \sim 0.1$
- If we could measure total $\Gamma(\bar{B} \to X_u \, | \, \bar{\nu})$ we could use a local OPE

$$d\Gamma \sim \sum_{n} c_{n} \frac{\langle O_{n} \rangle}{m_{b}^{n}}$$

 c_n perturbative, $\langle O_n \rangle$ non-perturbative numbers

• Since $\Gamma(\bar{B} \to X_c \, | \, \bar{\nu}) \gg (\bar{B} \to X_u \, | \, \bar{\nu})$ total rate **cannot** be measured Need to cut the charm background: e.g. $M_X^2 < M_D^2 \sim m_b \Lambda_{\rm QCD}$

- For *B* decays: $5 \text{ GeV} \sim m_b \gg \Lambda_{\text{QCD}} \sim 0.5 \text{ GeV}$ Observables expandable in $\Lambda_{\text{QCD}}/m_b \sim 0.1$
- If we could measure total $\Gamma(\bar{B} \to X_u \, | \, \bar{\nu})$ we could use a local OPE

$$d\Gamma\sim\sum_{n}c_{n}rac{\langle O_{n}
angle}{m_{b}^{n}}$$

 c_n perturbative, $\langle O_n \rangle$ non-perturbative numbers

- Since $\Gamma(\bar{B} \to X_c \, | \, \bar{\nu}) \gg (\bar{B} \to X_u \, | \, \bar{\nu})$ total rate **cannot** be measured Need to cut the charm background: e.g. $M_X^2 < M_D^2 \sim m_b \Lambda_{\rm QCD}$
- Not inclusive enough for local OPE, but non-local OPE still possible

$$\begin{split} M_X^2 &\sim m_b^2 & \text{local OPE} & (\text{``OPE region''}) \\ M_X^2 &\sim m_b \Lambda_{\text{QCD}} & \text{Non local OPE} & (\text{``end point region''}) \\ M_X^2 &\sim \Lambda_{\text{QCD}}^2 & \text{No inclusive description} & (\text{``resonance region''}) \end{split}$$

- \bullet Need to cut the charm background: e.g. $\mathit{M}_X^2 < \mathit{M}_D^2 \sim \mathit{m_b} \Lambda_{\rm QCD}$
- Not inclusive enough for local OPE, but non-local OPE still possible

$$d\Gamma \sim \sum_{n} c_{n} rac{\langle O_{n}
angle}{m_{b}^{n}}$$

 c_n perturbative, $\langle O_n \rangle$ non-perturbative functions

- \bullet Need to cut the charm background: e.g. $M_X^2 < M_D^2 \sim m_b \Lambda_{\rm QCD}$
- Not inclusive enough for local OPE, but non-local OPE still possible

$$d\Gamma \sim \sum_{n} c_{n} \frac{\langle O_{n} \rangle}{m_{b}^{n}}$$

 c_n perturbative, $\langle O_n \rangle$ non-perturbative functions

• At leading power in Λ_{QCD}/m_b One shape function needed ("B-meson pdf") measured in $\bar{B} \to X_s \gamma$

- \bullet Need to cut the charm background: e.g. $M_X^2 < M_D^2 \sim m_b \Lambda_{\rm QCD}$
- Not inclusive enough for local OPE, but non-local OPE still possible

$$d\Gamma \sim \sum_{n} c_{n} rac{\langle O_{n}
angle}{m_{b}^{n}}$$

 c_n perturbative, $\langle O_n \rangle$ non-perturbative functions

• At leading power in Λ_{QCD}/m_b One shape function needed ("B-meson pdf") measured in $\bar{B} \rightarrow X_s \gamma$

- \bullet Need to cut the charm background: e.g. $M_X^2 < M_D^2 \sim m_b \Lambda_{\rm QCD}$
- Not inclusive enough for local OPE, but non-local OPE still possible

$$d\Gamma \sim \sum_{n} c_{n} \frac{\langle O_{n} \rangle}{m_{b}^{n}}$$

 c_n perturbative, $\langle O_n \rangle$ non-perturbative functions

- \bullet Need to cut the charm background: e.g. $M_X^2 < M_D^2 \sim m_b \Lambda_{\rm QCD}$
- Not inclusive enough for local OPE, but non-local OPE still possible

$$d\Gamma \sim \sum_{n} c_{n} rac{\langle O_{n}
angle}{m_{b}^{n}}$$

 c_n perturbative, $\langle O_n \rangle$ non-perturbative functions

- At subleading power in Λ_{QCD}/m_b :
- Several subleading shape functions (SSF) appear
- Different linear combinations for $ar{B} o X_u \, I \, ar{
 u}$ and $ar{B} o X_s \, \gamma$
- $\bar{B} \rightarrow X_s \gamma$ has unique SSF ("resolved photon contributions")
- Shape functions moments are related to HQET parameters: E.g. leading shape function: 1^{st} moment $\leftrightarrow m_b$, 2^{nd} moment $\leftrightarrow \mu_{\pi}^2$

• BLL use $q^2 - m_X$ cut to reduce shape function dependance [Bauer, Ligeti, Luke, PRD **64**, 113004, (2001)]

- BLL use $q^2 m_X$ cut to reduce shape function dependance [Bauer, Ligeti, Luke, PRD **64**, 113004, (2001)]
- Methods with flexible cuts must include shape functions effects:
- BLNP

[Lange, Neubert, GP, PRD 72, 073006, (2005)]

- GGOU

[Gambino, Giordano, Ossola, Uraltsev, JHEP 10, 058, (2007)]

- DGE

[Andersen, Gardi, JHEP 01, 097, (2006)]

- ADFR

[Aglietti, Di Lodovico, Ferrera, Ricciardi, EPJC 59, 831, (2009)]

- BLL use $q^2 m_X$ cut to reduce shape function dependance [Bauer, Ligeti, Luke, PRD **64**, 113004, (2001)]
- Methods with flexible cuts must include shape functions effects:
- BLNP

[Lange, Neubert, GP, PRD 72, 073006, (2005)]

- GGOU

[Gambino, Giordano, Ossola, Uraltsev, JHEP 10, 058, (2007)]

- DGE

[Andersen, Gardi, JHEP 01, 097, (2006)]

- ADFR

[Aglietti, Di Lodovico, Ferrera, Ricciardi, EPJC 59, 831, (2009)]

• In the following only discuss BLNP, GGOU, DGE

BLNP

- Based on $d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + ...$
- Factorize perturbative coefficient into hard ${\sf H}$ and jet ${\sf J}$ function
- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(\alpha_s)$
- Subleading shape functions: $H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$
- *S* extracted from $\bar{B} \rightarrow X_s \gamma$, s_i modeled (\sim 700 models)

BLNP

- Based on $d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + ...$
- Factorize perturbative coefficient into hard ${\sf H}$ and jet ${\sf J}$ function
- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(\alpha_s)$
- Subleading shape functions: $H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$
- *S* extracted from $\bar{B} \rightarrow X_s \gamma$, s_i modeled (\sim 700 models)
- Experimental implementations use 2-parameter functions for S from its first (m_b -related) and second moment (μ_{π}^2 -related)

BLNP

- Based on $d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + ...$
- Factorize perturbative coefficient into hard ${\rm H}$ and jet J function
- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(\alpha_s)$
- Subleading shape functions: $H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$
- *S* extracted from $\bar{B} \rightarrow X_s \gamma$, s_i modeled (\sim 700 models)
- Experimental implementations use 2-parameter functions for S from its first (m_b -related) and second moment (μ_{π}^2 -related)
- Many BLNP NNLO calculations are known:
 H, J at O(α_s²), j_i/m_b at O(α_s), resolved photon contributions Not fully combined yet

GGOU

Based on

$$W_i \sim F_i \otimes W_i^{pert}$$

- W_i structure functions that give $d\Gamma$
- W_i^{pert} known perturbative quantities
- $F_i(k_+, q^2, \mu)$ OPE-constrained non-perturbative distribution functions
- uses kinetic scheme, Wilsonian cutoff $\mu \sim 1~{
 m GeV}$

GGOU

Based on

$$W_i \sim F_i \otimes W_i^{pert}$$

- W_i structure functions that give $d\Gamma$
- W_i^{pert} known perturbative quantities
- $F_i(k_+, q^2, \mu)$ OPE-constrained non-perturbative distribution functions
- uses kinetic scheme, Wilsonian cutoff $\mu \sim 1~{
 m GeV}$
- *F_i* moments are constrained by OPE About 100 forms considered in GGOU Each parameterized by simple 2-parameter functional forms [Gambino, CKM 2016 talk]

GGOU

Based on

$$W_i \sim F_i \otimes W_i^{pert}$$

- W_i structure functions that give $d\Gamma$
- W_i^{pert} known perturbative quantities
- $F_i(k_+, q^2, \mu)$ OPE-constrained non-perturbative distribution functions
- uses kinetic scheme, Wilsonian cutoff $\mu \sim 1~{
 m GeV}$
- *F_i* moments are constrained by OPE About 100 forms considered in GGOU Each parameterized by simple 2-parameter functional forms [Gambino, CKM 2016 talk]
- Improvements to GGOU discussed later

Dressed Gluon Exponentiation (DGE)
 Different philosophy than BLNP and GGOU

- Dressed Gluon Exponentiation (DGE)
 Different philosophy than BLNP and GGOU
- Quark distribution in an on-shell heavy quark used as an approximation to quark distribution in *B* meson

- Dressed Gluon Exponentiation (DGE)
 Different philosophy than BLNP and GGOU
- Quark distribution in an on-shell heavy quark used as an approximation to quark distribution in *B* meson
- Calculation includes resummation in moment space supplemented by parametrization of power corrections in moment space

- Dressed Gluon Exponentiation (DGE)
 Different philosophy than BLNP and GGOU
- Quark distribution in an on-shell heavy quark used as an approximation to quark distribution in *B* meson
- Calculation includes resummation in moment space supplemented by parametrization of power corrections in moment space
- $m_b(\overline{MS})$ used as an input
- See also Gardi's talk at MITP 2015 workshop

Available methods: $|V_{ub}|$

- Latest HFLAV summary [arXiv:1612.07233]
- Table 91: Summary of inclusive determinations of $|V_{ub}|$ The errors quoted on $|V_{ub}|$ correspond to experimental and theoretical uncertainties

Framework	$ V_{ub} [10^{-3}]$
BLNP	$4.44 \pm 0.15^{+0.21}_{-0.22}$
DGE	$4.52 \pm 0.16 ^{+0.15}_{-0.16}$
GGOU	$4.52 \pm 0.15 \substack{+0.11 \\ -0.14}$
ADFR	$4.08 \pm 0.13^{+0.18}_{-0.12}$
BLL $(m_X/q^2 \text{ only})$	$4.62 \pm 0.20 \pm 0.29$

• This doesn't include latest BaBar analysis [BaBar PRD **95** 072001 (2017)]

Recent progress

• GGOU: neural network approach

[Gambino, Healey, Mondino PRD 94 014031 (2016)]

• GGOU: neural network approach

[Gambino, Healey, Mondino PRD 94 014031 (2016)]

Power corrections

[Gambino, Healey, Turczyk PLB **763** 60 (2016)] [Gunawardana, GP, JHEP **1707** 137 (2017)]

• GGOU: neural network approach

[Gambino, Healey, Mondino PRD 94 014031 (2016)]

Power corrections

[Gambino, Healey, Turczyk PLB **763** 60 (2016)] [Gunawardana, GP, JHEP **1707** 137 (2017)]

• Lattice Inclusive B decays

[Hashimoto, Colquhoun, Izubuchi, Kaneko, Ohki, EPJ Web Conf. **175** 13006 (2018)

See Hashimoto's talk on Friday

• GGOU: neural network approach

[Gambino, Healey, Mondino PRD 94 014031 (2016)]

Power corrections

[Gambino, Healey, Turczyk PLB **763** 60 (2016)] [Gunawardana, GP, JHEP **1707** 137 (2017)]

• Lattice Inclusive B decays

[Hashimoto, Colquhoun, Izubuchi, Kaneko, Ohki, EPJ Web Conf. **175** 13006 (2018)

See Hashimoto's talk on Friday

SIMBA

See Bernlochner's talk next

• GGOU: neural network approach

[Gambino, Healey, Mondino PRD 94 014031 (2016)]

Power corrections

[Gambino, Healey, Turczyk PLB **763** 60 (2016)] [Gunawardana, GP, JHEP **1707** 137 (2017)]

• Lattice Inclusive B decays

[Hashimoto, Colquhoun, Izubuchi, Kaneko, Ohki, EPJ Web Conf. **175** 13006 (2018)

See Hashimoto's talk on Friday

SIMBA

See Bernlochner's talk next

I apologize if I missed other progress

Recent progress: GGOU: neural network approach

[Gambino, Healey, Mondino PRD 94 014031 (2016)]

GGOU: neural network approach

- See also Healey's talk at MITP 2015 workshop
- See also Gambino's talk later today

GGOU: neural network approach

- See also Healey's talk at MITP 2015 workshop
- See also Gambino's talk later today
- Motivation: About 100 forms considered in GGOU but each parameterized by simple 2-parameter functional forms is that good enough?

• Use Neural Networks to parameterize shape functions without bias Extract $|V_{ub}|$ from theoretical constraints and data Similar to NNPDF

- Use Neural Networks to parameterize shape functions without bias Extract $|V_{ub}|$ from theoretical constraints and data Similar to NNPDF
- Proof of principle

[Gambino, Healey, Mondino PRD 94 014031 (2016)]

- Use Neural Networks to parameterize shape functions without bias Extract $|V_{ub}|$ from theoretical constraints and data Similar to NNPDF
- Proof of principle

[Gambino, Healey, Mondino PRD 94 014031 (2016)]

• Selection of NN replicas of $F_2(k_+, 0)$ trained on first 3 moments only

Demonstrates NN capability to properly sample the functional space

• After further pruning, e.g. keep only one dominant peak

- The results are used to extract $|V_{ub}|$ in the GGOU framework
- Good agreement is found with original GGOU and 2014 HFLAV

Recent progress: Power corrections

[Gambino, Healey, Turczyk PLB 763 60 (2016)]

Power corrections

- Inclusive $\bar{B} \rightarrow X_c \ell \bar{\nu}_\ell$ decays allow to extract HQET parameters
- Moments of shape function(s) are related to these parameters
- Dimension 7 and 8 HQET operators contribution to $\bar{B} \rightarrow X_c \ell \bar{\nu}_\ell$ [Mannel, Turczyk, Uraltsev JHEP **1011**, 109 (2010)]
- |V_{cb}| extraction from inclusive B decays uses dimension 7 and 8 HQET operators [Gambino, Healey, Turczyk PLB 763, 60 (2016)]

Power corrections

 |V_{cb}| extraction from inclusive B decays uses dimension 7 and 8 HQET operators [Gambino, Healey, Turczyk PLB 763, 60 (2016)]

Table 2

Default fit results: the second and third columns give the central values and standard deviations.

m_{b}^{kin}	4.546	0.021	r_1	0.032	0.024
\overline{m}_c (3 GeV)	0.987	0.013	r_2	-0.063	0.037
μ_{π}^2	0.432	0.068	r_3	-0.017	0.025
μ_G^2	0.355	0.060	r_4	-0.002	0.025
ρ_D^3	0.145	0.061	r_5	0.001	0.025
ρ_{LS}^3	-0.169	0.097	r_6	0.016	0.025
\overline{m}_1	0.084	0.059	r_7	0.002	0.025
\overline{m}_2	-0.019	0.036	r_8	-0.026	0.025
\overline{m}_3	-0.011	0.045	r_9	0.072	0.044
\overline{m}_4	0.048	0.043	r ₁₀	0.043	0.030
\overline{m}_5	0.072	0.045	r_{11}	0.003	0.025
\overline{m}_6	0.015	0.041	r ₁₂	0.018	0.025
\overline{m}_7	-0.059	0.043	r ₁₃	-0.052	0.031
\overline{m}_8	-0.178	0.073	r_{14}	0.003	0.025
\overline{m}_9	-0.035	0.044	r_{15}	0.001	0.025
χ^2/dof	0.46		r_{16}	0.001	0.025
BR(%)	10.652	0.156	r_{17}	-0.028	0.025
10 ³ V _{cb}	42.11	0.74	r_{18}	-0.001	0.025

Recent progress: Power corrections

[Gunawardana, GP, JHEP 1707 137 (2017)]

Motivation

Original motivation: How to express moments of shape function(s) in terms of m₁,...m₉ and r₁,...r₁₈? (See also appendix A of [Heinonen, Mannel, arXiv:1609.01334])

Motivation

- Original motivation: How to express moments of shape function(s) in terms of m₁,...m₉ and r₁,...r₁₈? (See also appendix A of [Heinonen, Mannel, arXiv:1609.01334])
- Method of [Gunawardana, GP, JHEP 1707 137 (2017)] allows to
- 1) Find such relations
- 2) List HQET parameters, in principle, to arbitrary dimension
- Construct NRQED and NRQCD bilinear operators, in principle, to *arbitrary* dimension

Motivation

- Original motivation: How to express moments of shape function(s) in terms of m₁,...m₉ and r₁,...r₁₈? (See also appendix A of [Heinonen, Mannel, arXiv:1609.01334])
- Method of [Gunawardana, GP, JHEP 1707 137 (2017)] allows to
- 1) Find such relations
- 2) List HQET parameters, in principle, to arbitrary dimension
- 3) Construct NRQED and NRQCD bilinear operators, in principle, to *arbitrary* dimension
 - Structure of effective field theories is simpler than we think:
 SM EFT

[Henning, Lu, Melia, Murayama, JHEP 1708, 016 (2017)]

- NRQED/NRQCD/HQET

[Gunawardna, GP JHEP **1707** 137 (2017)] [Kobach, Pal PLB **772** 225 (2017)]

• When working on this topic beware of

• When working on this topic beware of

The Curse of the Higher Dimensional Operators...

• When working on this topic beware of

The Curse of the Higher Dimensional Operators...

When listing operators of a given dimension, you'll have the revise your work

• When working on this topic beware of

The Curse of the Higher Dimensional Operators...

When listing operators of a given dimension, you'll have the revise your work

• It happened to

• When working on this topic beware of

The Curse of the Higher Dimensional Operators...

When listing operators of a given dimension, you'll have the revise your work

- It happened to
- Mannel et al.

 $\mathsf{hep-ph/9403249} \rightarrow \mathsf{hep-ph/0611168} \rightarrow \mathsf{arXiv:} 1009.4622$

• When working on this topic beware of

The Curse of the Higher Dimensional Operators...

When listing operators of a given dimension, you'll have the revise your work

- It happened to
- Mannel et al.
 - $\mathsf{hep-ph/9403249} \rightarrow \mathsf{hep-ph/0611168} \rightarrow \mathsf{arXiv:} 1009.4622$
- Manohar: hep-ph/9701294 v1 → v2
 "Two terms added to Lagrangian"

• When working on this topic beware of

The Curse of the Higher Dimensional Operators...

When listing operators of a given dimension, you'll have the revise your work

- It happened to
- Mannel et al.
 - $\mathsf{hep-ph}/9403249 \rightarrow \mathsf{hep-ph}/0611168 \rightarrow \mathsf{arXiv}:1009.4622$
- Manohar: hep-ph/9701294 v1 → v2
 "Two terms added to Lagrangian"
- Paz et al. arXiv:1702.0890 v1 \rightarrow v2

"discussion of operators with multiple color structures was added"

• [Gunawardana, GP, JHEP **1707** 137 (2017)] method Consider matrix elements of the form $\langle H|\bar{h} iD^{\mu_1} \dots iD^{\mu_n}h|H \rangle$ $\langle H|\bar{h} iD^{\mu_1} \dots iD^{\mu_n}s^{\lambda}h|H \rangle$

- [Gunawardana, GP, JHEP **1707** 137 (2017)] method Consider matrix elements of the form $\langle H|\bar{h} iD^{\mu_1} \dots iD^{\mu_n}h|H \rangle$ $\langle H|\bar{h} iD^{\mu_1} \dots iD^{\mu_n}s^{\lambda}h|H \rangle$
- Express them in terms of $v^{\mu_i}, \Pi^{\mu_i\mu_j} = g^{\mu\nu} v^{\mu}v^{\nu}$, and $\epsilon^{\rho\sigma\alpha\beta}v_{\rho}$ using
- Orthogonality: $v_{\mu_1}=v_{\mu_n}=v_\lambda=0$
- P,T, and Hermitian conjugation:
 SI (SD) matrix elements are sym. (anti-sym.) under inversion
- Four dimensions:

not all tensors are linearly independent

- [Gunawardana, GP, JHEP **1707** 137 (2017)] method Consider matrix elements of the form $\langle H|\bar{h} iD^{\mu_1} \dots iD^{\mu_n}h|H \rangle$ $\langle H|\bar{h} iD^{\mu_1} \dots iD^{\mu_n}s^{\lambda}h|H \rangle$
- Express them in terms of $v^{\mu_i}, \Pi^{\mu_i\mu_j} = g^{\mu\nu} v^{\mu}v^{\nu}$, and $\epsilon^{\rho\sigma\alpha\beta}v_{\rho}$ using
- Orthogonality: $v_{\mu_1}=v_{\mu_n}=v_\lambda=0$
- P, T, and Hermitian conjugation:
 SI (SD) matrix elements are sym. (anti-sym.) under inversion
- Four dimensions:

not all tensors are linearly independent

• [Kobach, Pal PLB **772** 225 (2017)] pointed out extra operators with multiple color structures

- [Gunawardana, GP, JHEP **1707** 137 (2017)] method Consider matrix elements of the form $\langle H|\bar{h} iD^{\mu_1} \dots iD^{\mu_n}h|H \rangle$ $\langle H|\bar{h} iD^{\mu_1} \dots iD^{\mu_n}s^{\lambda}h|H \rangle$
- Express them in terms of $v^{\mu_i}, \Pi^{\mu_i \mu_j} = g^{\mu\nu} v^{\mu}v^{\nu}$, and $\epsilon^{\rho\sigma\alpha\beta}v_{\rho}$ using
- Orthogonality: $v_{\mu_1}=v_{\mu_n}=v_\lambda=0$
- P,T, and Hermitian conjugation:
 SI (SD) matrix elements are sym. (anti-sym.) under inversion
- Four dimensions:

not all tensors are linearly independent

- [Kobach, Pal PLB **772** 225 (2017)] pointed out extra operators with multiple color structures
- Published and $v \ge 2$ of [Gunawardana, GP, JHEP 1707 137 (2017)]
- Checking possible multiple color structures

New Result: Dimension 9 HQET operators

• Using the general method: SI Dimension 9 HQET operators

New Result: Dimension 9 HQET operators • Using the general method: SI Dimension 9 HQET operators $\frac{1}{2M_{H}}\langle H|\bar{h}\,iD^{\mu_{1}}\,iD^{\mu_{2}}\,iD^{\mu_{3}}\,iD^{\mu_{4}}\,iD^{\mu_{5}}\,iD^{\mu_{6}}\,h|H\rangle = a^{(9)}_{12,34}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{3}\mu_{4}}\,\Pi^{\mu_{5}\mu_{6}} + a^{(9)}_{12,34}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{1}\mu_{5}}\,\Pi^{\mu_{5}\mu_{6}} + a^{(9)}_{12,34}\,\Pi^{\mu_{5}\mu_{6}}\,\Pi^{\mu_{5}\mu_{6}} + a^{(9)}_{12,34}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{5}\mu_{6}}\,\Pi^{\mu_{5}\mu_{6}} + a^{(9)}_{12,34}\,\Pi^{\mu_{5}\mu_{6}}\,\Pi^{\mu_{5}\mu_{6}}\,\Pi^{\mu_{5}\mu_{6}} + a^{(9)}_{12,34}\,\Pi^{\mu_{5}\mu_{6}}\,\Pi^{\mu_{5}\mu_{6}}\,\Pi^{\mu_{5}\mu_{6}} + a^{(9)}_{12,34}\,\Pi^{\mu_{5}\mu_{6}}\,\Pi^{\mu_{5}$ $+a_{12,35}^{(9)}\left(\Pi^{\mu_1\mu_2}\Pi^{\mu_3\mu_5}\Pi^{\mu_4\mu_6}+\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_4}\Pi^{\mu_5\mu_6}\right)+a_{12,36}^{(9)}\left(\Pi^{\mu_1\mu_2}\Pi^{\mu_3\mu_6}\Pi^{\mu_4\mu_5}+\Pi^{\mu_1\mu_4}\Pi^{\mu_2\mu_3}\Pi^{\mu_5\mu_6}\right)+$ $+a_{13,25}^{(9)}\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_5}\Pi^{\mu_4\mu_6}+a_{13,26}^{(9)}(\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_2\mu_3}\Pi^{\mu_4\mu_6})+a_{14,25}^{(9)}\Pi^{\mu_1\mu_4}\Pi^{\mu_2\mu_5}\Pi^{\mu_3\mu_6}+A_{13,26}^{(9)}(\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_2\mu_5}\Pi^{\mu_4\mu_6})+a_{14,25}^{(9)}\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_5}\Pi^{\mu_4\mu_6}+A_{13,26}^{(9)}(\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_2\mu_5}\Pi^{\mu_4\mu_6})+a_{14,25}^{(9)}\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_5}\Pi^{\mu_4\mu_6}+A_{13,26}^{(9)}(\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_2\mu_5}\Pi^{\mu_4\mu_6})+A_{14,25}^{(9)}(\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_2\mu_5}\Pi^{\mu_4\mu_6})+A_{14,25}^{(9)}(\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_6})+A_{14,25}^{(9)}(\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_6})+A_{14,25}^{(9)}(\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_6})+A_{14,25}^{(9)}(\Pi^{\mu_1\mu_4}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_6})+A_{14,25}^{(9)}(\Pi^{\mu_1\mu_4}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_6})+A_{14,25}^{(9)}(\Pi^{\mu_1\mu_4}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_6})+A_{14,25}^{(9)}(\Pi^{\mu_1\mu_4}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_6})+A_{14,25}^{(9)}(\Pi^{\mu_1\mu_4}\Pi^{\mu_4\mu_6})+A_{14,25}^{(9)}(\Pi^{\mu_1\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4}\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4})+A_{14,25}^{(9)}(\Pi^{\mu_4})+A_$ $+a_{14.26}^{(9)}\left(\Pi^{\mu_{1}\mu_{4}}\Pi^{\mu_{2}\mu_{6}}\Pi^{\mu_{3}\mu_{5}}+\Pi^{\mu_{1}\mu_{5}}\Pi^{\mu_{2}\mu_{4}}\Pi^{\mu_{3}\mu_{6}}\right)+a_{15.26}^{(9)}\Pi^{\mu_{1}\mu_{5}}\Pi^{\mu_{2}\mu_{6}}\Pi^{\mu_{3}\mu_{4}}+a_{16.23}^{(9)}\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{2}\mu_{3}}\Pi^{\mu_{4}\mu_{5}}+$ $+a_{16,24}^{(9)}\Pi^{\mu_1\mu_6}\Pi^{\mu_2\mu_4}\Pi^{\mu_3\mu_5}+a_{16,25}^{(9)}\Pi^{\mu_1\mu_6}\Pi^{\mu_2\mu_5}\Pi^{\mu_3\mu_4}+b_{12,36}^{(9)}\left(\Pi^{\mu_1\mu_2}\Pi^{\mu_3\mu_6}v^{\mu_4}v^{\mu_5}+\Pi^{\mu_1\mu_4}\Pi^{\mu_5\mu_6}v^{\mu_2}v^{\mu_3}\right)+$ $+b^{(9)}_{12,46} \left(\Pi^{\mu_1\mu_2}\Pi^{\mu_4\mu_6}v^{\mu_3}v^{\mu_5} + \Pi^{\mu_1\mu_3}\Pi^{\mu_5\mu_6}v^{\mu_2}v^{\mu_4}\right) + b^{(9)}_{12,56} \Pi^{\mu_1\mu_2}\Pi^{\mu_5\mu_6}v^{\mu_3}v^{\mu_4} +$ $+b^{(9)}_{13,26} \left(\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_6}v^{\mu_4}v^{\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_4\mu_6}v^{\mu_2}v^{\mu_3}\right)+b^{(9)}_{13,46}\Pi^{\mu_1\mu_3}\Pi^{\mu_4\mu_6}v^{\mu_2}v^{\mu_5}+$ $+b_{14,26}^{(9)}\left(\Pi^{\mu_1\mu_4}\Pi^{\mu_2\mu_6}v^{\mu_3}v^{\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_3\mu_6}v^{\mu_2}v^{\mu_4}\right)+b_{14,36}^{(9)}\Pi^{\mu_1\mu_4}\Pi^{\mu_3\mu_6}v^{\mu_2}v^{\mu_5}+b_{15,26}^{(9)}\Pi^{\mu_1\mu_5}\Pi^{\mu_2\mu_6}v^{\mu_3}v^{\mu_4}+b_{14,36}^{(9)}\Pi^{\mu_1\mu_4}\Pi^{\mu_2\mu_6}v^{\mu_3}v^{\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_3\mu_6}v^{\mu_2}v^{\mu_4}\right)+b_{14,36}^{(9)}\Pi^{\mu_1\mu_4}\Pi^{\mu_3\mu_6}v^{\mu_2}v^{\mu_5}+h_{15,26}^{(9)}\Pi^{\mu_1\mu_5}\Pi^{\mu_2\mu_6}v^{\mu_4}v^{\mu_4}+h_{14,36}^{(9)}\Pi^{\mu_1\mu_5}\Pi^{\mu_2\mu_6}v^{\mu_5}v^{\mu_5}+h_{14,36}^{(9)}\eta^{\mu_1\mu_5}\Pi^{\mu_2\mu_6}v^{\mu_5}v^{\mu_5}+h_{14,36}^{(9)}\eta^{\mu_1\mu_5}\Pi^{\mu_2\mu_6}v^{\mu_5}v^{\mu_5}+h_{14,36}^{(9)}\eta^{\mu_5}v^{\mu_5}+h_{14,36}^{(9)}\eta^{\mu_5}v^{\mu_5}v^{\mu_5}+h_{14,36}^{(9)}\eta^{\mu_5}v^{\mu_5}+h_{14,36}^{(9)}v^{\mu_5}v^{\mu_5}+h_{14,36}^{(9)}\eta^{\mu_5}v^{\mu_5}+h_{14,36}^{(9)}\eta^{\mu_5}v^{\mu_5}+h_{14,36}^{(9)}v^{\mu$ $+b_{16,23}^{(9)}\left(\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{2}\mu_{3}}v^{\mu_{4}}v^{\mu_{5}}+\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{4}\mu_{5}}v^{\mu_{2}}v^{\mu_{3}}\right)+b_{16,24}^{(9)}\left(\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{2}\mu_{4}}v^{\mu_{3}}v^{\mu_{5}}+\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{3}\mu_{5}}v^{\mu_{2}}v^{\mu_{4}}\right)+$ $+b_{16,25}^{(9)}\,\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{2}\mu_{5}}v^{\mu_{3}}v^{\mu_{4}}+b_{16,34}^{(9)}\,\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{3}\mu_{4}}v^{\mu_{2}}v^{\mu_{5}}+c^{(9)}\,\Pi^{\mu_{1}\mu_{6}}v^{\mu_{2}}v^{\mu_{3}}v^{\mu_{4}}v^{\mu_{5}}$

New Result: Dimension 9 HQET operators • Using the general method: SI Dimension 9 HQET operators $\frac{1}{2M_{H}}\langle H|\bar{h}\,iD^{\mu_{1}}\,iD^{\mu_{2}}\,iD^{\mu_{3}}\,iD^{\mu_{4}}\,iD^{\mu_{5}}\,iD^{\mu_{6}}\,h|H\rangle = a_{12,34}^{(9)}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{3}\mu_{4}}\,\Pi^{\mu_{5}\mu_{6}} + a_{12,34}^{(9)}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{3}\mu_{4}}\,\Pi^{\mu_{5}\mu_{6}} + a_{12,34}^{(9)}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{3}\mu_{4}}\,\Pi^{\mu_{5}\mu_{6}} + a_{12,34}^{(9)}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{3}\mu_{4}}\,\Pi^{\mu_{5}\mu_{6}} + a_{12,34}^{(9)}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{3}\mu_{4}}\,\Pi^{\mu_{5}\mu_{6}} + a_{12,34}^{(9)}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{3}\mu_{4}}\,\Pi^{\mu_{5}\mu_{6}} + a_{12,34}^{(9)}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{1}\mu_{5}}\,\Pi^{\mu_{5}\mu_{6}} + a_{12,34}^{(9)}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_{5}\mu_{6}}\,\Pi^{\mu_{5}\mu_{6}} + a_{12,34}^{(9)}\,\Pi^{\mu_{1}\mu_{2}}\,\Pi^{\mu_$ $+a^{(9)}_{12,35}\left(\Pi^{\mu_1\mu_2}\Pi^{\mu_3\mu_5}\Pi^{\mu_4\mu_6}+\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_4}\Pi^{\mu_5\mu_6}\right)+a^{(9)}_{12,36}\left(\Pi^{\mu_1\mu_2}\Pi^{\mu_3\mu_6}\Pi^{\mu_4\mu_5}+\Pi^{\mu_1\mu_4}\Pi^{\mu_2\mu_3}\Pi^{\mu_5\mu_6}\right)+$ $+a_{13,25}^{(9)}\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_5}\Pi^{\mu_4\mu_6}+a_{13,26}^{(9)}(\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_6}\Pi^{\mu_4\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_2\mu_3}\Pi^{\mu_4\mu_6})+a_{14,25}^{(9)}\Pi^{\mu_1\mu_4}\Pi^{\mu_2\mu_5}\Pi^{\mu_3\mu_6}+$ $+a_{14,26}^{(9)}\left(\Pi^{\mu_{1}\mu_{4}}\Pi^{\mu_{2}\mu_{6}}\Pi^{\mu_{3}\mu_{5}}+\Pi^{\mu_{1}\mu_{5}}\Pi^{\mu_{2}\mu_{4}}\Pi^{\mu_{3}\mu_{6}}\right)+a_{15,26}^{(9)}\Pi^{\mu_{1}\mu_{5}}\Pi^{\mu_{2}\mu_{6}}\Pi^{\mu_{3}\mu_{4}}+a_{16,23}^{(9)}\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{2}\mu_{3}}\Pi^{\mu_{4}\mu_{5}}+$ $+a_{16,24}^{(9)}\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{2}\mu_{4}}\Pi^{\mu_{3}\mu_{5}}+a_{16,25}^{(9)}\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{2}\mu_{5}}\Pi^{\mu_{3}\mu_{4}}+b_{12,36}^{(9)}\left(\Pi^{\mu_{1}\mu_{2}}\Pi^{\mu_{3}\mu_{6}}v^{\mu_{4}}v^{\mu_{5}}+\Pi^{\mu_{1}\mu_{4}}\Pi^{\mu_{5}\mu_{6}}v^{\mu_{2}}v^{\mu_{3}}\right)+$ $+b_{12,46}^{(9)}\left(\Pi^{\mu_{1}\mu_{2}}\Pi^{\mu_{4}\mu_{6}}v^{\mu_{3}}v^{\mu_{5}}+\Pi^{\mu_{1}\mu_{3}}\Pi^{\mu_{5}\mu_{6}}v^{\mu_{2}}v^{\mu_{4}}\right)+b_{12,56}^{(9)}\Pi^{\mu_{1}\mu_{2}}\Pi^{\mu_{5}\mu_{6}}v^{\mu_{3}}v^{\mu_{4}}+$ $+b^{(9)}_{13,26} \left(\Pi^{\mu_1\mu_3}\Pi^{\mu_2\mu_6}v^{\mu_4}v^{\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_4\mu_6}v^{\mu_2}v^{\mu_3}\right)+b^{(9)}_{13,46}\Pi^{\mu_1\mu_3}\Pi^{\mu_4\mu_6}v^{\mu_2}v^{\mu_5}+$ $+b_{14,26}^{(9)} \left(\Pi^{\mu_1\mu_4}\Pi^{\mu_2\mu_6}v^{\mu_3}v^{\mu_5}+\Pi^{\mu_1\mu_5}\Pi^{\mu_3\mu_6}v^{\mu_2}v^{\mu_4}\right)+b_{14,36}^{(9)}\Pi^{\mu_1\mu_4}\Pi^{\mu_3\mu_6}v^{\mu_2}v^{\mu_5}+b_{15,26}^{(9)}\Pi^{\mu_1\mu_5}\Pi^{\mu_2\mu_6}v^{\mu_3}v^{\mu_4}+b_{14,36}^{(9)}\Pi^{\mu_1\mu_4}\Pi^{\mu_3\mu_6}v^{\mu_2}v^{\mu_5}\right)$ $+b_{16,23}^{(9)}\left(\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{2}\mu_{3}}v^{\mu_{4}}v^{\mu_{5}}+\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{4}\mu_{5}}v^{\mu_{2}}v^{\mu_{3}}\right)+b_{16,24}^{(9)}\left(\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{2}\mu_{4}}v^{\mu_{3}}v^{\mu_{5}}+\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{3}\mu_{5}}v^{\mu_{2}}v^{\mu_{4}}\right)+$ $+b_{16,25}^{(9)}\,\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{2}\mu_{5}}v^{\mu_{3}}v^{\mu_{4}}+b_{16,34}^{(9)}\,\Pi^{\mu_{1}\mu_{6}}\Pi^{\mu_{3}\mu_{4}}v^{\mu_{2}}v^{\mu_{5}}+c^{(9)}\,\Pi^{\mu_{1}\mu_{6}}v^{\mu_{2}}v^{\mu_{3}}v^{\mu_{4}}v^{\mu_{5}}$

- Multiple color structures arise from combining pure color octets: [*iD^{μ_i}*, *iD<sup>μ_j*], [*iD^{μ_i}*, [*iD^{μ_j}*, *iD<sup>μ_k*]], [*iD^{μ_i}*, [*iD^{μ_k}*, *iD^{μ_l}*]]]
 </sup></sup>
- For $|V_{ub}|$ and $|V_{cb}|$ with tree level dimension ≥ 7 power corrections Only T^aT^b color structure is needed

New Result: Moments of the leading power shape function

• Moments of the shape function are related to HQET parameters The matrix elements decomposition makes their calculation easy

$$2M_B \int d\omega \, \omega^k \, S(\omega) = n_{\mu_1} ... n_{\mu_k} \langle \bar{B}(v) | \bar{h} \, i D^{\mu_1} ... i D^{\mu_k} \, h | \bar{B}(v) \rangle$$

New Result: Moments of the leading power shape function

 Moments of the shape function are related to HQET parameters The matrix elements decomposition makes their calculation easy

$$2M_B \int d\omega \, \omega^k \, S(\omega) = n_{\mu_1} \dots n_{\mu_k} \langle \bar{B}(v) | \bar{h} \, iD^{\mu_1} \dots iD^{\mu_k} \, h | \bar{B}(v) \rangle$$

$$\int d\omega \, S(\omega) = 1, \qquad \int d\omega \, \omega \, S(\omega) = 0, \qquad \int d\omega \, \omega^2 \, S(\omega) = -a^{(5)} = -\lambda_1/3,$$

$$\int d\omega \, \omega^3 \, S(\omega) = -a^{(6)} = -\rho_1/3,$$

$$\int d\omega \, \omega^4 \, S(\omega) = a_{12}^{(7)} + a_{13}^{(7)} + a_{14}^{(7)} - b^{(7)} = m_1/5 - m_2/3,$$

$$\int d\omega \, \omega^5 \, S(\omega) = 2a_{12}^{(8)} + 2a_{13}^{(8)} + 2a_{15}^{(8)} + b_{12}^{(8)} + b_{14}^{(8)} + b_{15}^{(8)} - c^{(8)} =$$

$$= (-8r_1 + 2r_2 + 2r_3 + 2r_4 + r_5 + r_6 + r_7) / 15,$$

$$\int d\omega \, \omega^6 \, S(\omega) = -a_{12,34}^{(9)} - 2a_{12,35}^{(9)} - 2a_{12,36}^{(9)} - a_{13,25}^{(9)} - 2a_{13,26}^{(9)} - a_{14,25}^{(9)} - 2a_{14,26}^{(9)} - a_{15,26}^{(9)} + a_{16,23}^{(9)} - a_{16,23}^{(9)} - a_{16,24}^{(9)} - a_{16,25}^{(9)} + 2b_{12,36}^{(9)} + 2b_{12,36}^{(9)} + b_{12,56}^{(9)} + 2b_{13,46}^{(9)} + 2b_{14,26}^{(9)} + b_{13,46}^{(9)} + 2b_{14,26}^{(9)} + b_{14,36}^{(9)} + b_{15,26}^{(9)} + 2b_{16,23}^{(9)} + 2b_{16,24}^{(9)} + b_{16,34}^{(9)} - c^{(9)}$$

• Future: moments of other SSF [Gunawardana, GP, in progress)]

 Problem: New calculations in last 10+ go beyond NLO analyses of the 2000's

Future progress: Implement these in BLNP/DGE/GGOU

- Problem: New calculations in last 10+ go beyond NLO analyses of the 2000's
 Future progress: Implement these in BLNP/DGE/GGOU
- Problem: (Too) simple parameterization of non-perturbative functions
 Future progress: Use better methods to fit to data: NNVub/SIMBA
 Discussion question: Can all such information be obtained from data?

- Problem: New calculations in last 10+ go beyond NLO analyses of the 2000's
 Future progress: Implement these in BLNP/DGE/GGOU
- Problem: (Too) simple parameterization of non-perturbative functions Future progress: Use better methods to fit to data: NNVub/SIMBA Discussion question: Can all such information be obtained from data?
- Future progress: Belle II will improve $\bar{B} \rightarrow X_s \gamma$ measurement Can be utilized to improve inclusive V_{ub}

- Problem: New calculations in last 10+ go beyond NLO analyses of the 2000's
 Future progress: Implement these in BLNP/DGE/GGOU
- Problem: (Too) simple parameterization of non-perturbative functions Future progress: Use better methods to fit to data: NNVub/SIMBA Discussion question: Can all such information be obtained from data?
- Future progress: Belle II will improve $\bar{B} \rightarrow X_s \gamma$ measurement Can be utilized to improve inclusive V_{ub}

The future looks promising for $\bar{B} \rightarrow X_u \, I \, \bar{\nu}$ and inclusive $|V_{ub}|!$