μ -e scattering questions on μ /e ID

Fedor Ignatov

21 February 2018 MuonE@MITP, Mainz

ahadµ from spacelike region

$\mu e \rightarrow \mu e$ scattering

 θ_{μ} , rad 0.005 Θ_{μ} < ~ 5 mrad ~ m_{μ}/m_e 0.004 0.003 Events with 1 of track is scattered by angle > 5 mrad 0.002 are well defined for which track μ/e 0.001 00 N/10µrad 1400 1200 $\Theta_{p} = 0.5 - 5 \text{ mrad}$ 1000 gives 32.4% of total a ^µhad 800 600 400 200

21 February 2018, MUonE meeting, Mainz

miss e/µ ID problem

 μ/e can not be separated very well by tracking at 1-5 mrad

$\theta_e < 0.5$ mrad can't be used at all?

Similar to events with low scattering angle muon and high angle electron : huge background from low momentum electron 21 February 2018, MUonE meeting, Mainz

Separation by tracking itself

ahadµ Summing (E beam = 150 GeV)

ahadµ Summing (E beam = 210 GeV)

ahadµ Summing (E beam = 180 GeV)

Normalization function more symmetric over $\theta_e = \theta_{\mu}$ ~180 GeV muon beam looks like most suitable for μ/e ID problem

e/µ ID by calorimeter

Ecal + Muon system can be used after last modules...

Calorimeter ID

21 February 2018, MUonE meeting, Mainz

Calorimeter ID

Calorimeter ID

Sliced calorimeter with shower profile can help to improve this number further 21 February 2018, MUonE meeting, Mainz

muon system

At which level muon will survive in calorimeter?

Inefficiency to lose muon after 30 cm of CsI

Muon will pass calorimeter with inefficiency ~ few 10⁻⁵

21 February 2018, MUonE meeting, Mainz

Muon after calorimeter

21 February 2018, MUonE meeting, Mainz

Output position of muon after 30cm CsI ~ 0.25 mm (should be compared to 5 mm distance between μ/e)

Tails ~ 10-5

Muon crossing of calorimeter can gives ID at level $\sim 10^{-4}$?

Umberto M. (Bologna 14.12.2017)

Events throughout the detector

PID capabilities

Muon/electron will pass ~ 40 targets (~1-2 X/X0) before reaching calorimeter muon can be easily tracked up to calorimeter \rightarrow calorimeter still usable

ahadµ without any μ/e ID

 $a_{\mu}^{had,LO} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{had}[t(x)] = \frac{\alpha}{\pi} \sum dt (1-x) \frac{dx}{dt} \frac{\Delta N}{d\sigma/dt L dt}$ Without any μ/e ID, just by counting events of excess ±0.1%! E = 180 GeV over prediction (with only lepton VP) -q⊓, 0.0047 +- 2.5 % \rightarrow $\delta a \sim 2.5\%$ for part at $\theta_e < 5$ mrad $-(1-x)\frac{dx}{dt}/\frac{d\sigma}{dt}$ 0.0046 (5% for µ beam 150 GeV) 0.0045 From most problematic region $\theta_{\mathbf{e}} == \theta_{\mathbf{u}}$ 0.0044 2 ↔ 3 mrad : δa ~ 0.1% 0.0043 If the Normalization function 0.0042 0.001_{×10⁻³} 0.002 $\theta_{\theta_a, \text{ mrad}}^{0.006}$ can be symmetric over $\theta_e = \theta_{\mu}$ 0.003 0.004 0.005 A, μb⁻¹ 4.74 (over change of $\mu \Leftrightarrow$ e angles) 4.735 4.73 than it is not necessary to have any μ/e ID 4.725 4.72 $\theta_{e} = \theta_{\mu}$ 4.715 4.71 4.705 4.7 0.002 0.0025 0.003 θ_{o} , mrad

ahadµ without any μ/e ID

21 February 2018, MUonE meeting, Mainz

Summary

Calorimeter + Muon system can be solution for μ/e ID (can gives level of ~ 10⁻⁴?)

Effect of miss μ/e ID can be greatly reduced by choosing proper energy of muon beam in LO approximation with $E_{beam} = 172 \text{ GeV}$: we don't need it at all

but anyway we need it to study low energy electron background scattered because of MS