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Kinematics and counting

p1 p3

p2 p4 mµ ⇠ 105MeV

me ⇠ 0.5MeV
µ

e

Fixed target experiment
frame

p1 = (me,~0)

p2 =
�q

m2
µ + |~p2|2, ~p2

�

s = (p1 + p2)
2

t = (p1 � p3)
2

u = (p1 � p4)
2

Invariants

s = m2
e +m2

µ + 2me

q
m2

µ + |~p2|2
| {z }

⇠150GeV

!
p
s ⇠ 400MeV

It follows that
mµp
s
⇠ 0.25 ,

mep
s
⇠ 0.00125 s ⇠ t ⇠ mµ � me

hard scales collinear scale

L ⌘ ln
�
s/m2

e) ' 14ln
�
s/m2

µ) ' 3 ↵L ' 0.1 L ⇠ 1/
p
↵

NLO 
corrections

Suggested counting, different 
from standard QCD counting
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Expansion by regions example

p1 p3

k + p1 k + p3

k

p2i = m2
e

� ⌘ m2
e

�t
=

m2
e

Q2
Expansion parameter
for the scalar vertex

I = i⇡� d
2 µ4�d

Z
ddk

1

k2
⇥
(k + p1)2 �m2

e

⇤⇥
(k + p3)2 �m2

e

⇤

After Feynman parametrisation and loop integration I obtain

I =

✓
µ2

�t

◆✏✓ 1

�t

◆Z 1

0
dx

Z x

0
dy

�(1 + ✏)

[�y2 + �x2 + xy]1+✏

I =
�(1 + ✏)

�t

✓
µ2

�t

◆✏ ln�
✏

�
⇡2

6
�

ln2 �

2
+O(✏) +O(�)

�
After integration over the Feynman parameters and expansions

Now we should find/calculate the different regions that contribute to this integral

We focus on the electron part since mµ is of the order of the hard scale 
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Expansion by regions example

External momenta scaling

Light-cone components

anti-hard-collinear scalinghard-collinear scaling

where d = 4 − 2ε is the dimensional regulator. The ’t Hooft scale µ has been introduced

to make the mass dimension of I independent of the value of d. We introduce the following

notation:

L2 ≡ −l2 − i0 , P 2 ≡ −p2 − i0 , Q2 ≡ −(l − p)2 − i0 . (2.23)

The goal is to calculate the integral in Eq. (2.22) in the limit in which L2 ∼ P 2 ≪ Q2 that

is, in the case in which the external legs carrying momenta l and p have large energies but

small invariant masses.

Before going any further, we now need to introduce some basic notation used in SCET.

We choose two light-like reference vectors in the direction of the momenta p and l in the

frame in which1 Q⃗ = 0:

nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) . (2.24)

It is immediate to verify that

n2 = n̄2 = 0 , and n · n̄ = 2 . (2.25)

Any vector can be then decomposed in a component proportional to n, a part proportional

to n̄, and a remainder perpendicular to both

pµ = (n · p)
n̄µ

2
+ (n̄ · p)

nµ

2
+ pµ⊥ ≡ pµ+ + pµ− + pµ⊥ . (2.26)

Splitting the vectors into their light-cone components is useful to organize the expansion,

since the different components scale differently. For the square of the vector p one then finds

p2 = (n · p)(n̄ · p) + p2⊥ , (2.27)

while the scalar product between two vectors p and q becomes

p · q = p+ · q− + p− · q+ + p⊥ · q⊥ . (2.28)

In the following we will often identify a vector by means of its components in the n, n̄,

and ⊥ basis, with the notation

pµ = ( n · p︸︷︷︸
“+ comp.”

, n̄ · p︸︷︷︸
“− comp.”

, pµ⊥) . (2.29)

We warn the reader that in certain situations it is convenient to work with the scalar quantities

p+ ≡ n · p and p− ≡ n̄ · p, which should not be mixed up with the related vector quantities

pµ± introduced above. In the following we explicitly indicate what we mean by the symbols

p± whenever the notation can give rise to ambiguities.

1In this lectures we employ the “mostly minuses” metric, and the components of a generic four-vector xµ

are (t, x, y, z).
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Scalar products

Hard Region k ⇠ (1, 1, 1)Q

k2 ! O(1)

(k + p1)
2
�m2

e = k2 + 2k� · p1+ +O(�)

(k + p3)
2
�m2

e = k2 + 2k+ · p3� +O(�)

Ih =
�(1 + ✏)

�t

✓
µ2

�t

◆✏ 1

✏2
� ⇡2

6

�

Expanded Propagators

Single scale integral

p3 ⇠ (�, 1,
p
�)Q , p1 ⇠ (1,�,

p
�)Q
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Expansion by regions example

Anti-h-collinear Region

k2 ⇠ O(�2)

(k + p1)
2 +m2

e = k2 + 2k · p1 ⇠ O(�2)

(k + p3)
2 +m2

e = k2 + 2k · p3 = 2k+ · p3� +O(�2)

Expanded Propagators

Ic = i⇡� d
2 µ4�d

Z
ddk

1

k2[k2 + 2k · p1][2k+ · p3�]

Ic =
�(1 + ✏)

(2p1+p3�)

✓
µ2

m2
e

◆✏
�

1

2✏2
+O(✏)

�
=

�(1 + ✏)

�t

✓
µ
2

�t

◆✏
�

1

2✏2
+

ln�

2✏
�

ln2 �

4
+O(✏) + (O)(�)

�

Single scale integral

integral has been
rewritten=

The h-collinear region                            gives the same 
contribution as the anti-collinear region

k ⇠ (1,�,
p
�)Q

k ⇠ (�, 1,
p
�)Q
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Expansion by regions example

Sum hard, h-collinear and anti-h-collinear regions

Ih + 2Ic =
�(1 + ✏)

�t

✓
µ2

�t

◆✏ 1

✏2
� ⇡2

6
+ 2

✓
� 1

2✏2
+

ln�

2✏
� ln2 �

4

◆�
=

=
�(1 + ✏)

�t

✓
µ2

�t

◆✏ ln�
✏

� ⇡2

6
� ln2 �

2

�
= I

The sum of these 3 regions reproduces the initial integral, this proves that other regions do not 
contribute, for example (ultra-)soft regions must give scaleless integrals

Soft Region

It is possible to prove that this integral vanishes in dimensional regularisation, the integral in the 
ultra-soft region                             is the same as the one in the soft region (but with a different 

scaling) and it also vanishes

k ⇠ (�,�,�)Q

k2 ⇠ O(�2)

(k + p1)
2
�m2

e = 2k� · p1+ +O(�2)

(k + p3)
2
�m2

e = 2k+ · p3� +O(�2)

k ⇠ (�2,�2,�2)Q

Is, us = 0
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Factorization

d� ⇠ H(s, t,mµ, µ)Fj(me, µ)Fj(me, µ) . . .

The expansion by regions is important to find a factorization theorem (separation of scales)

Missing terms/regions

hard scales collinear scale

‣ Single scale objects, then resummation is possible via RG-evolution

‣ We need to look at the real emission diagrams, new scales and regions (usually) appear: 
soft, soft-collinear (?)

‣ Question? Is there an experimental soft cutoff in the energy of the emitted photons? I 
think in practice there is one:  “The angles of the scattered electron and muon are 
correlated…This constraint is extremely important to select elastic scattering events, 
rejecting background events from radiative or inelastic processes”

‣ We call this soft photon cutoff ∆E. What is the size of this scale ∆E?  me << ∆E << mµ ,s,t 
or me~∆E (probably not)?
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Regions in the real emission diagrams

Soft real emission from static source, Moeller scattering, (R. Hill, [arXiv:1605.02613]) in 
HQET then expanded in me << Q2 , with soft cutoff on the photon energy

E. Two-loop soft function

Having derived the functions H(µ), J(µ) and R(µ), and having demonstrated soft-

collinear factorization for real radiation, let us specify the remaining soft function through

two-loop order. The complete soft function including real radiation, S(�E) in Eq. (33), is

obtained from Feynman diagrams with only soft photons, cf. Figs. 8 and 9. Our definition

ensures that this function is identical to the soft function appearing in Eq. (13), extended

to general v · v0 � 1.8 Using the explicit results (45) and (30), and the soft contribution to

Eq. (31), the complete corrections at one and two-loop order are9

S
(1) = �4

✓
log

µ
2

m2
+ log

E
2

(�E)2

◆
(L� 1) + 2L2 + 4Li2

✓
cos2

✓

2

◆
�

4⇡2

3
,

S
(2) =

1

2!
[S(1)]2 �

16⇡2

3
(L� 1)2 . (49)

F. E↵ective theory: resummation

After renormalization in the MS scheme at scale µ, the hard function is free of large

logarithms provided that the matching scale satisfies µH ⇠ Q. Evolution to low scales

µL ⇠ m is governed by (cf. Appendix A)

d logH

d log µ
= 2


�cusp(↵) log

Q
2

µ2
+ �(↵)

�
. (50)

The cusp anomalous dimension for massless QED (nf = 1) reads

�cusp =
1X

n=0

⇣
↵̄

4⇡

⌘n+1

�
cusp

n
, �

cusp

0
= 4 , �

cusp

1
= �

80

9
. (51)

The regular anomalous dimension � may be similarly expanded,

� =
1X

n=0

⇣
↵̄

4⇡

⌘n+1

�n , �0 = �6 . (52)

Using these expansions, the solution of Eq. (50) to any order is straightforward. Expressed

in terms of the running coupling,

log

✓
H(µL)

H(µH)

◆
= �

�0

�0

⇢
log r + . . .

�
�

�
cusp

0

�0

⇢
log

Q
2

µ
2

H

log r +
1

�0


4⇡

↵(µH)

✓
1

r
� 1 + log r

◆

8 Note that with this definition, closed electron loop corrections are defined to be contained in R.
9 The term 16⇡2(L� 1)2/3 in S(2) has been noted in Ref. [39].

17

Soft function (IR subtracted)

p p0

⇥ ⇥

`

⇥ ⇥

FIG. 2: First order radiative corrections to electron scattering from static source.

III. RELATIVISTIC PARTICLE

When particle velocities satisfy v · v
0
� 1, new large logarithms appear in perturbation

theory which are not resummed by the renormalization analysis in the heavy particle e↵ective

theory of the previous section. For example, ci(µ, v · v0) in Eq. (5) contains large logarithms,

log(v·v0), regardless of the choice for factorization scale µ. In order to isolate and resum these

additional large logarithms, we must extend the e↵ective theory to include collinear degrees

of freedom [18–25]. Before turning to the e↵ective theory description, let us examine the

explicit two-loop calculation for relativistic electron-proton scattering in the static source

limit. We will then perform the e↵ective theory analysis in this limit before including

arbitrary recoil corrections, and radiative corrections involving the proton.

A. Two loop corrections in static limit

To isolate the essential points, let us consider the problem of relativistic unpolarized

electron-proton scattering in the static-source limit of large proton mass: m ⌧ E ⌧ M ,

where m and M denote the electron and proton masses and E is the electron energy. Ne-

glecting power corrections in m/E, and working to first order in nuclear charge (i.e., single

photon exchange), the cross section may be written

d� =
(d�)Mott

[1� ⇧̂(q2)]2
(1 + �e + �e� + �e�� + . . . ) , (26)

where (d�/d⌦)Mott = ↵
2 cos2(✓/2)/[4E2 sin4(✓/2)] is the tree-level, Mott, cross section, and

⇧̂(q2) is the photon vacuum polarization function. Each term �X in Eq. (26) corresponds to

di↵erent numbers of final state photons and is expanded according to �X =
P1

n=0

�
↵

4⇡

�n
�
(n)

X
.

Consider radiative corrections at first order in ↵, cf. Fig. 2. Regulating infrared diver-

gences with an infinitesimal photon mass �, corrections with just an electron in the final

state are

1 + �e = [F1(q
2
,m

2
,�

2)]2 , F1 = 1 +
1X

n=1

⇣
↵

4⇡

⌘n

F
(n)

1
, (27)

10

Large logarithms still present :-(

‣ Large logarithmic corrections are still present in this formula, further separation of regions is 
needed

‣ It seems to be a situation similar to the boosted heavy quark regime: need to study the 
enhanced                       contributions in the soft-emission limit                     at fixed                                                                        
(joint limit, the two limits are independent)

ln(m2
e/Q

2) �E2 ⌧ Q2 (�E)2/E2
e

e

2
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Regions in the real emission diagrams
Soft real emission from a static source, expansion (of one of the relevant integrals) in me/E

me�E

E

Soft Region

Collinear Region

Ir,s = � 1

✏2
+

2 ln
⇥
�E
µ

⇤

✏
+

⇡2

4
� 2 ln2


�E

µ

�

Ir,c =
1

2✏2
�

ln
⇥
me�E
Eµ

⇤

✏
+

⇡2

24
+ ln2


me�E

Eµ

� New soft-collinear 
scale arises

Scale separation has now been achieved, a soft-collinear scale is present in the calculation

Sum soft, collinear and anti-collinear regions

Ir,s + Ir,c + Ir,c̄ = �
ln
⇥m2

e
E2

⇤

✏
+

1

2
ln2


m2

e

E2

�
+ ln


m2

e

E2

�
ln


�E2

µ2

�
+

⇡2

3

Ir =

Z

k0�E

dd�1k

(2⇡)d�12k0
�2p · p0

(p · k)(p0 · k)
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Small mass limit & factorization

2

The remainder of the paper is organized as follows. In Section II we describe the process-independent derivation
of the initial condition for the fragmentation function. Then, we discuss collinear factorization when finite quark
masses are present and explain how to compute Dini from relevant Feynman diagrams. We also suggest a suitable
modification of the original proposal [6, 7] for the process-independent computation of the initial condition; such
modification significantly simplifies NNLO calculations. In Section IV the initial condition for the fragmentation
function for both quark- and gluon-initiated processes is computed through NLO. This computation allows us to
demonstrate the details of our approach and to derive the NLO perturbative fragmentation function through O(ϵ),
where ϵ is the dimensional regularization parameter. In Section V we describe the calculation of the O(α2

s) contribution
to the fragmentation function and present the result for the initial condition. We conclude in Section VI.

II. PROCESS-INDEPENDENT DERIVATION OF Dini

Consider production of a heavy quark Q with mass m and a definite value of energy EQ in a hard scattering
process. According to the QCD factorization theorems [8, 9, 10], the heavy quark energy spectrum can be computed
as a convolution of the energy distribution of massless partons produced in the hard process, and the fragmentation
function that describes the probability that the massless parton fragments into a massive quark with a definite energy.
If the energy fraction EQ/EQ,max of the heavy quark is denoted by z, then the energy distribution of that quark can
be written as:

dσQ

dz
(z, Q, m) =

∑

a

∫ 1

z

dx

x

dσ̂a

dx
(x, Q, µ)Da/Q

( z

x
,

µ

m

)
. (1)

Here the sum runs over all partons (quarks, antiquarks and gluons) that can be produced in the hard process and µ is
the factorization scale. The coefficient function dσ̂a/dx is the MS renormalized differential cross-section for producing
a massless parton a 1 . It is defined indirectly through the equation

dσa

dz
(z, Q, ϵ) =

∑

b

dσ̂b

dz
(z, Q, µ) ⊗ Γba(z, µ, ϵ), (2)

where dσa/dz is the bare energy distribution for the parton of type a; the collinear divergences in this distribution
are regularized by working in d = 4− 2ϵ dimensions. Γab are universal collinear subtraction terms, defined in the MS
scheme:

Γba = δabδ(1 − z) −
(αs

2π

) P (0)
ab (z)

ϵ
+
(αs

2π

)2
[

1

2ϵ2

(
P (0)

ac ⊗ P (0)
cb (z) + β0P

(0)
ab (z)

)
−

1

2ϵ
P (1)

ab (z)

]
, (3)

where αs = αs(µ) is the MS strong coupling constant, renormalized at the scale µ. The relation between the bare
and the renormalized couplings reads:

α0
s

2π
Sϵ =

αs

2π

(
1 −

αs

2π

β0

ϵ
+ O(α2

s)

)
, (4)

where Sϵ = (4π)ϵ e−ϵγ and γ is the Euler constant. Also, β0 = (11CA −4TRnf)/6 is the O(α2
s) coefficient of the QCD

β-function, CA = 3, TR = 1/2 are the QCD color factors, nf denotes the number of fermion flavors (including Q)

and P (0,1)
ab are the time-like splitting functions [11]. Our notations for the splitting functions follow Ref.[10].

The functions Da/Q(x, µ/m) in Eq.(1) are the perturbative fragmentation functions [1]. They satisfy the DGLAP
evolution equation and can be fully reconstructed from it, if the initial condition at a scale µ = µ0 is known. We
denote

Da/Q

(
z,

µ0

m

)
= Dini

a

(
z,

µ0

m

)
. (5)

1 In the evaluation of the coefficient function dσ̂a/dx the heavy quark Q is considered as massless; therefore, the sum over indexes in
Eq.(1) includes the flavor Q.

Mele Nason ’91, Melnikov, Arbuzov ’02,
Melnikov Mitov ’04, Mitov Moch ’07,….

Cross section for the
production of a massless

parton a

Fragmentation function: probability 
that a massless parton fragments into 
a massive quark. Describes collinear 

radiation to final-state particles

Similar to the simple example of the expansion by regions above

Now expand in the soft limit, further factorization (limits should be independent and commutative?)

Naive/Guess factorization theorem

Korchemsky Marchesini ’93, Cacciari Catani ’01, 
Gardi ’05, Neubert ‘07, Ferroglia Pecjak Yang ‘12

+O(�E/Ee) +O(m2
e/s)

virtual corrections of
the fragmentation 

functions

Soft function,
could contain ratio

of hard scales

Soft-collinear functions for
initial and final state e

Hard function,
virtual corrections

with me=0

D(z,me, µ) = Fj(me, µ)Sj(me�E/E, µ) +O(�E/Ee)

d� ⇠ H(s, t,mµ,me = 0, µ)Fj(me, µ)Fj(me, µ)S(�E, s, t,mµ,me = 0, µ)Sj,i(me�E/Ee, µ)Sj,f (me�E/Ee, µ)
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Resummation
In some convenient space (momentum or Laplace/Mellin…) the functions appearing in the 
factorization formula satisfy RG equations of the type

d

d lnµ
H(Q2

, µ) = 2


�cusp ln

Q
2

µ2
+ �(↵)

�
H(Q2

, µ)
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E. Two-loop soft function

Having derived the functions H(µ), J(µ) and R(µ), and having demonstrated soft-

collinear factorization for real radiation, let us specify the remaining soft function through

two-loop order. The complete soft function including real radiation, S(�E) in Eq. (33), is

obtained from Feynman diagrams with only soft photons, cf. Figs. 8 and 9. Our definition

ensures that this function is identical to the soft function appearing in Eq. (13), extended

to general v · v0 � 1.8 Using the explicit results (45) and (30), and the soft contribution to

Eq. (31), the complete corrections at one and two-loop order are9

S
(1) = �4

✓
log

µ
2

m2
+ log

E
2

(�E)2

◆
(L� 1) + 2L2 + 4Li2

✓
cos2

✓

2

◆
�

4⇡2

3
,

S
(2) =

1

2!
[S(1)]2 �

16⇡2

3
(L� 1)2 . (49)

F. E↵ective theory: resummation

After renormalization in the MS scheme at scale µ, the hard function is free of large

logarithms provided that the matching scale satisfies µH ⇠ Q. Evolution to low scales

µL ⇠ m is governed by (cf. Appendix A)
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The cusp anomalous dimension for massless QED (nf = 1) reads
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The regular anomalous dimension � may be similarly expanded,
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Using these expansions, the solution of Eq. (50) to any order is straightforward. Expressed

in terms of the running coupling,
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8 Note that with this definition, closed electron loop corrections are defined to be contained in R.
9 The term 16⇡2(L� 1)2/3 in S(2) has been noted in Ref. [39].
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where r = ↵(µL)/↵(µH), and the first and second curly braces correspond to the terms �(↵)

and �cusp(↵) in Eq. (50), respectively.

We are interested in applications involving large logarithms such that ↵ log2(µ2

H
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2

L
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In this power counting, terms involving �0 scale as ↵1/2, and neglected terms involving �(↵)

scale as ↵3/2. The leading terms involving the cusp anomalous dimension scale as ↵0, terms

involving �
cusp

1
and �1 scale as ↵

1, and the remaining neglected terms scale as ↵
2. When

combined with one-loop matching computations, the terms retained in Eq. (53) are thus

su�cient to ensure accuracy through order ↵
1, accounting for logarithmic enhancements.

The result (53) may be readily expressed in terms of the onshell coupling. Retaining terms

through O(↵) in the above counting,
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With the result (54), we have control over large logarithms and a complete solution

through true order ↵ (i.e., all neglected terms are parametrically small compared to order

↵, accounting for logarithmic enhancements). Setting µL ⇠ m, inspection of S(µL) shows

that the non-exponentiating term in S
(2) is of order ↵

2
L
2
⇠ ↵

1. J(µL) contains no large

logarithms and may be truncated at one-loop order. R(µL) is nontrivial only at order

↵
3/2, and may be neglected. Similarly, setting µH ⇠ M , the matching coe�cient H(µH)

is free of large logarithms and may be truncated at one-loop order. Figure 5 compares

successive inclusion of terms at order ↵0, ↵
1
2 and ↵

1 in resummed perturbation theory. The

figure demonstrates the necessity to control both leading and subleading logarithms in the

perturbative expansion.

G. Nuclear recoil and structure corrections

The preceding discussion gives a complete solution including subleading log resummation

for the idealized problem of scattering from a static source. Let us include the e↵ects of
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With the result (54), we have control over large logarithms and a complete solution

through true order ↵ (i.e., all neglected terms are parametrically small compared to order

↵, accounting for logarithmic enhancements). Setting µL ⇠ m, inspection of S(µL) shows

that the non-exponentiating term in S
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logarithms and may be truncated at one-loop order. R(µL) is nontrivial only at order
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is free of large logarithms and may be truncated at one-loop order. Figure 5 compares

successive inclusion of terms at order ↵0, ↵
1
2 and ↵

1 in resummed perturbation theory. The

figure demonstrates the necessity to control both leading and subleading logarithms in the

perturbative expansion.

G. Nuclear recoil and structure corrections

The preceding discussion gives a complete solution including subleading log resummation

for the idealized problem of scattering from a static source. Let us include the e↵ects of
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‣ Find all the relevant hard, collinear and soft kinematic scales of the process 
(mµ,s,t,Ee,me,∆E,me∆E/Ee,…), be careful with hidden low energy scales that could 
possibly be introduced experimentally (∆E). How do ∆E and me relate to each 
other?

‣ Formally prove factorization formula by employing effective field theory methods 

‣ Explicit computation of the coefficients entering the factorization formula (at NLO 
first and eventually at NNLO)

‣ Fixed order results from factorization theorem where power corrections in        
and            are neglected

‣ Resummation by RG evolution (it directly depends on the structure of the 
factorization theorem)
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Thank you!


