Monte Carlo generators for flavour factories:

Updates on the Phokhara and Ekhara event generators

H. CZYŻ, IF, UŚ, Chorzów, and Helmholtz Institute, Mainz

The Evaluation of the Leading Hadronic Contribution to the Muon Anomalous Magnetic Moment, MITP, Mainz, February 2018

Outline

- \Rightarrow PHOKHARA and EKHARA in brief
- \Rightarrow Recent developments in PHOKHARA and EKHARA
 - $\Rightarrow \chi_{c_i}$ production: PHOKHARA and EKHARA
 - \Rightarrow Models: $\mathcal{L}_{\gamma\gamma P}$, $\mathcal{L}_{\gamma V}$, $\mathcal{L}_{V\gamma P}$, \mathcal{L}_{VVP}
 - \Rightarrow PHOKHARA: $e^+e^- \rightarrow P\gamma(\gamma)$
 - \Rightarrow EKHARA: $e^+e^- \rightarrow e^+e^-P$
 - $\Rightarrow a_{\mu}(P)$
- \Rightarrow Radiative corrections in EKHARA
- \Rightarrow Radiative corrections in PHOKHARA

MC for $\gamma^{(*)}-\gamma^{(*)}$

MC for $\gamma^{(*)}-\gamma^{(*)}$

THE RADIATIVE RETURN METHOD

High precision measurement of the hadronic cross-section at meson-factories

NLO-ISR vs. SF

Structure functions to be used carefully

	$\sqrt{s} = 1.02 \text{ GeV}$	4 GeV	/ 10	$0.6 { m GeV}$
Born	2.1361(4)	0.12979	(3) 0.01	11350(3)
\mathbf{SF}	2.0192(4)	0.12439	(5) 0.01	10526 (3)
NLO (1)	2.0332(5)	0.12526	(5) 0.01	10565(4)
NLO (2)	2.4126(7)	0.14891	(9) 0.01	12158 (9)
	$s^{1/2} = 1.$	$02{ m GeV}$	$4{ m GeV}$	$10.6{ m GeV}$
E_{γ}^{\min} (GeV)	0.0)1	0.1	1
θ_{γ} (degrees)	[5, 2]	21]	[10, 170]	[25, 155]
θ_{π} (degrees)	[55, 1]	[25]	[20, 160]	[30, 150]
$M^2_{\pi^+\pi^-\gamma}$ (G	eV^2) 0.9	9	12	90

PHOKHARA MC generator

http://ific.uv.es/~rodrigo/phokhara/ PHOKHARA and EKHARA MC generators, 10

Photon-photon interactions

EKHARA MC generator

http://prac.us.edu.pl/~ ekhara/

χ_{c1} and χ_{c2} production at e^+e^- colliders. H. Czyż, J. H. Kühn, Sz. Tracz, Phys. Rev. D94 (2016), 034033 $e^+e^- \rightarrow \mu^+\mu^-\gamma$, $e^+e^- \rightarrow \chi_{c_i}(\rightarrow J/\psi(\rightarrow \mu^+\mu^-)\gamma)$

BELLE II event rates

H. Czyż, P. Kisza, Phys.Lett. B771 (2017) 487 $e^+e^- \rightarrow e^+e^- \chi_{c_i}(\rightarrow J/\psi(\rightarrow \mu^+\mu^-)\gamma)$

PHOKHARA: $e^+e^- o P\gamma(\gamma)$

H. Czyż, P.Kisza, Sz. Tracz, Phys.Rev. D97 (2018), 016006

The $P - \gamma^* - \gamma^*$ form factors

H.C., S. Ivashyn, A. Korchin, O. Shekhovtsova, Phys.Rev. D85 (2012) 094010

We need

 $\mathcal{L}_{\gamma\gamma P}$, $\mathcal{L}_{\gamma V}$, $\mathcal{L}_{V\gamma P}$, \mathcal{L}_{VVP}

PHOKHARA and EKHARA MC generators,

The lagrangians

$$\begin{split} \mathcal{L}_{\gamma\gamma P} &= \frac{-e^2 N_c}{24\pi^2 f_\pi} \epsilon^{\mu\nu\alpha\beta} \partial_\mu B_\nu \partial_\alpha B_\beta \Big[\pi^0 + \eta \big(\frac{5}{3} C_q - \frac{\sqrt{2}}{3} C_s \big) + \eta' \big(\frac{5}{3} C'_q + \frac{\sqrt{2}}{3} C'_s \big) \Big] \,. \\ \mathcal{L}_{\gamma V} &= -e \sum_{i=1}^3 f_{V_i} \partial_\mu B_\nu \Big(\hat{\rho}_i^{\mu\nu} + \frac{1}{3} F_{\omega_i} \hat{\omega}_i^{\mu\nu} - \frac{\sqrt{2}}{3} F_{\phi_i} \hat{\rho}_i^{\mu\nu} \big) , \\ \mathcal{L}_{V\gamma\pi^0} &= -\sum_{i=1}^n \frac{4\sqrt{2} eh_{V_i}}{3f_\pi} \epsilon_{\mu\nu\alpha\beta} \partial^\alpha B^\beta \Big[(3\rho_i^\mu + 3H_{\omega_i} \omega_i^\mu - \frac{3}{\sqrt{2}} A_i^{\pi_0} \phi_i^\mu \big) \partial^\nu \pi^0 \,, \\ \mathcal{L}_{V\gamma\eta} &= -\sum_{i=1}^n \frac{4\sqrt{2} eh_{V_i}}{3f_\pi} \epsilon_{\mu\nu\alpha\beta} \partial^\alpha B^\beta \Big[(3\rho_i^\mu + \omega_i^\mu) C_q + 2\phi_i^\mu C_s - \big(\frac{5}{\sqrt{2}} C_q - C_s \big) A_i^\eta \phi_i^\mu \Big] \partial^\nu \eta \,, \\ \mathcal{L}_{V\gamma\eta'} &= -\sum_{i=1}^n \frac{4\sqrt{2} eh_{V_i}}{3f_\pi} \epsilon_{\mu\nu\alpha\beta} \partial^\alpha B^\beta \Big[(3\rho_i^\mu + \omega_i^\mu) C_q' - 2\phi_i^\mu C'_s - \big(\frac{5}{\sqrt{2}} C'_q + C'_s \big) A_i^\eta \phi_i^\mu \Big] \partial^\nu \eta' \,, \\ \mathcal{L}_{V\eta\eta'} &= -\sum_{i=1}^n \frac{4\sigma_{V_i}}{3f_\pi} \epsilon_{\mu\nu\alpha\beta} \partial^\alpha B^\beta \Big[(3\rho_i^\mu + \omega_i^\mu) C'_q - 2\phi_i^\mu C'_s - \big(\frac{5}{\sqrt{2}} C'_q + C'_s \big) A_i^\eta \phi_i^\mu \Big] \partial^\nu \eta' \,, \\ \mathcal{L}_{V\eta\eta'} &= -\sum_{i=1}^n \frac{4\sigma_{V_i}}{4F_{\phi_i}} \epsilon_{\mu\nu\alpha\beta} \partial^\alpha B^\beta \Big[(3\rho_i^\mu + \omega_i^\mu) \partial^\alpha \rho_i^\beta + \frac{3(F_{\omega_i}H_{\omega_i} - 1 - A_{\phi\omega_i}^{\pi_0})}{2F_{\omega_i}^2} \pi^0 \partial^\mu \omega_i^\nu \partial^\alpha \omega_i^\beta \Big] \,, \\ \mathcal{L}_{VV\eta} &= -\sum_{i=1}^n \frac{4\sigma_{V_i}}{4F_{\phi_i}} \epsilon_{\mu\nu\alpha\beta} \eta \Big[(\partial^\mu \rho_i^\nu \partial^\alpha \rho_i^\beta + \frac{1}{F_{\omega_i}} \partial^\mu \omega_i^\nu \partial^\alpha \omega_i^\beta) \frac{1}{2} C_q - \frac{9A_{\phi\omega_i}^\eta}{F_{\omega_i}^2} \partial^\mu \omega_i^\nu \partial^\alpha \omega_i^\beta - \frac{1}{F_{\phi_i}} \partial^\mu \phi_i^\nu \partial^\alpha \phi_i^\beta \frac{1}{\sqrt{2}} C_s \,, \\ &\quad - \frac{9A_{\phi\omega_i}^\eta}{2F_{\phi_i}^2} \partial^\mu \phi_i^\nu \partial^\alpha \phi_i^\beta + \frac{A_i^\eta}{6F_{\phi_i}} \big(\frac{15}{2} C_q - \frac{3}{\sqrt{2}} C_s \big) \partial^\mu \phi_i^\nu \partial^\alpha \omega_i^\beta \Big] \frac{1}{2} C'_q + \frac{1}{F_{\phi_i}} \partial^\mu \phi_i^\nu \partial^\alpha \phi_i^\beta \frac{1}{\sqrt{2}} C'_s \,, \\ &\quad + \frac{A_i^{\eta'}}{6F_{\phi_i}} \big(\frac{15}{2} C'_q + \frac{3}{\sqrt{2}} C'_s \big) \partial^\mu \phi_i^\nu \partial^\alpha \phi_i^\beta \Big], \end{aligned}$$

H. Czyż

PHOKHARA and EKHARA MC generators, 17

The data

Experiment	nep	χ^2 ,fit 1	$\chi^2, {\rm fit}~2$	Experiment	nep	$\chi^2, {\rm fit}\ 1$	χ^2 ,fit 2
space-like form-factors							
BELLE $(\pi^0)[42]$	15	9.96	6.72	$CLEO98(\eta)$ [44]	19	15.8	15.5
CELLO91(π^{0}) [43]	5	0.34	0.24	$\operatorname{BaBar}(\eta')$ [57]	11	5.4	3.70
CLEO98 (π^0) [44]	15	10.6	6.82	CELLO91(η') [43]	5	0.73	0.56
$BaBar(\eta)$ [57]	11	7.34	7.5	CLEO98 (η') [44]	29	25.1	24.4
CELLO91(η) [43]	4	0.16	0.16	660 (XCA2) - 594 (D.	
e^+e^- cross sections							
$CMD2(\pi^0\gamma) \ [47]$	46	54.1	54.1	$SND(\eta\gamma)$ [45]	78	68.7	59.8
$SND(\pi^0\gamma)$ [46]	62	65.5	54.2	$\operatorname{BaBar}(\eta\gamma,\eta'\gamma)$ [58]	2	0.18	1.57
CMD2 $(\eta\gamma)$ [47]	42	25.4	25.6				

The data

			52 				
3-body decays							
$A2(\pi^0 \to \gamma e^+ e^-) \ [48]$	18	0.32	0.34	A2($\omega \rightarrow \pi^0 e^+ e^-$) [49]	14	2.14	2.12
$A2(\eta \to \gamma e^+ e^-) \ [49]$	34	10.2	11.1	KLOE-2($\phi \to \pi^0 e^+ e^-$) [51]	15	4.33	4.33
A2 $(\eta \to \pi^0 \gamma \gamma)$ [53]	7	26.6	19.5	KLOE-2($\phi \rightarrow \eta e^+ e^-$) [52]	92	95.1	95.1
$\text{BESIII}(\eta' \to \gamma e^+ e^-)[50]$	8	2.39	2.13				
2-body decays		0 0					
$\Gamma(\pi^0 \to \gamma \gamma) \ [54]$	1	0.36	0.1	$\Gamma(ho o \pi^0 \gamma) \ [54]$	1	1.17	0.42
$\Gamma(\eta \to \gamma \gamma) [54]$	1	0.78	2.73	$\Gamma(\omega \to \pi^0 \gamma) \ [54]$	1	4.08	1.56
$\Gamma(\eta' \to \gamma \gamma) \ [54]$	1	1.05	0.44	$\Gamma(\phi \to \pi^0 \gamma) \ [54]$	1	0.08	0.06
$\Gamma(\eta' \to \rho \gamma) \ [54]$	1	3.0	0.77	$\Gamma(\rho \to \eta \gamma) \ [54]$	1	3.32	6.8
$\Gamma(\eta' \to \omega \gamma) \ [54]$	1	0.00	0.54	$\Gamma(\omega \to \eta \gamma) [54]$	1	6.86	3.04
$\Gamma(\rho \to e^+ e^-)$ [54]	1	0.23	0.05	$\Gamma(\phi \to \eta \gamma) \ [54]$	1	1.63	1.17
$\Gamma(\omega \to e^+ e^-) [54]$	1	0.56	0.73	$\Gamma(\phi \to \eta' \gamma) [54]$	1	0.01	0.00
$\Gamma(\phi \to e^+ e^-) \ [54]$	1	0.69	0.46	Dece 10 picto de Acore		ς	
				Total	536	454	415

Number of free parameters 17(22).

Transition form factors

PHOKHARA and EKHARA MC generators,

Cross sections

PHOKHARA and EKHARA MC generators,

3-body decays

PHOKHARA and EKHARA MC generators,

Radiative corrections in $e^+e^-
ightarrow P\gamma$

PHOKHARA and EKHARA MC generators,

 $a_\mu(P)$

Model	$a_{\mu}^{\pi^{0}}$	a^η_μ	$a_{\mu}^{\eta'}$	a^P_μ	
fit 1	58.80 ± 0.27	13.56 ± 0.10	12.97 ± 0.09	85.32 ± 0.30	
fit 2	56.96 ± 0.94	13.35 ± 0.45	12.55 ± 0.48	82.85 ± 1.15	
fit 3	59.07 ± 0.17	13.52 ± 0.09	12.96 ± 0.09	85.55 ± 0.22	
fit 4	57.79 ± 0.90	13.31 ± 0.19	12.31 ± 0.21	83.41 ± 0.94	
[70]	57.4 ± 6.0	13.4 ± 1.6	11.9 ± 1.4	82.7 ± 6.4	
[71]	58 ± 10	13 ± 1	12 ± 1	83 ± 12	
[72]		<u>1</u> 27	-	85 ± 13	
[73]	76.5 ± 6.5	18 ± 1.4	18 ± 1.5	114 ± 10	
[74]	62.7 - 66.8	31 8	-	-	
[10, 75]	72 ± 12	14.5 ± 4.8	12.5 ± 4.2	99 ± 16	
[76]	68.8 ± 1.2	1 20	-	120	
[77]	66.6 ± 2.1	20.4 ± 4.4	17.7 ± 2.3	104.7 ± 5.4	
[78]	65.0 ± 8.3	=	1.	H 0	

H. Czyż

PHOKHARA and EKHARA MC generators,

Radiative corrections in EKHARA

H. Czyz, S. Ivashyn, P. Kisza, in preparation $e^+e^-
ightarrow e^+e^- P(\gamma)$

- \Rightarrow The code is ready
- \Rightarrow Last tests finished few days ago
- \Rightarrow To be done:

⇒ Comparisons with GGRESRC
 V. P. Druzhinin, L. V. Kardapoltsev, V.A. Tayursky,
 Comput.Phys.Commun. 185 (2014) 236-243

EKHARA vs. GGRESRC LO

EKHARA vs. GGRESRC LO

EKHARA vs. GGRESRC LO

PHOKHARA NLO: The team

F. Campanario, G. Rodrigo (Valencia) H.C., J. Gluza, T. Jeliński, Sz. Tracz, D. Zhuridov (Katowice)

Status

⇒ sQED + form factors: pentaboxes ready and fully tested

 \Rightarrow pending: FSR at NLO, LL enough?

PHOKHARA and EKHARA MC generators,

H. Czyż

PHOKHARA and EKHARA MC generators, 30

PENTABOXES for pions - tests

- \Rightarrow two independent codes for the new hard part
- \Rightarrow the virtual corrections implementation:
 - the tensor reduction and the amplitude (trace) in quadrupole precision with scalar integrals in double precision (QCDLOOP)

\Rightarrow Tests performed:

Comparison with LOOPTOOLS full quadrupole precision within Mathematica; accuracy: 10^{-5} Comparison with between the results calculated with trace and helicity methods

\Rightarrow Soft divergencies tests

NLO FSR for pions

Concluding remarks

⇒ Slow progress, but hoping to be of help

 \Rightarrow In about 1 year the accuracy of PHOKHARA should be at 0.1-0.2%

 \Rightarrow The release of new versions in about one month

 \Rightarrow Next in the waiting queue: $e^+e^- \rightarrow e^+e^-\pi\pi$