

Automated higher order corrections with GoSam

Nicolas Greiner

On behalf of the GoSam collaboration

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Very brief introduction to GoSam: Automated one-loop calculations within and beyond the SM

Going beyond one-loop

GoSam = Golem + Samurai

Physik-Institut

General One Loop Evaluator of Matrix elements +

Scattering Amplitudes from Unitarity based Reduction At Integrand level

= Automated generation of virtual amplitude.

GoSam 1.0: arXiv: 1111.2034 [hep-ph] (EPJC 72, 2012)

[Cullen,NG,Heinrich,Luisoni,Mastrolia,Ossola,Reiter,Tramontano]

GoSam 2.0: arXiv: 1404.7096 [hep-ph] (EPJC 74, 2014)

[Cullen,van Deurzen,NG,Heinrich,Luisoni,Mastrolia,Mirabella,Ossola,Peraro,Schlenk,von Soden-Fraunhofen,Tramontano]

- Based on Feynman diagrams
- Generates Fortran95 code
- Can be used for QCD, EW, effective Higgs coupling and BSM
- Interface with existing tools for real radiation and integration (Herwig++, MadGraph, Sherpa, Powheg, Whizard)

http://gosam.hepforge.org

GoSam 2.0 – A Quick Overview

Physik-Institut

GENERATION

- Specify process (process.in): in=g,g out=H,t,t~ order=QCD,2,4 model=smdiag (new models can be imported)
- Many additional options (Parameter settings, Filter)
- 'Draw' Feynman diagrams with Qgraf [Nogueira]
- Apply Feynman rules and optimize expression with FORM [Vermaseren,Kuipers,Ueda,Vollinga]
- Fortran code

GoSam 2.0 – A Quick Overview

Physik-Institut

REDUCTION

> Any one loop amplitude can be written as combination of scalar integrals:

$$= c_{4,0} + c_{3,0} + c_{2,0} - + c_{1,0}$$

- Determine coefficients numerically, using either unitarity based methods Ninja
 [Mastrolia,Mirabella,Peraro], Samurai
 [Mastrolia,Ossola,Reiter,Tramontano] Or modified Passarino-Veltman reduction of Golem95 [Cullen et al.]
- Scalar integral libraries OneLoop [v.Hameren],QCDLoop [Ellis,Zanderighi], Golem95

How to use GoSam

Physik-Institut

Preparation of input card

- /matrix directory contains test program for calculation of single phase space point.
- \$ cd matrix
 \$ make test.exe
 \$./test.exe
 \$./test.exe

 # L0: 0.1013146112820217E-03
 17.31560363490869
 # NLO, single pole: -9.235244935244870
 # NLO, double pole: -6.0000000000000
 # IR, single pole: -9.235244935222976
 # IR, double pole: -6.0000000000001
 # Time/Event [ms]: 201.969

greiner@pcl340b:~/GoSam/gosam-1.0/ttH/matrix>

Implementation of infrared poles allows for checking pole cancellation 'on the fly'. → Can be used to reject points during runtime. (PSP_check)

$$\begin{split} |\mathcal{M}|_{1\text{-loop}}^2 &= 2 \, \Re \left(\mathcal{M}_B^{\dagger} \cdot \mathcal{M}_{Virt} \right) \\ &= \frac{\alpha_{(s)}(\mu)}{2\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \cdot (g_{(s)})^{2b} \cdot \left[c_0 + \frac{c_{-1}}{\epsilon} + \frac{c_{-2}}{\epsilon^2} + \mathcal{O}(\epsilon) \right] \end{split}$$

Interface to Monte Carlo Programs

Physik-Institut

- Interface via Binoth-Les-Houches-Accord (BLHA) (both original and extended BLHA supported)
- Step 1: MC writes an order file

```
CorrectionType QCD
AmplitudeType Loop
2 -2 -> 1 -1
2 -2 -> 2 -2
```

Step 2: OLP writes a **contract file**

CorrectionType QCD AmplitudeType Loop	OK OK
2 -2 -> 1 -1 0	
2 -2 -> 2 -2 1	

Virtual amplitude called from within the MC during runtime (Sherpa,Powheg,Herwig++, aMC@NLO, Whizard)

New models from FeynRules

Physik-Institut

- Per default GoSam contains only different variations of the Standard Model (diagonal CKM, full CKM, effective Higgs theory, complex mass scheme)
- BSM models can be imported from FeynRules [Alloul,Christensen,Duhr,Degrande,Fuks] by exporting Lagrangian as UFO (Universal FeynRules Output) model file [Degrande,Duhr,Fuks,Grellscheid,Mattelaer,Reiter]
- UFO model: Python module that can be directly used by specifying

model = Feynrules, /path/to/ufo/model

Note: UFO models usually do not contain renormalization (unrenormalized amplitude always possible)

NB: Need renormalization constant in DRED (or conversion to DRED)

Simplest example: Dijet production [Dittmaier, Huss, Speckner]

- Computation much more involved due to increased number of diagrams (photon/W/Z)
- Need to sum up all possible contributions at a given order
- Conceptually clear, but subtle difficulties (different types of loop diagrams, subtraction terms proportional to interference term, etc..)
- Fully automated and embedded in BLHA interface Nicolas Greiner

Real-virtual and virtual-virtual

Physik-Institut

Real-virtual:

1-loop contributions to 2-loop calculations:

Equivalent to 'normal' one-loop contribution 🗸

Option 'quadninja' allows for automatic switch to quadruple precision for numerical unstable points (for combination GoSam+Ninja)

Corresponds to loop-induced process 🗸

Includes color- and spin- correlation needed for NLO subtraction terms (needed for QCD only)

Nicolas Greiner

Beyond 1-loop

GoSam XL – Automation of 2loop

Physik-Institut

University of

Zurich^{∪zH}

First successful application to HH production @ NLO QCD

[Borowka,NG,Heinrich,Jones,Kerner,Schlenk,Schubert,Zirke '16]

- 1- and 2-loop diagrams generated with Qgraf
- 2-loop diagrams: Use Form to bring Qgraf output into a form suitable for Reduze [Manteuffel, Studerus]
- > Perform reduction of two-loop integrals as far as possible
- Remaining integrals are evaluated numerically using SecDec [Borowka,Carter,Heinrich,Jahn,Jones,Kerner,Schlenk,Zirke]
- Recently also applied to H+1jet [Jones,Kerner,Luisoni '18]

$$g(p_1,\mu) + g(p_2,\nu) \to h(p_3) + h(p_4)$$

Amplitude can be written as: [Glover, v.d.Bij]

$$\mathcal{M}_{ab} = \delta_{ab} \,\epsilon^{\mu}(p_1, n_1) \epsilon^{\nu}(p_2, n_2) \,\mathcal{M}_{\mu\nu}$$
$$\mathcal{M}^{\mu\nu} = \frac{\alpha_s}{8\pi v^2} \left\{ F_1(\hat{s}, \hat{t}, m_h^2, m_t^2, D) \, T_1^{\mu\nu} + F_2(\hat{s}, \hat{t}, m_h^2, m_t^2, D) \, T_2^{\mu\nu} \right\}$$

Only 2 Lorentz structures:

$$\begin{split} T_1^{\mu\nu} &= g^{\mu\nu} - \frac{p_1^{\nu} p_2^{\mu}}{p_1 \cdot p_2} \\ T_2^{\mu\nu} &= g^{\mu\nu} + \frac{1}{p_T^2 \left(p_1 \cdot p_2 \right)} \left\{ m_h^2 \, p_1^{\nu} \, p_2^{\mu} - 2 \left(p_1 \cdot p_3 \right) p_3^{\nu} \, p_2^{\mu} - 2 \left(p_2 \cdot p_3 \right) p_3^{\mu} \, p_1^{\nu} + 2 \left(p_1 \cdot p_2 \right) p_3^{\nu} \, p_3^{\mu} \right\} \\ p_T^2 &= \left(\hat{u} \, \hat{t} - m_h^4 \right) / \hat{s} \, , \, T_1 \cdot T_2 = D - 4 \, , \, T_1 \cdot T_1 = T_2 \cdot T_2 = D - 2 \end{split}$$

Define projectors: $P_1^{\mu\nu} \mathcal{M}_{\mu\nu} = \frac{\alpha_s}{8\pi v^2} F_1(\hat{s}, \hat{t}, m_h^2, m_t^2, D)$ $P_1^{\mu\nu} = -\frac{1}{4} \frac{D-2}{D-3} T_1^{\mu\nu} - \frac{1}{4} \frac{D-4}{D-3} T_2^{\mu\nu}$ $P_2^{\mu\nu} \mathcal{M}_{\mu\nu} = \frac{\alpha_s}{8\pi v^2} F_2(\hat{s}, \hat{t}, m_h^2, m_t^2, D)$ $P_2^{\mu\nu} = -\frac{1}{4} \frac{D-4}{D-3} T_1^{\mu\nu} + \frac{1}{4} \frac{D-2}{D-3} T_2^{\mu\nu}$

Reduction requires knowledge of integral families

 $\begin{array}{|c|c|c|c|c|c|c|} \hline F_1 & F_2 & F_3 \\ \hline k_1^2 - m_t^2 & k_1^2 - m_t^2 & k_1^2 \\ \hline k_2^2 - m_t^2 & k_2^2 - m_t^2 & (k_1 - k_2)^2 & (k_1 - k_2)^2 & (k_1 - k_2)^2 & (k_1 + p_1)^2 & m_t^2 \\ \hline (k_1 - k_2)^2 & (k_1 + p_1)^2 - m_t^2 & (k_2 + p_1)^2 - m_t^2 & (k_2 + p_1)^2 - m_t^2 \\ \hline (k_1 - p_2)^2 - m_t^2 & (k_2 + p_1)^2 - m_t^2 & (k_2 - p_2)^2 - m_t^2 \\ \hline (k_1 - p_2)^2 - m_t^2 & (k_2 - p_3)^2 - m_t^2 & (k_2 - p_2)^2 - m_t^2 \\ \hline (k_1 - p_2 - p_3)^2 - m_t^2 & (k_2 - p_3)^2 - m_t^2 & (k_2 - p_2)^2 - m_t^2 \\ \hline (k_2 - p_2) - m_t^2 & (k_2 - p_2 - p_3)^2 - m_t^2 & (k_1 + p_1 + p_3)^2 \\ \hline (k_2 - p_2 - p_3)^2 - m_t^2 & (k_2 - p_2 - p_3)^2 - m_t^2 & (k_1 + p_1 - p_2)^2 \\ \hline \hline \hline F_4 & F_5 & \hline & & \\ \hline \hline & & \hline & \hline & & \hline$ F_1 F_2 F_3

Planar diagrams:

Non-planar diagrams were evaluated directly as tensor integrals

Nicolas Greiner

General 2-loop process

Physik-Institut

General problems and difficulties:

- Projectors need to be constructed by hand
- Integral families need to be provided
- Renormalization for 2-loop
- Regularization scheme dependence
- Treatment of γ_5 :

Larin – scheme $J^{5a}_{\mu} = \frac{1}{2}\overline{\psi}(\gamma_{\mu}\gamma_{5} - \gamma_{5}\gamma_{\mu})t^{a}\psi, \quad \gamma_{5} = i\frac{1}{4!}\varepsilon_{\nu_{1}\nu_{2}\nu_{3}\nu_{4}}\gamma_{\nu_{1}}\gamma_{\nu_{2}}\gamma_{\nu_{3}}\gamma_{\nu_{4}}$

- Lorentz structure needs to be known e.g. ZH instead of HH: 115 possible Lorentz structures, only 7 contributing! (transversality, gauge invariance, Bose symmetry) [Kniehl]
 - -> Affects number and size of projectors

GoSam: Automated generation of one-loop amplitudes for SM and BSM

- Standardized interface allows to combine GoSam with any MC that supports the standard (Sherpa, Powheg, Herwig++,MG5_aMC@NLO, Whizard)
- All ingredients for NLO (QCD and EW) can be generated by GoSam
- First proves of concept for 2-loop: HH, H+j, but no conceptual issue with
- > Next steps: Working towards automation

Backup slides

Additional useful features

Physik-Institut

Complex mass scheme: allows gauge invariant inclusion of widths in heavy gauge bosons

 $m_V^2
ightarrow \mu_V^2 = m_V^2 - i m_V \Gamma_v \quad \Rightarrow \quad \cos^2 \theta_w = \mu_W^2 / \mu_Z^2$

Different EW schemes: Minimal set of input parameters, remaining parameters derived

ewchoice	input parameters	derived parameters
1	G_F, m_W, m_Z	e, sw
2	α , m _W , m _Z	e, sw
3	α , sw, m _Z	e, m_W
4	α , sw, G _F	e, m_W
5	$\alpha, \mathrm{G_{F}}, \mathrm{m_{Z}}$	e, m_W, sw
6	e, m_W, m_Z	SW
7	e, sw, m_Z	m_W
8	e, sw, G_F	m_W, m_Z

Rescue system to detect and (possibly) repair numerical instabilities

$$\delta_{pole} = \left| rac{\mathcal{S}_{IR} - \mathcal{S}}{\mathcal{S}_{IR}}
ight| \qquad \delta_{rot} = 2 \left| rac{\mathcal{A}_{rot}^{fin} - \mathcal{A}^{fin}}{\mathcal{A}_{rot}^{fin} + \mathcal{A}^{fin}}
ight|$$

 \rightarrow Estimation of obtained accuracy