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Outline

q Very brief introduction to GoSam:
Automated one-loop calculations within and beyond the SM

q Going beyond one-loop
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GoSam = Golem + Samurai

General One Loop Evaluator of Matrix elements +
Scattering Amplitudes from Unitarity based Reduction At Integrand  level
= Automated generation of virtual amplitude.

GoSam 1.0: arXiv: 1111.2034 [hep-ph] (EPJC 72, 2012)
[Cullen,NG,Heinrich,Luisoni,Mastrolia,Ossola,Reiter,Tramontano]

GoSam 2.0: arXiv: 1404.7096 [hep-ph] (EPJC 74, 2014)
[Cullen,van Deurzen,NG,Heinrich,Luisoni,Mastrolia,Mirabella,Ossola,Peraro,Schlenk,von Soden-
Fraunhofen,Tramontano]

q Based on Feynman diagrams
q Generates Fortran95 code
q Can be used for QCD, EW, effective Higgs coupling and BSM
q Interface with existing tools for real radiation and integration (Herwig++, 

MadGraph, Sherpa, Powheg, Whizard)
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GoSam 2.0 – A Quick Overview 
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[Cullen,vDeurzen,NG,Heinrich,Luisoni,Mastrolia,Mirabella,Ossola, 
Peraro,Reiter,Schlenk,vSoden-Fraunhofen,Tramontano]
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How to use GoSam
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Preparation of input card

$ gosam.py --template process.in

generates template input card
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How to use GoSam
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q /matrix directory contains test program for calculation of single phase space point.

q Implementation of infrared poles allows for checking pole cancellation 'on the fly'.
→ Can be used to reject points during runtime. (PSP_check)

Nicolas Greiner
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Interface to Monte Carlo Programs
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q Interface via Binoth-Les-Houches-Accord (BLHA)
(both original and extended BLHA supported)

q Step 1:  MC writes an order file

q Step 2: OLP writes a contract file

q Virtual amplitude called from within the MC during 
runtime
(Sherpa,Powheg,Herwig++, aMC@NLO, Whizard)
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New models from FeynRules
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q Per default GoSam contains only different variations of the Standard Model
(diagonal CKM, full CKM, effective Higgs theory, complex mass scheme)

q BSM models can be imported from FeynRules [Alloul,Christensen,Duhr,Degrande,Fuks]
by exporting Lagrangian as UFO (Universal FeynRules Output) model file
[Degrande,Duhr,Fuks,Grellscheid,Mattelaer,Reiter]

q UFO model: Python module that can be directly used by specifying

model = Feynrules, /path/to/ufo/model

q Note:  UFO models usually do not contain renormalization (unrenormalized
amplitude always possible)

NB: Need renormalization constant in DRED (or conversion to DRED)
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Electroweak corrections at NLO
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Simplest example: Dijet production [Dittmaier,Huss,Speckner]

Ø Computation much more involved due to increased number of diagrams
(photon/W/Z)

Ø Need to sum up all possible contributions at a given order

Ø Conceptually clear, but subtle difficulties (different types of loop diagrams, subtraction 
terms proportional to interference term, etc..) 

Ø Fully automated and embedded in BLHA interface
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Real-virtual and virtual-virtual
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1-loop contributions to 2-loop calculations:

Real-virtual:

Equivalent to ‘normal’ one-loop contribution ✔
Option ‘quadninja’ allows for automatic switch to quadruple precision for 
numerical unstable points (for combination GoSam+Ninja)

virtual-virtual:

Corresponds to loop-induced process   ✔

Includes color- and spin- correlation needed for NLO subtraction terms
(needed for QCD only)
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Beyond 1-loop



Physik-Institut

GoSam XL – Automation of 2loop
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First successful application to HH production @ NLO QCD 
[Borowka,NG,Heinrich,Jones,Kerner,Schlenk,Schubert,Zirke ‘16]

Ø 1- and 2-loop diagrams generated with Qgraf

Ø 2-loop diagrams: Use Form to bring Qgraf output into a form suitable for 
Reduze [Manteuffel, Studerus]

Ø Perform reduction of two-loop integrals as far as possible

Ø Remaining integrals are evaluated numerically using SecDec
[Borowka,Carter,Heinrich,Jahn,Jones,Kerner,Schlenk,Zirke]

Ø Recently also applied to H+1jet [Jones,Kerner,Luisoni ‘18]
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Example: HH production
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Figure 1: Diagrams contributing to the process gg ! hh at leading order.

2 Details of the calculation

2.1 Amplitude structure

The leading order diagrams contributing to the process gg ! hh are shown in Fig. 1.

As the cross section does not have a tree level contribution, the virtual contribution

at next-to-leading order involves two-loop diagrams, and the NLO real radiation part

involves one-loop diagrams up to pentagons.

The amplitude for the process g(p1, µ) + g(p2, ⌫) ! h(p3) + h(p4) can be decomposed

into form factors as
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where n1, n2 are arbitrary reference momenta for the two gluon polarization vectors

✏µ, ✏⌫ . Colour indices are denoted by a, b and
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The decomposition into tensors carrying the Lorentz structure is not unique. It is
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T = (û t̂ � m4
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Amplitude can be written as:  [Glover, v.d.Bij]

Only 2 Lorentz structures:

Define projectors:
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F1(ŝ, t̂, m
2
h, m

2
t , D) T µ⌫

1 + F2(ŝ, t̂, m
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2.3.1 Calculation of the virtual two-loop amplitude

Amplitude generation

For the virtual two-loop amplitude, we use projectors P µ⌫
j to achieve a separation into

objects carrying the Lorentz structure T µ⌫
i and the form factors F1 and F2,

P µ⌫
1 Mµ⌫ =

↵s

8⇡v2
F1(ŝ, t̂, m

2
h, m

2
t , D) ,

P µ⌫
2 Mµ⌫ =

↵s

8⇡v2
F2(ŝ, t̂, m

2
h, m

2
t , D) .

In D dimensions we can use the tensors T µ⌫
i , defined in Eqs. (2.4), to build the projectors

P µ⌫
1 =

1

4

D � 2

D � 3
T µ⌫

1 � 1

4

D � 4

D � 3
T µ⌫

2 , (2.16)
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T µ⌫

1 +
1

4

D � 2

D � 3
T µ⌫

2 . (2.17)

The virtual amplitude has been generated with an extension of the program GoSam [67,

68], where the diagrams are generated using Qgraf [69] and then further processed

using Form [70, 71]. The two-loop extension of GoSam contains an automated python

interface to Reduze [72], which implies that the user has to provide the integral families

when running GoSam-2loop. The other input files needed by Reduze are generated

automatically by GoSam-2loop, based on the kinematics of the given process. The

reduction of the integrals occurring in the amplitude to master integrals should be

performed separately, where in principle either of the codes Reduze [72], Fire5 [73]

or LiteRed [74] can be used. Examples of two-loop diagrams contributing to Higgs

boson pair production are shown in Fig. 2.

We would like to point out again that the distinction between “triangle diagrams” and

“box diagrams” becomes ambiguous beyond the leading order. At two-loop and beyond

there are diagrams which contain triangle sub-diagrams but which do not contain the

Higgs boson self coupling, see Fig. 2k.

Integral families and reduction

For the reduction of planar diagrams we have defined five integral families. Each family

contains nine propagators which allows irreducible scalar products in the numerator to

be written in terms of inverse propagators prior to reduction. We chose a non-minimal

set of integral families in favour of preserving symmetries as much as possible. We find

that integrals with up to four inverse propagators appear in the amplitude and must

be reduced. The families are listed in Table 1.
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Example: HH production
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Reduction requires knowledge of integral families

Planar diagrams:

Non-planar diagrams were evaluated directly as tensor integrals

F1 F2 F3

k2
1 � m2

t k2
1 � m2

t k2
1

k2
2 � m2

t k2
2 � m2

t (k1 � k2)2 � m2
t

(k1 � k2)2 (k1 � k2)2 (k1 + p1)2

(k1 + p1)2 � m2
t (k1 + p1)2 � m2

t (k2 + p1)2 � m2
t

(k2 + p1)2 � m2
t (k2 + p1)2 � m2

t (k1 � p2)2

(k1 � p2)2 � m2
t (k1 � p3)2 � m2

t (k2 � p2)2 � m2
t

(k2 � p2)2 � m2
t (k2 � p3)2 � m2

t (k2 � p2 � p3)2 � m2
t

(k1 � p2 � p3)2 � m2
t (k1 � p2 � p3)2 � m2

t (k1 + p1 + p3)2

(k2 � p2 � p3)2 � m2
t (k2 � p2 � p3)2 � m2

t (k2 + p1 � p2)2

F4 F5
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1 � m2

t k2
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k2
2 k2

2 � m2
t

(k1 � k2)2 � m2
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(k2 + p1)2 (k2 + p1)2 � m2
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(k1 � p2 � p3)2 � m2
t (k1 � p2 � p3)2

(k2 � p2 � p3)2 (k2 � p2 � p3)2 � m2
t

Table 1: Integral families for the reduction of the planar diagrams. The non-planar

integrals were computed as tensor integrals, see text.

like and two o↵-shell legs occurring in the two-loop calculation of H ! Z� [80, 81].

However, we calculate all integrals numerically using the program SecDec [82–84].

As the integral basis is not unique, we choose to have two set-ups, relying on di↵erent

sets of basis integrals. This serves as a strong check of the calculation of the virtual

amplitude. It has previously been noted that using a finite basis [85] along with sector

decomposition can increase the precision obtained by numerical integration for a given

number of sampling points [86]. We also observed that switching to a finite basis in

some of the planar sectors turned out to be beneficial for the numerical evaluation of

the master integrals.

A complete reduction could not be obtained for the non-planar 4-point integrals. The

inverse propagators appearing in unreduced integrals were rewritten in terms of scalar

products such that the resulting integrals had the lowest possible tensor rank. The

tensor integrals (up to rank 4) were then directly computed with SecDec.
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General problems and difficulties:

• Projectors need to be constructed by hand
• Integral families need to be provided 
• Renormalization for 2-loop
• Regularization scheme dependence
• Treatment of      :

Larin – scheme

• Lorentz structure needs to be known
e.g. ZH instead of HH: 115 possible Lorentz structures,
only 7 contributing! (transversality, gauge invariance, Bose symmetry) 
[Kniehl]

-> Affects number and size of projectors 

Since the invention of dimensional regularization [1] and the minimal sub-
traction (MS) scheme [2] a lot of attention was paid to the problem of the
γ5-matrix within dimensional regularization. The following approaches to this
problem were used in practical calculations: the prescriptions based on the orig-
inal definition by ’t Hooft and Veltman [1] [3] [4], keeping the four-dimensional
anticommutation relation for γ5 in D-dimensions [5] and dimensional reduction
[6]. Discussions of the γ5-prescriptions can be found e.g. in [7] [8].

The effective approach to perform multiloop calculations involving the non-
singlet axial current in dimensional regularization was developed in [9] [10]
where deep inelastic sum rules were calculated up to (and including) the three-
loop level in QCD. The effectiveness of this approach is confirmed by its use in
such an advanced calculation as the calculation of the deep inelastic structure
function F3 at the two-loop QCD level [11].

In the present paper this approach is elaborated for the cases of the pseu-
doscalar current and the singlet axial current. The three-loop anomalous di-
mension of the singlet axial current is calculated by imposing the requirement
that the axial anomaly relation [12] [13] should preserve the one-loop character
[14] in dimensional regularization.

Throughout the paper we use the MS-scheme [2] or its standard modifica-
tion, MS-scheme [15], to perform renormalizations. The dimension of space-
time is defined in the standard way as D = 4−2ϵ. All calculations are performed
within massless perturbative QCD.

1. The non-singlet axial current. Let us first consider the case of the
non-singlet axial current:

J5a
µ (x) = ψ(x)γµγ5t

aψ(x), (1)

where ψ is a quark field and ta is a generator of a flavor group.
In our opinion, the most practical definition of γ5 for multiloop calculations

in dimensional regularization (and the only one known to be self-consistent) is
the original definition due to ’t Hooft and Veltman [1]:

γ5 = i
1

4!
εν1ν2ν3ν4γν1γν2γν3γν4, (2)

here the Levi-Civita ε-tensor is unavoidably a four-dimensional object and
should be taken outside the R-operation where any object can be safely con-
sidered as a four-dimensional one; the indices ν1 . . . ν4 are D-dimensional inside
the R-operation as all other indices within dimensional regularization. But γ5

defined by eq.(2) does not anticommute anymore with the D-dimensional γµ.
That is why in order to define the axial current correctly one should use (see
below comments after eq.(10)) the symmetrical form of the axial current:

J5a
µ =

1

2
ψ(γµγ5 − γ5γµ)taψ, γ5 = i

1

4!
εν1ν2ν3ν4γν1γν2γν3γν4 . (3)

In principle it is possible to perform the calculations using this definition of the
axial current. But one can simplify the definition drastically. Let us commute
γµ in the first term in (3) to the right. The D-dimensional metric tensors gµνi

2
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Summary
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Ø GoSam: Automated generation of one-loop amplitudes for SM and BSM

Ø Standardized interface allows to combine GoSam with any MC that 
supports the standard (Sherpa, Powheg, Herwig++,MG5_aMC@NLO, 
Whizard)

Ø All ingredients for NLO (QCD and EW) can be generated by GoSam

Ø First proves of concept for 2-loop: HH, H+j, but no conceptual issue with 

Ø Next steps: Working towards automation
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Additional useful features

q Complex mass scheme: allows gauge invariant inclusion of widths in heavy 
gauge bosons

q Different EW schemes: Minimal set of input parameters, remaining 
parameters derived

q Rescue system to detect and (possibly) repair numerical instabilities

Estimation of obtained accuracy 
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