Lattice results for $a_{\mu}^{\mu\nu\rho}$

Marina Krstić Marinković

The University of Dublin

MITP 2018: HLO contrib. to the muon g-2

Mainz, 19-23 Feb. 2018

			a_{μ} [10 ⁻¹¹]	Δa_{μ} [10 ⁻¹¹]	$a_{\mu}^{\exp} - a_{\mu}^{\mathrm{SM}} \sim 3\sigma$
	experiment	1168	592 089.	63.	
a_{μ} as	QED $\mathcal{O}(\alpha)$ QED $\mathcal{O}(\alpha^2)$	116	140973.21 413217.63	0.03 0.01	>
$a_{\mu} = 0$	QED $\mathcal{O}(\alpha^3)$		30 141.90	0.00	\mathbf{S}
	QED $\mathcal{O}(\alpha^4)$		381.01	0.02	\leq
	QED $\mathcal{O}(\alpha^5)$		5.09	0.01	
	QED total	116	584718.95	0.04 \	$3\sigma_{\mu}/\mu$
experiment	electroweak, total		153.6	1.0	
	HVP (LO) [Hagiwara et al. 11]		6949.	43.	
$QED\ \mathcal{O}(lpha)$	HVP (NLO) [Hagiwara et al. 11]		-98.	1.	
QED $\mathcal{O}(\alpha^2)$	HLDL [Jegerlehner-Nyffeler 09]		116.	40.	
QED $\mathcal{O}(\alpha^3)$	HVP (INILO) [Kurz, Liu, Marquard, Steinhause HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, S	er 14] Stoffer 14]	12.4 3.	Current	TH estimate affected by
QED $\mathcal{O}(\alpha^5)$ QED $\mathcal{O}(\alpha^5)$	theory	116	591 855.	⇒⁵⁰the	experimental uncertainties:
QED total	110.00 1 10.00	v.v .	1		
electroweak, total	153.6	1.0		(per	turbation theory/models
HVP (LO) [Hagiwara et al. 11]	6 949.	43.			
HVP (NLO) [Hagiwara et al. 11		1.		Lattica	OCD ostimato $>$ for a final cross
HLbL [Jegerlehner-Nyffeler 09]	116.	40.	· ·	Lattice	QCD estimate $->$ 101 a final cross-
HVP (NNLO) [Kurz, Liu, Marquard, Steir	12.4	0.1		check c	of the SM result and to keep up with
HLbL (NLO) [GC, Hoferichter, Nyffeler, Pass	era, Stoffer 14] 3.	2.		the plar	aned experimental improvements
theory	116 591 855.	59.			

$$a_{\mu}^{HVP} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \left\{ \int_{m_{\pi}^2}^{E_{cut}^2} ds \frac{R_{had}^{data}(s)\hat{K}(s)}{s^2} + \int_{E_{cut}^2}^{\infty} ds \frac{R_{had}^{pQCD}(s)\hat{K}(s)}{s^2} \right\}$$

• (HVP leading order: largest uncertainty! (around 50% of total th. error)

• Lattice QCD provides a way to compute this contribution in a model-independent way

Activity on muon g-2 in the lattice community

Non - perturbative computation of a_{μ}

a_{μ}^{\exp} The leading hadronic contribution - HVP

Vacuum polarisation inserted in the photon propagator

$$\hat{\Pi}(Q^2) = \Pi(Q^2) - \Pi(0)$$

separate contribution for: u/d,s,c

$$\Pi_{\mu\nu}(Q) = \underbrace{\sum_{f} Q_{f}^{2}}_{x} \sum_{x} e^{iQx} \langle J_{\mu}^{f}(x) J_{\nu}^{f}(0) \rangle$$

$$\Pi_{\mu\nu}(Q) = (Q_{\mu}Q_{\nu} - g_{\mu\nu}Q^2)\Pi(Q^2)$$

a_{μ}^{exp} The leading hadronic contribution - HVP

Vacuum polarisation inserted in the photon propagator

JHEP 1604 (2016) 063 [T.Blum, P.A.Boyle, L. Del Debbio, R.J. Hudspith, T. Izubuchi, A.Juettner, C.Lehner, R. Lewis, K. Maltman, M.K.M., A. Portelli, M.Spraggs]

strange quark HVP, RBC-UKQCD '16

$a_{\mu}^{\mathrm{exp}} \mathrm{Th}^{a}_{\mathbf{P}} \mathrm{I} \widetilde{\mathrm{eading}}$ hadronic contribution - HVP

Vacuum polarisation inserted in the photon propagator

$$a_{\mu}^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dQ^2 f(Q^2) \times \hat{\Pi}(Q^2)$$

$$f(Q^2) = m_{\mu}^2 Q^2 Z^3(Q^2) \frac{1 - Q^2 Z(Q^2)}{1 + m_{\mu}^2 Q^2 Z^2(Q^2)}$$

$$Z(Q^2) = \frac{\sqrt{Q^4 + 4m_\mu^2 Q^2} - Q^2}{2m_\mu^2 Q^2}$$

Phys. Rev. D85 (2012) [P.A.Boyle, L. Del Debbio, E.Kerrane, J.Zanotti]

Summary: HVP from the lattice/R-ratios

[HPQCD: arXiv:1601.03071, Mainz: arXiv:1705.01775, BMW: arXiv:1711.04980, RBC/UKQCD: arXiv:1801.07224]

Summary by C. Lehner @ KEK g-2 WS 2018

2. Average over a set of configurations:

- Compute correlation function of fields, extract Euclidean matrix elements or amplitude
- Computational cost dominated by quarks: inverses of large, sparse matrix

3 Extrapolate to continuum, infinite volume, physical quark masses (now directly accessible)

Workshop on hadronic vacuum polarization contributions to muon g-2

February 12-14, 2018 KEK, Tsukuba, Japan

Links

Contacts

About

The muon g-2 is arguably one of the most important observables in contemporary particle physics. The long-standing anomaly at the level of more than 3 standard deviations between the experimental value and the Standard Model (SM) prediction of the muon g-2 may indicate the existence of new physics beyond the SM, which has attracted lots of physicists. The level of the significance may become even higher in the near

2nd Workshop of the Muon g-2 Theory Initiative [previous: June 2017 @Fermilab]

Highlights from KEK Feb. 2018: g-2 WS

19

" House

Error budget for a_u^{ud,conn.}

+ Shown for isospin-limit quantity = include QED & isospin-breaking errors only in total LO HVP contribution

	$a^{ud,\mathrm{HVP}}_{\mu}$ (%)		
	HPQCD + RV	Fermilab-HPQCD-MILC	
	1601.03071	Preliminary	
Statistics $+$ 2pt fit	0.4	0.3	
Finite-volume & discretization corrections	0.7	0.2	
$\pi\pi$ states $(t > t^*)$	0.5	0.2	
Continuum $(a \to 0)$ extrapolation	0.2	0.1	
Current renormalization (Z_V)	0.2	0.1	
Chiral (m_l) extrapolation/interpolation	0.4	0.1	
Pion mass $(M_{\pi,5})$ uncertainty	—	0.1	
Sea (m_s) adjustment	0.2	0.1	
Experimental M_{ρ}	- 1.	4% -> 0.52%	
Lattice-spacing (a^{-1}) uncertainty	< 0.05	0.04	
Padé approximants	0.4	0.0	
Fit total	1.16%	0.52%	

R. Van de Water

HVP contribution to muon g-2 with (2+1+1) HISQ quarks

Fermilab/HPQCD/MILC [R.Van de Water@KEK '18]

Pion mass and lattice spacing dependence

RBC-UKQCD [C.Lehner@KEK '18]

Nf=2+1+1 (u/d+s+c) HVP

- Five complete computations of $a_{\mu}^{\rm HVP}$ (u/d+s+c)
 - ➡ ETM '15: [JHEP 1511(2015) 215, arXiv:1505.03283]
 - HPQCD: ~1.8% precision for (u/d+s+c+b) [arXiv:1601.03071]
 - recent Mainz: [arXiv:1705.01775]
 - recent BMW: [arXiv:1711.04980]
 - recent RBC: [arXiv:1801.07224]
- Understanding the systematics is extremely important
- Main issues

deterioration of signal at $Q^2 \rightarrow 0$

- 2. disconnected diagrams
- 3. isospin breaking effects
- 4. scale setting error ... [arXiv:1705.01775]

Q²[GeV²]

Time-Momentum Representation (TMR)

• Subtraction prescription, integral representation [Bernecker & Meyer, Eur Phys J A47 (2011) 148]

$$\Pi(Q^2) - \Pi(0) = \frac{1}{Q^2} \int_0^\infty dt G(t) [Q^2 t^2 - 4\sin^2(\frac{1}{2}Qt)]$$

- Spatially summed vector correlator: $G(t) = -\frac{a^3}{3} \sum_{\vec{x}} \langle J^{em}_{\mu}(\vec{x},t) J^{em}_{\nu}(\vec{0},0) \rangle$
- Understanding the large time behaviour of G(t)0.016 Applied in recent works by Mainz, RBC/UKQCD, ETM, Fermilab/HPQCD/MILC, BMW... 0.01 $G(x_0)\widetilde{K}(x_0)/m_{\mu}$ 0.008 0.016 0.006 $m_{\pi} = 351 \text{ MeV}$ 0.004 0.014 a = 0.087 fm0.002 0.012 0 0.01 G_{data} , cons-loc 0.008 G(t)loc-loc (imp) 0.016 ons-loc (imp) 0.006 Contific, $t_{283 \text{ MeV}}^*$ 0.004 0.014 a = 0.064 fm0.012 0.002 x_0^{cl} 0.01 0 20 0.51 1.52.53 0.008 x_0 [fm] 0.006 Mainz/CLS [A.Gerardin@Lat17] 0.004 0.002 rcut

- Five complete computations of $a_{\mu}^{\rm HVP}$ (u/d+s+c)
 - ➡ ETM '15: [JHEP 1511(2015) 215, arXiv:1505.03283]
 - HPQCD: ~1.8% precision for (u/d+s+c+b) [arXiv:1601.03071]
 - recent Mainz: [arXiv:1705.01775]
 - recent BMW: [arXiv:1711.04980]
 - recent RBC: [arXiv:1801.07224]
- Understanding the systematics is extremely important
- Main issues
 - 1. deterioration of signal at $\mathbf{Q}^2 \rightarrow \mathbf{0}$
 - 2. disconnected diagrams
 - 3 isospin breaking effects
 - 4. scale setting error ... [arXiv:1705.01775]

Summary by L.Lellouch@ KEK g-2 WS 2018

- Five complete computations of a_{μ}^{HVP} (u/d+s+c)
 - ➡ ETM '15: [JHEP 1511(2015) 215, arXiv:1505.03283]
 - HPQCD: ~1.8% precision for (u/d+s+c+b) [arXiv:1601.03071]
 - recent Mainz: [arXiv:1705.01775]
 - recent BMW: [arXiv:1711.04980]
 - recent RBC: [arXiv:1801.07224]
- Understanding the systematics is extremely important

Summary by L.Lellouch@ KEK g-2 WS 2018

1. deterioration of signal at $Q^2 \rightarrow 0$

Main issues

Main issues

1. deterioration of signal at $\mathbf{Q}^2 \rightarrow \mathbf{0}$

- 2. disconnected diagrams
- 3. isospin breaking effects

4 scale setting error ... [arXiv:1705.01775]

Summary by C. Lehner @ KEK g-2 WS 2018

Combining R-ratio data + lattice QCD

Summary by C. Lehner @ KEK g-2 WS 2018

Combining R-ratio data + lattice QCD

Window method with fixed $t_0 = 0.4$ fm

For t = 1 fm approximately 50% of uncertainty comes from lattice and 50% of uncertainty comes from the R-ratio. Is there a small slope? More in a few slides!

C. Lehner @ KEK g-2 WS 2018

a_{μ} from the experiment: FNAL E989

- $a_{\mu}^{exp} = 11659208.0(6.3) \times 10^{-10} (0.54 \text{ppm}) [\text{BNL, 2006-2008}]$
- New experiments (J-PARC, FNAL E989) expected to perform 4× more precise measurement
- Improved precision of the theoretical estimates with dominating uncertainty required

S. Ganguly (@KEK 2018 g-2 WS): first observation of precessing muons (june 2017)! @E989

a_{μ} from the experiment: J-PARC E34

$$\vec{\omega_a} = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \vec{\beta} \times \vec{E} + \frac{\eta_\mu}{2} \left(\beta \times \vec{B} + \frac{E}{c} \right) \right]$$

Ultra slow muon beam: E-term cancels again

T.Yamazaki (@KEK 2018 g-2 WS): muon RF acceleration for the first time 3 weeks ago!

Hybrid method: a_{μ}^{HVP} from experimental + lattice QCD data

Hybrid method: a_{μ}^{HVP} from experimental + lattice QCD data

strategy proposed for the hybrid determination of the total HVP (u+d+s+c+b)

strategy e.g. applied for the strange quark contribution to the HVP [RBC/UKQCD '16] JHEP 1604 (2016) 063 [T.Blum et al.]

of the total HVP (u+d+s+c+b)

strategy proposed for the hybrid determination of the total HVP (u+d+s+c+b)

of the total HVP (u+d+s+c+b)

- Cross-check experimental $\,\Pi(Q^2)\,$ from [0,0.14]GeV² vs. continuum limit from the lattice

- Relevance for lattice QCD determinations of HVP:
 - 1. "hybrid method" [Phys. Rev. D 90, 074508 (2014) Golterman, Maltman, Peris] with experimental+lattice QCD data
 - a) to complete the exp. result
 - b) to cross-check lattice data
 - 2. continuum limit of $\Pi(Q^2)$ at fixed **Q**² (previously extrapolated or measured at $\mathbf{m}_{\pi,phys}$)
 - 3. help in choosing the parametrization for $\Pi(Q^2)$ with less FV/cutoff effects
 - 4. Compare to the slope and curvature for HVP function [see arXiv:1612.02364]

1. The HVP integral on a range
$$[Q^2_{exp,max}, Q^2_{max}]$$
 has continuum&FV limit:

$$a_{\mu}^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int_{Q^2_{exp,max}}^{\infty} dQ^2 \ f(Q^2) \times \tilde{\Pi}(Q^2)$$
• radiative corrections might be relevant (~ 1‰) [c.f. slides by C. Carloni Calame from MUONE Theory kickoff WS Padova '17]
• cutoff effects need to be assessed systematically

Summary & Outlook

- Lattice gives an independent theory prediction of hadronic contributions to a_μ
- Lattice goals: for <u>HVP is <1% (<0.5%?</u>) and goal for HLbL is <10%
- u+d+s+c, isospin breaking corrections
- Impressive progress in the past year(s)
- Full control of the systematics is needed
 - continuum limit, infinite volume limit, isospin breaking corrections are the next challenges

- **Parallel front:** Lattice + experiment
 - R- ratio + lattice
 - e-mu scattering data + lattice
- Eventually as lattice data improves, the windows [0,t*], [Q²_{exp,max},Q²_{high}] can be widened, until we obtain a full lattice result

Thank you!

Phenomenological model of HVP [Golterman, Maltman, Peris '13]

- A method to quantitatively examine the systematics of lattice computations
- Dispersive τ -based I = 1 model: $\hat{\Pi}^{I=1}(Q^2) = Q^2 \int_{4m_{\pi}^2}^{\infty} ds \frac{\rho^{I=1}(s)}{s(s+Q^2)}$
- Fake lattice data for $\Pi(Q^2) \Pi(0)$ & compared with true answer from model

• Outcome:

- Fitting until high Q^2 dangerous, unless higher order Padés used
- Better focus on low- Q^2 region needed

Isospin breaking effects from the Lattice - main issue

 FV effects < — the way the infrared divergence associated with the zero momentum mode of the photon propagator is canceled on the lattice:

- Gauss law does not allow a non-zero charge to exist in a finite periodic box
- Three ways to deal with IR divergence:
 - ➡ Modify gauge filed: removing the global zero-mode/ spatial zero mode per timeslice (QED_{TL} / QED_L) [..., Borsanyi et al., Science 347 (2015), arXiv:1406.4088] [Hayakawa and Uno, Prog. Theor. Phys. 120 (2008) 413]
 - Massive photon [Endres et al., PRL 117 (2016) 7, arXiv:1507.08916]

C* boundary conditions (no zero-mode present) [Lucini et al., JHEP 1602, 076, arXiv:1509.01636]

- Kronfeld and Wiese, Nucl. Phys. B 357 (1991) 521
- Wiese, Nucl. Phys. B 375 (1992) 456
- Polley, Z. Phys. C 59 (1993) 105