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Outline of Talk:

vIntroduction
vg − 2 Status: Theory vs experiment – do we see New Physics?
vHadronic Vacuum Polarization (HVP) – Data & Status
vEvaluation of α(M2

Z)
v∆αhad Adler function controlled: Euclidean split trick
vIssues in standard data based time-like approach
vA problem in DR for HVP and a first direct measurement of Π′γ(s)
vEffective field theory: the Resonance Lagrangian Approach
vHVP from lattice QCD
vAlternative method: measure space-like αQED,eff(t)→ ahad

µ

vConclusion
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1. Introduction

Non-perturbative hadronic effects in electroweak precision observables, main effect via
effective fine-structure “constant” α(E)
(charge screening by vacuum polarization)
Of particular interest:

α(MZ) and aµ ≡ (g − 2)µ/2⇔ α(mµ)
v electroweak effects (leptons etc.) calculable in perturbation theory

v strong interaction effects (hadrons/quarks etc.) perturbation theory fails
=⇒ Dispersion integrals over e+e−–data

encoded in Rγ(s) ≡ σ(e+e−→γ∗→hadrons)
σ(e+e−→γ∗→µ+µ−)

Errors of data =⇒ theoretical uncertainties !!!
The art of getting precise results from non-precision measurements !
The challenge for precision experiments on σ(e+e− → hadrons)
σhadronic via scan or radiative return:
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Muon g − 2 to go

slide from D. Hertzog
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2. Muon g − 2 Status: Theory vs experiment
Given the CODATA/PDG recommended value of α the theory confronts
experiment as follows: see Marc Knecht’s Talk

Standard model theory and experiment comparison
Contribution Value×1010 Error×1010 Reference
QED incl. 4-loops + 5-loops 11 658 471.886 0.003 Aoyama et al 12,Laporta 17
Hadronic LO vacuum polarization 689.46 3.25
Hadronic light–by–light 10.34 2.88
Hadronic HO vacuum polarization -8.70 0.06
Weak to 2-loops 15.36 0.11 Gnendiger et al 13
Theory 11 659 178.3 3.5 –
Experiment 11 659 209.1 6.3 BNL 04
The. - Exp. 4.3 standard deviations -30.6 7.2 –

Standard model theory and experiment comparison [in units 10−10]. What
represents the 4 σ deviation: r new physics? r a statistical fluctuation?
r underestimating uncertainties (experimental, theoretical)?
vdo experiments measure what theoreticians calculate?
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l a “New Physics” interpretation of the persisting 3 to 4 σ requires relatively
strongly coupled states in the range below about 250 GeV.

l Search bounds from LEP, Tevatron and specifically from the LHC already have
ruled out a variety of Beyond the Standard Model (BSM) scenarios, so much hat
standard motivations of SUSY/GUT extensions seem to fall in disgrace.

l There is no doubt that performing doable improvements on both the theory and
the experimental side allows one to substantially sharpen (or diminish) the
apparent gap between theory and experiment.

j Or is it unaccounted for real photon radiation effects?
Do experiments measure what theory calculates?

l At the present/future level of precision aµ depends on all physics incorporated
in the SM: electromagnetic, weak, and strong interaction effects and beyond
that all possible new physics we are hunting for.
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here we are and hope to go:

aµ in units 10−11
10−3 10−1 101 103 105 107 109

J-PARC
FNAL BNL CERN ICERN IICERN III
2019 2004 196119681976

LO

− 4th

QED 6th

− 8th

10th

hadronic VP LO

− NLO

NNLO

hadronic LbL

weak LO

− HO

New Physics ?

SM prediction

???

SM predictions
SM uncertainty
neg. contribution

future ? ∗
∗ δaHVP

µ /2, δaHLbL
µ 2/3

aµ

δHVP

δHLbL

Past and future g − 2 experiments testing various contributions.
New Physics ?

= deviation (aexp
µ − athe

µ )/aexp
µ .

Limiting theory precision: hadronic vacuum polarization (HVP) and hadronic
light-by-light (HLbL)

*** digging deeper and deeper ***
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same status for the electron:

ae in units 10−11
10−3 10−1 101 103 105 107 109

MichiganSeattleHarvard
197019872006

LO

− 4th

QED 6th

− 8th

10th

hadronic VP LO

− NLO

NNLO

hadronic LbL

weak LO

− HO

New Physics ?

SM prediction

???

SM predictions
SM uncertainty

α−1(Rb11) = 137.035999037(91)

neg. contribution

future ? ∗
∗ δα−1(Rb11)/10

ae

δαRb11

Status and sensitivity of the ae experiments testing various contributions.
The error is dominated by the uncertainty of α(Rb11) from atomic interferometry.

No “New Physics” ?
= deviation (aexp

e − athe
e )/aexp

µ . The blue band illustrates the
improvement by the Harvard experiment. Note the very different sensitivities to

non-QED contributions in comparison with aµ.

*** still is and remains a QED test mainly ***
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Experiment now:

aexp
µ = (11 659 209.1 ± 5.4 ± 3.3[6.3]) × 10−10 BNL updated

To come – :
New muon g − 2 experiments at Fermilab and J-PARC: improve error by factor 4

⇒new muon g − 2 experiment: ∆aµ = aexp
µ − athe

µ = 8σ theory as today

Reduction of hadronic VP uncertainty by factor 2, same HLbL⇒ ∆aµ = 12σ

That’s what we hope to achieve!

Key problem: limited accuracy of HVP! How to safely reduce and crosscheck?

r New lattice QCD now starts to have impact

r Ongoing improvement on R measurements

r New alternative methods : the workshops main theme here
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r R-data Evaluation of ahad
µ

Leading non-perturbative hadronic contributions ahad
µ can be obtained in terms of

Rγ(s) ≡ σ(0)(e+e− → γ∗ → hadrons)/4πα2

3s data via Dispersion Relation (DR):

ahad
µ =

(αmµ

3π

)2 ( E2
cut∫

4m2
π

ds
Rdata
γ (s) K̂(s)

s2 +

∞∫
E2

cut

ds
RpQCD
γ (s) K̂(s)

s2

) � �� �
 




Data: NSK, KLOE, BaBar, BES3, CLEOc

0.0 GeV, ∞

ρ, ω

1.0 GeV

φ, . . . 2.0 GeV
3.1 GeV

ψ 9.5 GeVΥ
0.0 GeV, ∞

ρ, ω

1.0 GeV

φ, . . .
2.0 GeV

3.1 GeV

∆aµ (δ∆aµ)
2

contribution error2

l Experimental error implies theoretical uncertainty!
l Low energy contributions enhanced: ∼ 75% come from region 4m2

π < m2
ππ < M2

Φ

ahad(1)
µ = (686.99 ± 4.21)[687.19 ± 3.48] 10−10

e+e−–data based [incl. τ]
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Issues in standard data based time-like approach

Ê How to combine a pretty large number of data-sets to a truly reliable
R-function: true uncertainty? How much just taken from pQCD?
Choosing/selecting data-sets? Bare vs physical cross sections, how reliable is VP
subtraction?

Ë Radiative corrections specifically for ISR method, sQED issues etc. The ISR
method requires one order in α more precise RC calculation relative to SCAN
method, at least full 2–loop Bhabha and/or e+e− → µ+µ− as well as ISR–FSR
interference in π+π− channel. What about RC to other more complicated channels
(see e.g. F.J.&Karol Kołodziej 2017)? see Hernryk Czyż’s Talk
What about disentangling 30 channels and recombining them in the 1 to 2 GeV
region (quantum interference, missing parts, double counting issues)?

Ì What precisely do we need in the DR? The 1PI “blob”, which is not a
measurable quantity. Need undressing from QED effects, photon VP subtraction,
FSR modeling, ρ0 − γ mixing? Do we do this at sufficient precision?
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Í Non-convergence of Dyson series for OZI suppressed narrow resonances

In addition:

r Data compatibility

Recent BES-III vs BaBar and KLOE: dominant ππ channel still could be better
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Recent results:

l π+π− from BES-III, CMD-3 and CLEOc
l π+π−π0 from Belle
l K+K− from CMD-3 and SND
l ωπ0 → π0π0γ from SND
l KS K±π0π∓, KS K±π∓η, π+π−π0π0, KS KLπ

0,
KS KLη,KS KLπ

0π0 from BaBar

see Simon Eidelman’s Talk
Energy range ahad

µ [%](error) × 1010 rel. err. abs. err.
ρ, ω (E < 1 GeV) 540.98 [78.6](2.80) 0.5 % 50.7 %

1 GeV < E < 2 GeV 96.49 [14.0](2.54) 2.6 % 41.5 %
2 GeV < E < ∞ incl pQCD 51.09 [ 7.4](1.10) 2.2 % 7.8 %

total 688.65 [100.0](3.94) 0.6 % 100.0 %
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r Still an issue in HVP

r region 1.2 to 2 GeV data; test-ground exclusive vs inclusive R
measurements (more than 30 channels!) VEPP-2000 CMD-3, SND (NSK)
scan, BaBar, BES III radiative return! still contributes 50% of uncertainty

2012 2017

l illustrating progress by BaBar and NSK exclusive channel data
vs new inclusive data by KEDR. Why point at 1.84 GeV so high?

excl. vs incl. clash
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r A problem in DR for HVP?

Full photon propagator Dyson resummation of 1PI part (blue blob)

γ γ
= + +

γ
+···

i D′
γ(q

2) ≡ −i

q2
+

−i

q2
(−iΠγ)

−i

q2
+

−i

q2
(−iΠγ)

−i

q2
(−iΠγ)

−i

q2
+ · · ·

=
−i

q2

{
1 +

(−Πγ

q2

)
+

(−Πγ

q2

)2

+ · · ·
}

=
−i

q2

{
1

1 +
Πγ

q2

}
=

−i

q2 +Πγ(q2)
=

−i

q2
1

1 +Π ′
γ(q

2)
.

Including external e.m. coupling
i e2 D′γ(q

2) = −i
q2

e2

1+Π′γ(q2)
Effective charge
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e2

1+Π′γ(s) = e2

1−∆α(s) = e2(s)
Usually, ∆α(s) is a correction i.e ∆α(s) � 1 and the Dyson series converges well.

Exceptions: narrow OZI suppressed resonances (below qq̄-thresholds)

q

q̄ ψ

eQq

γ
e+

e−
q

q̄ ψ

gTi

g

g

g
u, d, s

Γee not much smaller than ΓQCD (i.e strong decays): J/ψ, ψ2,Υ1,Υ2,Υ3

Note: imaginary parts from narrow resonances, Im Π′(s)) = α
3 R(s) = 3

α
Γee
Γ

at peak,
are sharp spikes and are obtained correctly only by appropriately high resolution
scans. For example,

|1 − Π′(s)|2 − (α/α(s))2 = (Im Π′(s))2
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at
√

s = MR is given by

ρ 1.23 ×10−3

ω 2.76 ×10−3

φ 1.56 ×10−2

J/ψ 594.81
ψ2 9.58
ψ3 2.66 ×10−4

Υ1 104.26
Υ2 30.51
Υ3 55.58

l What is measured in an experiment is the full propagator, corresponding to
1

1−x ; x irreducible part
Object required in the DR:
Rγ(s) ≡ σ(0)(e+e− → γ∗ → hadrons)/4πα2

3s Rundressed = Robserved ∗ |(1 − x)|2

VP subtraction is iterative procedure: does not converge!
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The time-like vs space-like effective charge

Note that the smooth space-like effective charge agrees rather well with the
non-resonant “background” above the Φ (kind of duality)

No proof that this cannot produce non-negligible shifts!

Time-like VP-subtraction cannot be implemented locally near OZI suppressed
resonances: J/ψ, ψ′ and Υ1,Υ2,Υ3
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Present leading uncertainty: hard to improve by direct R(s) measurements

150 200 250

incl. ISR
DHMZ10 (e+e−)
180.2± 4.9

[3.6 σ]

DHMZ10 (e+e−+τ)
189.4± 5.4

[2.4 σ]

JS11 (e+e−+τ)
179.7± 6.0

[3.4 σ]

HLMNT11 (e+e−)
182.8± 4.9

[3.3 σ]

DHMZ10/JS11 (e+e−+τ)
181.1± 4.6

[3.6 σ]

BDDJ15# (e+e−+τ)
170.4± 5.1

[4.8 σ]

BDDJ15∗ (e+e−+τ)
175.0± 5.0

[4.2 σ]

DHMZ16 (e+e−)
181.7± 4.2

[3.6 σ]

FJ17 (e+e−+τ+ππ phases)
178.3± 3.5

[4.3 σ]

excl. ISR
DHea09 (e+e−)
178.8± 5.8

[3.5 σ]

BDDJ12∗ (e+e−+τ)
175.4± 5.3

[4.1 σ]

experiment
BNL-E821 (world average)
209.1± 6.3

aµ×1010-11659000

∗ HLS global fit

# HLS best fit

Comparison with other Results. Note: results depend on which value is
taken for HLbL. JS11 and BDDJ13 includes 116(39) × 10−11 [JN], DHea09,

DHMZ10, HLMNT11 and BDDJ12 use 105(26) × 10−11 [PdRV].
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HVP from lattice QCD

The need for ab initio calculation of ahad
µ is well motivated:

– the problems to determine non-perturbative contributions to the muon g − 2 from
experimental data at sufficient precision persists and is not easy to improve,

– a model–independent extension of CHPT to the relevant energies ranges up to
2 GeV is missing while the new experiments E989 FNAL and E34 J-PARC

require an improvement of the hadronic uncertainties by a factor of four.

The hope is that LQCD can deliver estimates of accuracy

δaHVP
µ /aHVP

µ < 0.5% , δaHLbL
µ /aHLbL

µ > 10%

in the coming years. see Marina Marinkovic’s Talk
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Primary object for HVP in LQCD: e.m. current correlator in configuration space

〈Jµ(~x, t) Jν(~0, 0)〉 , Jµ = 2
3ūγµu − 1

3d̄γµd − 1
3 s̄γµs + · · ·

In principle, a Fourier transform

Πµν(Q) =
∫

d4xei Qx 〈Jµ(x) Jν(0)〉 =
(
QµQν − δµν Q2

)
Π(Q2)

yields the vacuum polarization function Π(Q2) needed to calculate

aHVP
µ = 4α2

∫ ∞
0 dQ2 f (Q2)

{
Π(Q2) − Π(0)

}
The integration kernel in this representation is

f (Q2) = w(Q2/m2
µ)/Q

2 ; w(r) = 16
r2(1+

√
1+4/r)4 √1+4/r

.
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The integrand Q2. Ranges between Qi = 0.00, 0.15, 0.30, 0.45 and 1.0 GeV and
their percent contribution to ahad

µ and the “LQCD sample”
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r LQCD lattice in finite box: momenta are quantized Qmin = 2π/L
where L is the lattice box length. Qmin → 0⇔ L→ ∞ infinite volume limit

r Qmin = 2π/L with mπaL ? 4 for mπ ∼ 200 MeV, such that Qmin ∼ 314 MeV

r about 44% of the low x contribution to ahad
µ is not covered by data yet

−Π(Q2)
Padé

approx. numerical
interpolation
of lattice data

pQCD

≈ 0.1 GeV2 ≈ 4 GeV2

Q2
rs

rs
rs

rs
rs

rs
rs

rs
rs

rs
rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rs
rs
rsrs

××××
×

×
×

×
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×
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×
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×
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×
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×
×

××
×

××
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

×
×

××
×

v lattice data: Q2 > (2π/L)2

v extrapolate to Q2 = 0 via Padé’s
v Note need Π(0) !
v required accuracy: needed LQCD

data down to Q2
min ≈ 0.1 GeV2

New: RBC/UKQCD 18 use lattice between 0.1 and 4 GeV2 and R–data for IR and
UV tails⇒most precise evaluation so far: aHVP−LO

µ = (692.5 ± 2.7) × 10−10

[alat
µ = (232.1 ± 1.5) × 10−10 =̂ 33.5% ; adat

µ = (460.4 ± 2.2) × 10−10 ]
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600 650 700 750 800

N f = 2 + 1 + 1

■ RBC/UKQCD 18
692.5 ± 2.67

■ RBC/UKQCD 18
715.4 ± 18.72

■ BMW 17
711 ± 19

■ HPQCD 16
667 ± 13

■ ETM 15
678 ± 29

N f = 2 + 1

▲ RBC/UKQCD 11
641 ± 46

▲ Aubin+Blum 07
748 ± 21

▲ Aubin+Blum 07
713 ± 15

N f = 2

■ Mainz/CLS 17
654 ± 38

▲ Mainz/CLS 11
618 ± 64

❙ ETM 11
572 ± 16

FJ17 e+e−&τ 688.8 ± 3.4
HLMNT11 e+e− 694.4 ± 3.7
BDDJ15 HLS fit 681.9 ± 3.2
DHMZ16 e+e− 692.3 ± 4.2
DHMZ16 e+e−&τ 701.5 ± 4.6

■ HPV adjusted ∆aNP
µ = 0

720.26 ± 7.01

aHVP
µ · 1010

Summary of recent LQCD results for
the leading order aHVP

µ , in units 10−10.
Labels: n marks u, d, s, c, s u, d, s
and y u, d contributions. Individual
flavor contributions from light (u, d)
amount to about 90%, strange about
8% and charm about 2%.
Budapest, Marseille, Wuppertal,
Brookhaven, Zeuthen, Mainz, Ed-
inburgh, ... The gray vertical band
represents my evaluation. The
wheat band represents the HVP
required such that theory matches
the experimental BNL result. The
very precise RBC/UKQCD point is
obtained by supplementing lattice
results by R–data.
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3. α(M2
Z) in precision physics (precision physics limitations)

Uncertainties of hadronic contributions to effective α are a problem for electroweak
precision physics:

α , Gµ,MZ most precise input parameters ⇒ precision predictions
sin2 Θ f , v f , a f ,MW ,ΓZ,ΓW , · · ·

α(MZ),Gµ,MZ best effective input parameters for VB physics (Z,W) etc.

δα
α

∼ 3.6 × 10−9

δGµ
Gµ

∼ 8.6 × 10−6

δMZ
MZ

∼ 2.4 × 10−5

δα(MZ)
α(MZ) ∼ 0.9 ÷ 1.6 × 10−4 (present : lost 105 in precision!)
δα(MZ)
α(MZ) ∼ 5.3 × 10−5 (ILC requirement)

LEP/SLD: sin2 Θeff = (1 − gVl/gAl)/4 = 0.23148± 0.00017

δ∆α(MZ) = 0.00020 ⇒ δ sin2 Θeff = 0.00007

affects Higgs mass bounds, precision tests and new physics searches!!!

For pQCD contributions very crucial: precise QCD parameters αs, mc, mb, mt⇒ Lattice-QCD

ä

50% non-perturbativeä
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r Relevance of α(M2
Z)

The Parameters of the Standard Model

− in four fermion and vector boson processes −
in addition QCD coupling αs, yt vs. Mt, λH vs. MH etc.

SU(2)L ⊗U(1)Y
Higgs mechanism

g2,g1,v

Thomson
scattering

pp̄, e+e−

pp̄, e+e−

e+e− → f f̄
e+e− → e+e−

νe, νN

µ-decay
α

MWGµ

MZsin2 ΘW

vf , af

unlike in QED and QCD in SM (SBGT)
parameter interdependence

à

only 3 independent quantities
(besides fermion masses and mixing parameters)
α , Gµ, MZ ⇒αeff(M2

Z) ⇒large hadronic correction
⇓

sin2 Θi cos2 Θi =
πα√

2 Gµ M2
Z

1
1−∆ri

; ∆ri = ∆ri(α , Gµ, MZ, mH, m f,t, mt)

parameter relationships between very precisely measurable quantities
precision tests, possible sign of new physics

non-perturbative ∆α(5)
had(M2

Z) is limiting precision predictions

Note: 30 SD disagreement between SM prediction and experiment when subleading corrections are dropped!
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SM extrapolation up to Planck scale?

After Higgs discovery: Higgs vacuum stability issue!
⇒Need very precise SM parameters: g′, g, gs, yt, λ

LHC

The SM dimensionless couplings in the MS scheme as a function of the
renormalization scale for MH = 124 − 127 GeV.

Riesselmann, Hambye 1996
first 2-loop analysis

knowing Mt
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l perturbation expansion works up to the Planck scale!
no Landau pole or other singularities, Higgs potential likely remains stable!

r U(1)Y screening (IR free), S U(2)L , S U(3)c antiscreening (UV free): g1, g2, g3�
�

�

as expected (standard wisdom)

r Top Yukawa yt and Higgs λ : screening if standalone (IR free, like QED)�
�

�

as part of SM, transmutation from IR free to UV free

As SM couplings are as they are: QCD dominance in top Yukawa RG requires
g3 >

3
4 yt, top Yukawa dominance in Higgs RG requires λ < 3 (

√
5−1)
2 y2

t in the
gaugeless (g1, g2 = 0) limit.
In the focus:
r does Higgs self-coupling stay positive λ > 0 up to ΛPl ?
r the key question/problem concerns the size of the top Yukawa coupling yt

decides about stability of our world! — [λ = 0 would be essential singularity!]

Will be decided by: l more precise input parameters
l better established EW matching conditions
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r R-data Evaluation of α(M2
Z)

Non-perturbative hadronic contributions ∆α(5)
had(s) = −

(
Π′γ(s) − Π′γ(0)

)
can be evaluated in

terms of σ(e+e− → hadrons) data via dispersion integral:

∆α(5)
had(s) = −α s

3π

(
P
E2

cut∫
4m2

π

ds′
Rdata
γ (s′)

s′(s′−s)

+ P
∞∫

E2
cut

ds′
RpQCD
γ (s′)
s′(s′−s)

)
where Rγ(s) ≡ σ(0)(e+e−→γ∗→hadrons)

4πα2
3s

γ γ
had ⇔

Π
′ had
γ (q2)

γ

had

2

∼ σhad
tot (q

2)

hadronic vacuum polarization

Compilation: FJ 15
Theory = pQCD: Gorishny et al. 91,

Chetyrkin et al. 97...09

α(s) = α
1−∆α(s) ; ∆α(s) = ∆αlep(s) + ∆α(5)

had(s) + ∆αtop(s)

0.0 GeV, ∞
ρ, ω

1.0 GeV

φ

2.0 GeV

5.2 GeV

3.1 GeV

ψ

9.5 GeV
Υ

13.GeV p-QCD
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Present situation: (after KLOE, BaBar and first BESIII results)

∆α(5)
hadrons(M2

Z) = 0.027738 ± 0.000158
0.027523 ± 0.000119 Adler

α−1(M2
Z) = 128.919 ± 0.022

128.958 ± 0.016 Adler
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∆αhad(M2
Z) results from ranges:

for MZ = 91.1876 GeV in units 10−4. 2017 update in terms of e+e−-data and pQCD. 43% data, 57%
perturbative QCD. pQCD is used between 5.2 GeV and 9.5 GeV and above 11.5 GeV.

final state range (GeV) ∆α(5)
had × 104 (stat) (syst) [tot] rel abs

ρ ( 0.28, 1.05) 33.91 ( 0.05) ( 0.18)[ 0.19] 0.6% 1.4%
ω ( 0.42, 0.81) 3.10 ( 0.04) ( 0.08)[ 0.09] 3.0% 0.3%
φ ( 1.00, 1.04) 4.76 ( 0.07) ( 0.11)[ 0.13] 2.7% 0.7%

J/ψ 12.38 ( 0.60) ( 0.67)[ 0.90] 7.2% 32.1%
Υ 1.30 ( 0.05) ( 0.07)[ 0.09] 6.9% 0.3%

had ( 1.05, 2.00) 16.53 ( 0.06) ( 0.83)[ 0.83] 5.0% 27.4%
had ( 2.00, 3.20) 15.34 ( 0.08) ( 0.61)[ 0.62] 4.0% 15.2%
had ( 3.10, 3.60) 4.98 ( 0.03) ( 0.09)[ 0.10] 1.9% 0.4%
had ( 5.20, 5.20) 16.84 ( 0.12) ( 0.21)[ 0.25] 0.0% 2.4%

pQCD ( 5.20, 9.46) 33.84 ( 0.12) ( 0.25)[ 0.03] 0.1% 0.0%
had ( 9.46,11.50) 11.12 ( 0.07) ( 0.69)[ 0.69] 6.2% 19.2%

pQCD (11.50,∞) 123.29 ( 0.00) ( 0.05)[ 0.05] 0.0% 0.1%
data ( 0.28,11.50) 120.25 ( 0.63) ( 1.45)[ 1.58] 1.0% 0.0%
total 277.38 ( 0.63) ( 1.45)[ 1.58] 0.6% 100.0%

F. Jegerlehner muonLOHCws@MITP, JGU Mainz, February 19-23, 2018 31



Correlation between different contributions to ahad
µ and ∆αhad (5)

0.0 GeV, ∞

ρ, ω

1.0 GeV

φ, . . . 2.0 GeV
3.1 GeV

ψ 9.5 GeVΥ
0.0 GeV, ∞

ρ, ω

1.0 GeV

φ, . . .
2.0 GeV

3.1 GeV

∆aµ (δ∆aµ)
2

contribution error2

0.0 GeV, ∞
ρ, ω

1.0 GeV

φ

2.0 GeV

5.2 GeV

3.1 GeV

ψ

9.5 GeV
Υ

13.GeV p-QCD

0.0 GeV, ∞ρ, ω
1.0 GeV

φ

2.0 GeV

3.1 GeV

ψ

5.2/9.5 GeV

Υ

13. GeV

∆αhad(MZ)
(
δ∆αhad(MZ)

)2

contribution error2

Contributions from e+e− data ranges and form pQCD to ahad
µ and ∆αhad (5).
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4. Reducing uncertainties via the Euclidean split trick:
Adler function controlled pQCD

r experiment side: new more precise measurements of R(s)
r future direct measurements Patrick Janot, Luca Trentadue et al
r theory side: αem(M2

Z) by the “Adler function controlled” approach

α(M2
Z) = αdata(−s0) +

[
α(−M2

Z) − α(−s0)
]pQCD

+
[
α(M2

Z) − α(−M2
Z)

]pQCD

where the space-like −s0 is chosen such that pQCD is well under control for
−s < −s0. The monitor to control the applicability of pQCD is the Adler function

D(Q2 = −s) =
3π
α

s
d
ds

∆αhad(s) = −(12π2) s
dΠ′γ(s)

ds
= Q2

∫ ∞

4m2
π

R(s)
(s + Q2)2

which also is determined by R(s) and can be evaluated in terms of experimental
e+e−–data. Perturbative QCD tail: D(Q2)→ Nc

∑
f Q2

f (1 + O(αs)) as Q2 → ∞.

S. Eidelman, F. J., A. Kataev, O. Veretin, Phys. Lett. B 454 (1999) 369
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∆αhad Adler function controlled
3 use old idea: Adler function: Monitor for comparing theory and data

D(−s) �
3π
α

s
d
ds

∆αhad(s) = −
(
12π2

)
s

dΠ′γ(s)

ds

⇒ D(Q2) = Q2
( E2

cut∫
4m2
π

ds
R(s)data(
s + Q2)2 +

∫ ∞

E2
cut

RpQCD(s)
(s + Q2)2 ds

)
.

pQCD↔ R(s) pQCD↔ D(Q2)
very difficult to obtain smooth simple function

in theory in Euclidean region

Conclusion:
vtime-like approach: pQCD works well in “perturbative windows”

3.00 - 3.73 GeV, 5.00 - 10.52 GeV and 11.50 - ∞ Kühn,Steinhauser
vspace-like approach: pQCD works well for

√
Q2 = −q2 > 2.0 GeV (see plot)
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“Experimental” Adler–function versus theory (pQCD + NP)

Error includes statistical + systematic here (in contrast to most R-plots showing statistical
errors only)! Update spring 2017

(Eidelman, F. J., Kataev, Veretin 98, FJ 08/17 updates)
theory based on results by Chetyrkin, Kühn et al.
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⇒ pQCD works well controlled to predict D(Q2) down to s0 = (2.0 GeV)2; use this to calculate

∆αhad(−Q2) ∼ α

3π

∫
dQ
′2 D(Q

′2)
Q′2

∆α(5)
had(−M2

Z) =
[
∆α(5)

had(−M2
Z) − ∆α(5)

had(−s0)
]pQCD

+ ∆α(5)
had(−s0)data

and obtain, for s0 = (2.0 GeV)2: (FJ 98/17)

∆α(5)
had(−s0)data = 0.006409 ± 0.000063

∆α(5)
had(−M2

Z) = 0.027483 ± 0.000118

∆α(5)
had(M2

Z) = 0.027523 ± 0.000119

vshift +0.000008 from the 5-loop contribution
verror ±0.000100 added in quadrature form perturbative part
QCD parameters: l αs(MZ) = 0.1189(20),

l mc(mc) = 1.286(13) [Mc = 1.666(17)] GeV , l mb(mc) = 4.164(25) [Mb = 4.800(29)] GeV

based on a complete 3–loop massive QCD analysis Kühn et al 2007
F. J., Nucl. Phys. Proc. Suppl. 181-182 (2008) 135
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∆αhad(−M2
0) results from ranges:

for M0 = 2 GeV in units 10−4. 2015 update in terms of e+e−-data and pQCD. 94% data, 6%
perturbative QCD. pQCD is used between 5.2 GeV and 9.5 GeV and above 11.5 GeV.

final state range (GeV) ∆α(5)
had(−M2

0) × 104 (stat) (syst) [tot] rel abs
ρ ( 0.28, 1.05) 29.78 ( 0.04) ( 0.16)[ 0.16] 0.5% 6.6%
ω ( 0.42, 0.81) 2.69 ( 0.03) ( 0.07)[ 0.08] 3.0% 1.6%
φ ( 1.00, 1.04) 3.78 ( 0.05) ( 0.09)[ 0.10] 2.7% 2.6%

J/ψ 3.21 ( 0.15) ( 0.15)[ 0.21] 6.7% 11.4%
Υ 0.05 ( 0.00) ( 0.00)[ 0.00] 6.8% 0.0%

had ( 1.05, 2.00) 10.36 ( 0.04) ( 0.49)[ 0.49] 4.8% 61.2%
had ( 2.00, 3.20) 6.06 ( 0.03) ( 0.25)[ 0.25] 4.2% 16.1%
had ( 3.10, 3.60) 1.31 ( 0.01) ( 0.02)[ 0.03] 1.9% 0.2%
had ( 5.20, 5.20) 2.90 ( 0.02) ( 0.02)[ 0.03] 0.0% 0.2%

pQCD ( 5.20, 9.46) 2.66 ( 0.02) ( 0.02)[ 0.00] 0.1% 0.0%
had ( 9.46,11.50) 0.39 ( 0.00) ( 0.02)[ 0.02] 5.7% 0.1%

pQCD (11.50,∞) 0.90 ( 0.00) ( 0.00)[ 0.00] 0.0% 0.0%
data ( 0.28,11.50) 60.53 ( 0.18) ( 0.61)[ 0.63] 1.0% 0.0%
total 64.09 ( 0.18) ( 0.61)[ 0.63] 1.0% 100.0%
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Of ∆α(5)
had(M2

Z) 22% data, 78% pQCD!
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1.0 GeV

φ

2.0 GeV 3.1 GeV

ψ 5.2 GeV

9.5 GeV
Υ 13.GeV
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ψ
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∆αhad(−2 GeV)
(
δ∆αhad(−2 GeV)

)2

contribution error2
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Υ
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)2

contribution error2

Contributions from e+e− data ranges and form pQCD to ∆α(5)
had(−M2

0) vs. ∆α(5)
had(M2

Z).
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0 20 40 60 80 100
%

[∆αdata
had /∆αtot

had,∆αpQCD
had /∆αtot

had] in %

❏ data-driven
❏ theory-driven
❏ fifty-fifty
❏ low energy weighted data

[86%,13%]
Jegerlehner 1985

[52%,47%]
Lynn et al. 1985

[57%,42%]
Burkhardt et al. 1989

[18%,81%]
Martin, Zeppenfeld 1994

[84%,15%]
Swartz 1995

[84%,15%]
Eidelman, Jegerlehner 1995

[56%,43%]
Burkhardt, Pietrzyk 1995

[16%,83%]
Adel, Yndurain 1995

[84%,15%]
Alemany, Davier, Höcker 1997

[29%,70%]
Kühn, Steinhauser 1998

[20%,79%]
Davier, Höcker 1998

[20%,79%]
Erler 1998

[56%,43%]
Burkhardt, Pietrzyk 2001

[54%,45%]
Hagiwara et al 2004

[38%,41%]
Jegerlehner 2006 direct

[26%,73%]
Jegerlehner 2006 Adler

[50%,49%]
Hagiwara et al. 2011

[29%,70%]
Davier et al. 2011

[45%,54%]
Jegerlehner 2016 direct

[21%,77%]
Jegerlehner 2016 Adler

How much pQCD?
Note: the Adler function monitored Euclidean data vs pQCD split approach

is only moderately more pQCD-driven,
than the time-like approach adopted by Davier et al. and others.
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Alternative method: measure space-like αQED,eff(t)

Newly proposed recently: [arXiv:1504.02228,1609.08987]
“A new approach to evaluate the leading hadronic corrections to the muon g-2”
Carloni Calame, Passera, Trentadue, Venanzoni 2015; Abbiendi et al. 2016

r space-like ∆αhad(−Q2) = 1 − α

α(−Q2)
− ∆αlep(−Q2) determines ahad

µ via

ahad
µ = α

π

1∫
0

dx (1 − x) ∆αhad

(
−Q2(x)

)

where Q2(x) ≡ x2

1−xm2
µ is the space–like square momentum–transfer. Also in the

Euclidean region the integrand is highly peaked, now around half of the ρ meson
mass scale.
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The integrand of ahad
µ integral as functions of x and Q. Strongly peaked at about

330 MeV. Ranges between Qi = 0.00, 0.15, 0.30, 0.45 and 1.0 GeV and their
percent contribution to ahad

µ .

r measuring directly low energy running αQED(s) in space-like region via

l very different paradigm: no VP subtraction issue!

l no exclusive channel collection

l even 1% level measurement can provide important independent information
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Bhabha scattering e+(p+) e−(p−)→ e+(p′+) e−(p′−)

γ ↑ t

e−

e+

e−

e+

γ

→
se− e−

e+ e+

+

VP dressed tree level Bhabha scattering in QED

has two tree level diagrams the t– and the s–channel. With the positive c.m.
energy square s = (p+ + p−)2 and the negative momentum transfer square

t = (p− − p′−)
2 = −1

2
(s − 4m2

e) (1 − cos θ) ,

θ the e− scattering angle, there are two very different scales involved
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The VP dressed lowest order cross–section is

dσ
d cos Θ

=
s

48π

∑
ik
|Aik|2

where Aik tree level helicity amplitudes,i, k =L,R left– and right–handed electrons.

Dressed transition amplitudes: (me ≈ 0)

|ALL,RR|2 =
3
8

(1 + cos θ)2

∣∣∣∣∣∣e2(s)
s

+
e2(t)

t

∣∣∣∣∣∣2
|ALR,RL|2 =

3
8

(1 − cos θ)2

∣∣∣∣∣∣e2(s)
s

+
e2(t)

t

∣∣∣∣∣∣2 .

Preferably one uses small angle Bhabha scattering (small |t|) as a normalizing
process which is dominated by the t–channel ∼ 1/t, however, detecting electrons
and positrons along the beam axis often has its technical limitations.
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Care also is needed concerning the ISR corrections because cuts for the Bhabha
process (e+e− → e+e−) typically are different from the ones applied to e+e− →
hadrons. Usually, experiments have included corresponding uncertainties in their
systematic errors, if they not have explicitly accounted for all appropriate radiative
corrections.

µ−e− scattering µ−(p−) e−(q−)→ µ−(p′−) e−(q′−)

γ ↑ t

e′

µ′

e

µ

Get ahad
µ from µ−e− → µ−e− process
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G. Abbiendi et al. , arXiv:1609.08987 Massimo Passera’s Talk

dσunpol.
µ−e−→µ−e−

dt
= 4πα(t)2 1

λ(s,m2
e,m2

µ)


(
s − m2

µ − m2
e

)2

t2 +
s
t

+
1
2


l The primary goal of [arXiv:1504.02228,1609.08987]: determining ahad

µ

in an alternative way
l Π′γ(Q

2) − Π′γ(0) = −∆αhad(−Q2) = α

α(−Q2)
+ ∆αlep(−Q2) − 1

directly checks lattice QCD data
l My proposal here: determine very accurately

∆αhad

(
−Q2

)
at Q ≈ 2.5 GeV

by this method (one single number!) as the non-perturbative part of ∆αhad

(
M2

Z

)
as

in “Adler function” approach.
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Conclusions

l Muon g − 2 theory uncertainty remains the key issue.

l Are presently estimated (essentially agreed) evaluations in terms of R-data
reliable?

l Lattice QCD estimates very close to be competitive, tending to larger central
values?

l Novel hybrid method lattice + R-data optimized method looks very promising
D. Bernecker, Harvey B. Meyer 2011, RBC/UKQCD Blum et al. 2018

l In any case on paper e−µ+ → e−µ+ looks to be the ideal process to perform an
unambiguous measurement of α(−Q2), which determines the LO HVP to aµ

l Radiative corrections much easier than for the time-like hadronic channels

l Key problem: how to control in a fixed target experiment the precision at the 1%
level? What range is accessible at what precision?
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Likely to be supplemented by lattice QCD results and/or using time-like data

l This experiment G. Abbiendi et al. is absolutely important also as it allows for
for direct crosschecks with lattice QCD results and is has completely different
systematics. Even a 5% crosscheck would be very helpful to scrutinize the
HVP issue, and last bu not least whether the observed deviation is a real BSM
effect.

Thanks you for your attention!
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