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INTRODUCTION

Hadronic vacuum polarization q q
function II(¢%) plays a central role
in various issues of QCD and
Standard Model. In particular, the theoretical description of
some strong interaction processes and of hadronic contribu-

tions to electroweak observables is inherently based on I1(¢*):

e electron—positron annihilation into hadrons
e inclusive 7 lepton hadronic decay
e muon anomalous magnetic moment

e running of the electromagnetic coupling
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QCD PERTURBATIVE PREDICTIONS

Leading order: FoT(-Q?)
q q B 2 4;-
7 A 1O = —hn <_q2>
—q/
(0)(_ 2 |
D(@*H=- dl( §2>=1, Q" =—¢>0 "
e [SL]
Strong corrections: 20 D(Q&
1 4 1 03
DY@ =1+ =a(@Q%) =1+
@) =14 A m(@?/A?) R ;'--;-Q"“’e‘i

The factor N, 2?21 Q? I is omitted unless otherwise specified
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GENERAL DISPERSION RELATIONS

Cross—section of eTe~— hadrons: :
202 d
o = 477 % LMY A, ‘
S (0]
where s = ¢> = (p, + p,)° > 0 [TL], o n
1 S
Ly, = 5 [Q,uqy — g q” — (pr— pa) (D1 — pz)u}
Apy = <27T)4 Z 0(p1+ P2 — pr)<0| Ju(—Q>|F><F| Ju(q) |O>,
I’

and J, =) f Qr:Gvuq: 1s the electromagnetic quark current.

Kinematic restriction: the hadronic tensor AW(QQ) assumes
2

non—zero values only for q2 > 4m72T = m~, since otherwise no

hadron state I' could be excited B Feynman (1972); Adler (1974)

A .V.Nesterenko Workshop on the Hadronic Contribution to (¢ —2), (Mainz 2018) 3/33



The hadronic tensor can be represented as A, = 2ImlIl,,,

Manla?) =i [ (0| T{ ) 20} 10) ' = i — g0

Kinematic restriction: II(¢%) has the only cut s = ¢> > m

Dispersion relation for II(¢*):

NI L.(QQ—CI(Q))% i

271

_ (q2 _ q%)/oo R<5

m2 (s —q*)(s — ¢)

[1(¢°)
1272

Re &

where All(¢? q%) = II(¢?) — H(q%) and R(s) denotes the measur-

able ratio of two cross—sections

1 +

o(eTe” — hadrons; s)

R(s) = — lim [msﬂ'g) (s — ie)

21 e—01

Kinematic restriction: R(s) =0 for s = ¢> < m?
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In general, it is also convenient to employ the so—called Adler
function (Q? = —¢*> > 0 [SL])

d11(—Q°) 2 2 / R(s)

D (;22 = D(Q7) =@ d
(@) dlnQ? (@) S ”

B Adler (1974); De Rujula, Georgi (1976); Bjorken (1989)

This dispersion relation provides a link between experimen-

tally measurable and theoretically computable quantities.

The inverse relations between the 4Im¢

functions on hand read

1 S—1€E dc
R(S) = — lim / D(—C) —, r—00 .
271 e—04 stie C Stie Re C
B Radyushkin (1982); Krasnikov, Pivovarov (1982) 0 I’
Q° do
AI(-Q7 —Qf) =— |, D(o)—

) o
@p

B Pivovarov (1992)
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The complete set of relations between I1(¢%), R(s), and D(Q?):

o0 R(o o do
AH<Q2, Q(%) — (612 - q(%) / 2 (o — q2)((0> _ qg) do = — ;2 D< )& o’
m 40
. 1 S—1€ d
() = o I, [”<S +ie) - “<S il @*ﬂ - %% / DH)?C’

dH

Derivation of these relations requires only the location of cut

of I1(¢°) and its UV asymptotic. Neither additional approxi-

mations nor phenomenological assumptions are involved.

Nonperturbative constraints:

o H(q2): has the only cut ¢% > m?
o R(s): embodies “SL —» TL” effects, vanishes for s < m?
e D(Q?): has the only cut Q° < —m?, vanishes at Q% — 0
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DISPERSIVE APPROACH TO QCD

Functions on hand in terms of the common spectral density:

o 2. 92 9
) 9 0),.2 2 o—q-m-—q do
All(q7, qf) = All (qaqo)+L2p<0>ln(a_q8m2_q2 o’
© d
R(s) = RY(s) + 0(s — m?) / plo)
. o
E 00 —m’do
D(Q?) = D)2 ¢ / S
(@Q7) (Q>+Q2+m2 2 p(O>J+Q2 o’
1 d | | drio) 1. .. -
== Im 1 —ig) = — = —Im lim d(~0 —
plo) md Ino mgg&p(a 2 dlno m m€_1>I8+( 7~ %,

where AH(O>(q2, qg), R<O)(s), D<O)(Q2) denote the leading—order

terms and p(¢?), r(s), d(Q?) stand for the strong corrections

B Nesterenko, Papavassiliou (2005-2007); Nesterenko (2007-2014)
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Derivation of obtained representations involves neither ad-
ditional approximations nor model-dependent assumptions,

with all the nonperturbative constraints being embodied.

The leading—order terms of the functions on hand read

_ _ 2
AO(2, @) =27 tany -, po — tan 20 g2 =L
tanggp tan? L) m?
2N\3/2 2
RO(s) = 0(s — )(1 - ﬁ) - sin’pg = 0
S m QQ
pOQY) =1+ [1 — VI Tamh ()], =5

B Feynman (1972); Akhiezer, Berestetsky (1965)

Perturbative contribution to the spectral density:

1d Imppert(o- o ZO"‘) drpert( ) 1
- — p— _I d _ _ -O
ppert(a-) — dlno dlncoc — 11 pert( o l ‘|‘>

one—loop: p<1) (0)=4/|p0 (1n2(0//\2)+7r2)}; early attempts for the

pert

higher—loops: B Nesterenko, Simolo (2010, 2011); Bakulev (2013); Cvetic (2015)
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The perturbative spectral function at the /—loop level:

ppert Zdz p; (o), Pg)( ) = 271m 8£%+{[a§€>(—0—’i€)r— {&g)(—UJr’ie)r}-

(€)

Explicit expression for p ..(c) valid at an arbitrary loop level:

pert
¢ n—1 J=2k=1r ¢y .1 2k+1
ppert S‘ Y(Qk—l—l) k %[ZZ[) ] lzzb?v?@)]
J=1 n=1 m=0 n=1 m=0
B Nesterenko (2016, 2017)
In this equation ¢/ denotes the loop level,
(
ud (o), if m =0,
Uy, (0) =
\ug(a)ug’l(a) — w2 (o)l (o), if m>1,
( .
v (o), if m =0,
U (0) =
L vp(0)ug' (o) 4+ up ()i (o), if m>1,
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—0
K(m+1) m—2k ok
o) = Y (o) nm]" (L]
k=0
0 1 Wy k 2k n—2k—1 [ o 5
Un<0) — (yQ i 7T2>n kz_:o (Qk i 1) (_1) Ty ) Ll(y) = In Yy + 7 )
| K(n+1) . | . y
k 2k n—2k
’UJ%(O') — (yQ 4+ 7T2)n ];) (2]€) (_1) 7T2 Yy 2 ’ LQ(y> — 5 o ;arctan (;)7

n—2 nmod 2 n n! o
K(n) = _ —m(Z
() T (m) m! (n —m)!’ s (A2>’

and b)' stands for a combination of the § function perturba-
tive expansion coefficients (b(lj =1, bg =0, b% — —51/53, etc.)
B Nesterenko (2016, 2017)
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Functions ﬁg.g)

08T (o)

50 15 -
y=In(c/x)

-0.08 ¥

(o) are scaled by 10, 10%, 10% for j = 3,4,5

The higher—order partial
spectral functions ,5?(0)
are suppressed with re-
spect to those of the
This

subdominance eventually

preceding orders.
leads to an enhanced
higher—loop and scheme
stability of the outcom-
ing results at moderate

and low energies.
B Nesterenko (2016, 2017)

Employed higher—loop perturbative coefficients:

B Baikov, Chetyrkin, Kuhn (2017); Herzog, Ruijl, Ueda, Vermaseren, Vogt (2017);
Baikov, Chetyrkin, Kuhn, Rittinger (2012); Kataev, Starshenko (1995)
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The perturbative spectral func-

A (0)

thﬂ ppert

(o) is remarkably stable
with respect to the higher—loop
corrections. In particular, the
range of y, where the difference

( (+1 :
) DPetween pl(oe)rt(a) and pl(oe;; )(0) is

........ | O T T YT S SO i i

25 ‘_20 15 10 5 0 5 10 15 20 25 Sizable, iS located in the ViCinity

80T plio) of y = 0 and becomes smaller at

larger /.

Plot A: p) (o) for £ =1...5

pert

1520 25 Pt RB. pé%(g) for (=1...4

25 20 -15/-1

20
(=3 B¥ (€)
Ppert\ O
48 Puir(0) = [1 —~ p(é)+l(><a)) x 100%
pert

-60
Function pgili):f(a) is scaled by the factor of 10 M Nesterenko (2016, 2017)
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Note on the massless limit

In the limit m = 0 the obtained integral representations read

2 2__n__q2 ~ Un_l—(O/QZ)_dU
All(q, qp) = —1 <_qg> +/o plo)] 1 (o/aqp)] o

R(s) =1+ /:O,O(U) CiTJ, D(Q*) =1+ /Oooap_f_(gz do.

For p(o) = p,.(0) two highlighted massless equations become
identical to those of the APT  m Shirkov, Solovtsov, Milton (1997-2007)

[1(¢?) was not addressed in the framework of the latter

However, it is essential to keep the threshold m nonvanishing:

e massless limit loses some of nonperturbative constraints

e effects due to m # 0 become substantial at low energies
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HADRONIC VACUUM POLARIZATION FUNCTION

Comparison of obtained results with lattice simulation data

5

4l
3L
oL

1k

Q) =A10,—QIN YL@ Both PT and APT fail to de-

DPT

nnnnnnnn

i scribe TI(¢%) at low energies:

7;.5'/" PT PT: Tl(¢°) possesses infrared
\ unphysical singularities

......... Q0 GV APT: II(¢%) diverges in IR limit

B Della Morte, Jager, Juttner, Wittig (2011-2015); Nesterenko (2014, 2015)

PT
APT
DPT

unphysical singularities | agreement with lattice
contains disagrees
diverges in IR disagrees
free agrees

A V.Nesterenko
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ADLER FUNCTION

Comparison of obtained results with experimental data

2.0

:—D(Q.,zl),"s massless limit

.

2.0

15}

1.0

05

B 2 ° °
DQ)} realistic case

L (m#0)

DPT

" ! " " " " ! " " " " !

Q, GeV

1 2 3

B Nesterenko, Papavassiliou (2006); Nesterenko (2015, 2016)

unphysical singularities

agreement with data

PT
APT
DPT

contains
free

free

disagrees
disagrees

agrees
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Some attempts to improve IR behavior of D(Q?) within APT:

APT 4+ relativistic

mass threshold resummation:

quark

15 . - - - '

. 5 [ plot taken from MPLA21(2006) ] A

- D(Q) '
10 — /, 1 ]

i 2 L Experiment ]

A —— Theor. with m(p’)

05 // ]

[/ Q (GeV)
00—t

00 05 1.0 15 20 25 30

quite large light quark masses
2my, g =~ 520 MeV >~ dmg

B Milton, Solovtsov, Solovtsova (2001-2006)

A V.Nesterenko

APT 4 vector meson domi-

nance assumption:

12 L [ plot taken from NPBPS164(2007)] -

1 -
0.8 r
0.6
04 r
0.2 r

) analytic QCD -
0 . . . ‘experimental’
0 0.2 0.4 0.6 0.8 1 1.2
Q [GeV]

VMD NW approximation
and cut—oft at My ~ 740 MeV

B Cvetic et al. (2005-2017)
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e Function II(¢°): higher loop and scheme stability

Sr Sr
[11(QY) [T1(Q)
. [ 1 = . [ : .,/,.«/
! 3.4 Z /\ [ i /Z"’//’/’ g
, ’ 2 i : o> i/;/
3t //’\ 3 : ,";///
[ % 2 ! 7
oL 2 [ 77
- ¥ 2 W
# 3,4 >4
1 ~ /// 3 1 B ///2/
ﬂ i ////'//-"
\ \ IIIZI!./I4. | \ \ | \ Q., .(}e.VI : \ I”l{. ilnf,. | \ \ \ \ | \ \ \ \ | \ Q., .(}e.VI
0 I 2 3 40 1 2 3 4
Loop levels: /=1...4 4—loop, “MS-like” scheme

PT: dot—dashed curves
APT: dashed curves
DPT: solid curves

B Nesterenko (2016)
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e Function R(s): higher loop and scheme stability

20rR(S)1 20 R(S),
15t ;
N : _—
Lo}
0.5}
0
Loop levels: /=1...4 4—loop, “MS-like” scheme

PT: dot—dashed curves
APT: dashed curves
DPT: solid curves

B Nesterenko (2016)
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e Function D(Q?): higher loop and scheme stability

20rDQ) 20rD(QY) |
X || |‘| ! 1 I ‘ \‘
L
1.5+ \ \
| \ N,
i\\\\ AR
ol TS CIIIiEEEe s
0.5} i
.' Q, GeV
0 1 2 3 4 0 1 2 3 4
Loop levels: /=1...4 4—loop, “MS-like” scheme

PT: dot—dashed curves
APT: dashed curves
DPT: solid curves

B Nesterenko (2016)
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MUON ANOMALOUS MAGNETIC MOMENT

The theoretical description of a, = (g, — 2)/2 is a long—

standing challenging issue of the elementary particle physics.

Experiment: a;," = (11659208.9 & 6.3) x 10~ (0.54 ppm)
B Muon (g-2) Collaboration (2006); Roberts (2010)

. theor QED EW HLO HHO Hibl
Theory: a, " =a, +a," +ay, +aﬂ +ay,

fﬁD (11658471.895140.0080) x 10~ Aoyama, Hayakawa, Kinoshita, Nio (2012)

— (15.36 + 0.10) X 10_1 Gnendiger, Stockinger, Stockinger—Kim (2013)

,u

aﬁHO = (—9 84 £ 0. 07) X 10_10 Hagiwara, Liao, Martin, Nomura, Teubner (2011)

i = (11.6 £ 4.0) x 1071V nyffeler (2014)

The uncertainty of theoretical estima-

tion of a, is mainly dominated by the

]

leading—order hadronic contribution a!*©

7
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The latter involves the integration of I1(¢°) over low energies:

I A ° [ C \r dg 1 95(37)
YT §<?> /0 f(%>n<o dm, L )

where y(ZE) = l‘(\/l + =1 — 1) B Lautrup, Peterman, de Rafael (1972)

Dispersive approach enables one E821
. . HLMNT’11 —e—
to evaluate a,° without invok-
ing experimental data on R(s): .
afi© = (696.1 +9.5) x 1071,
DHMZ'17 —e—

This result agrees fairly well

HLO
L4

The complete SM prediction 150 160 170 180 190

— (116591851 :l: 103) X 10_10 [Aau =a, — ay, Qo= 11659 x 10—7]

with recent assessments of a This work

Uy
differs from a,” by two standard deviations m Nesterenko (2015)
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ELECTROMAGNETIC FINE STRUCTURE CONSTANT

The electromagnetic running coupling o, (¢°) plays a central

role in a variety of issues of precision particle physics:
o)

2
Aon(q”) =
- A@lep(q2> — Aayq(¢?)
with a = €?/(47) ~ 1/137.036 being the fine structure constant.

Leptonic contribution to o, (¢?) can be calculated within per-
turbation theory: Ao, (M;) = (314.97940.002) X 10™* W Sturm (2013)

However, the respective hadronic contribution involves the

integration over the low—energy range

> R(s) ds

o)
Acvyg(M7) = T3 M, ]{nZ s— M2 s

and constitutes the prevalent source of uncertainty of o (M7).
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As usual, the top quark con-

HLMNT’11 ——e—
tribution to «,. (¢°) is taken
into account separately: sl —
Aal®(M2) = (=0.70+0.05)x10™4 -
B Kuhn, Steinhauser (1998)
. (5) ) This work
The evaluation of Ao, (M;) ..
265 270 Aa}(15>d (M%) % 104 280

in the framework of disper-

sive approach leads to

Aal” (M2) = (274.9 +2.2) x 1074

The obtained assessment appears to be in a good agreement

with recent estimations of Aozgd(MZQ) and eventually yields

o H(M?) = 128.962 % 0.030
B Nesterenko (2015)
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PERTURBATIVE APPROXIMATION OF R-RATIO

The only way to properly describe the R—ratio is to employ

the dispersion relation. Its re—expansion at s — oo yields
n+1 2n

LRI I v
=1

(—1 — Qn 1
xz Z(H%) H(j+t+k1+...+kt>><
=0 kou=0\p=1 t=0
+2n-+ky 4. ko
< [alsp] % > exp(5) ~ 481

B Nesterenko, Popov (2017); Nesterenko (2016, 2017)

This re—expanded expression for the R—ratio:

(£)

part([5]) and T°—terms

e constitutes the sum of D

e can be reduced to the form of power series in as (\ )

e accurately approximates R(s), if one retains many 7°—terms
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(€)

However, one commonly truncates R, (s) at a given order:

14 .
(0) (o _ ARGRENE s _ B
Rpert(s)—lJrZT] as ' (|s|)| rj=d;—0; Bj= ANt

j=1 B
S =6 =0, b= = (2B s 3d) 6= | 2d (B2 1 2By) 7By + 6ds| - T
1=02=0, 03= a1, 04= 511+ 2 |, 5—§§1<1+ 2)+ 251 + 37 50

2 2 4
56—%Ed1 (B1Bs + By) + 4ds (BerQBg)+?7d3B1+10d4]—%(I—;dlBlJrBdg),

2 15

1 57
br = | 4dy (B1 By+ B3 + B4> + 90y (BiBy + By) + — s (B + 2B, ) +22duBy + 15d5| — —

4 5 7T6
- {gdl (173% + 1232> + B+ 15d3} +

B Bjorken (1989); Kataev, Starshenko (1995); Prosperi, Raciti, Simolo (2007);
Nesterenko, Popov (2017); Nesterenko (2016, 2017)

This truncated re—expanded expression for the R—ratio:
e contains infrared unphysical singularities

e is only valid for /s/A = Jw > exp(n/2) >~ 4.81

e coefficients 0; rapidly increase as the order j increases

e converges rather slowly when /s/A approaches exp(m/2)
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Table 1. Adler function perturbative expansion coefficients

T dy do ds dy ds (est.)
0 0.3636 0.2626 0.8772 2.3743 5.40

| 0.3871 0.2803 0.7946 2.1884 4.70

2 0.4138 0.3005 0.7137 2.1466 3.74

3 0.4444 0.3239 0.5593 1.9149 2.52

4 0.4800 0.3513 0.2868 1.3440 1.16

D 0.5217 0.3836 —0.1021 0.6489 0.0256
§ 0.5714 0.4225 —0.7831 —0.8952 0.267
[SL] Dy (@) =1+ Z @], e =al@)

pert aS
l [ dispersion relations + r e—expan5|on + truncation |
/S T

[TL] Rpert — 1—|—Z T] {CLS | ‘ i| Tj = d]_5]7 T > exXp (5)

A V.Nesterenko
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Table 2. Coefficients embodying the m°—terms contributions

ng 51 52 53 54 55 56 (57 (est.)
0 0.0000 0.0000 1.1963 5.1127 20.455 69.081 45.7
1 0.0000 0.0000 1.2735 5.4298 18.880 56.819 7.02
2 0.0000 0.0000 1.3613 5. 7583 17.118 48.532 —35.7
3 0.0000 0.0000 1.4622 6.0851 13.519 30.365 —82.5
4 0.0000 0.0000 1.5791 6.3850 6.910 —3.843 —115.7
5 0.0000 0.0000 1.7165 6.6090 —3.187 —45.692 —85.0
§ 0.0000 0.0000 1.8799 6.6638 —21.168  —120.010 142.5
[SL] Dy (@) =1+ Z @], @ =alieh L
pert S
l [ dispersion relations + r e—expan5|on + truncation |
NG 7
[TL] Rpert — 1—|—Z T] {CLS | ‘ i| Tj — d]_5]7 T > exXp (5)

A V.Nesterenko
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Table 3. R—ratio perturbative expansion coefficients

g = d, = dy r3 = d3 — 03 ry = dy — 04 rs = ds — 05
0 0.3636 0.2626 —0.3191 —2.7383 —15.1

1 0.3871 0.2803 —(.4788 —3.2413 —14.2

2 0.4138 0.3005 —0.6476 —3.6116 —15.4

3 0.4444 0.3239 —0.9028 —4.1703 —11.0

4 0.4800 0.3513 —1.2923 —5.0409 —5.75

5 0.5217 0.3836 —1.8186 —5.9601 3.21

6 0.5714 0.4225 —2.6630 —7.5590 21.4

[SL] DY@ —1+Zd ol QQ)}

l [ dispersion relations + r e—expan5|on + truncation |

[TL] RU). (s —1+Zr][as |\}

A V.Nesterenko

Workshop on the Hadronic Contribution to (g —

rj
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Table 4. Relative weight of m°—terms in the coefficients r

ng j=1 =2 j =3 j=4 j =5 (est.)

0 0.00 % 0.00 % 57.7% 68.3 % 79.1%

1 0.00 % 0.00 % 61.6 % 71.3% 80.1%

2 0.00 % 0.00 % 65.6 % 72.8% 82.1%

3 0.00 % 0.00 % 72.3% 76.1% 84.3%

4 0.00 % 0.00 % 84.6 % 82.6 % 85.6%

5! 0.00% 0.00 % 94.4 % 91.1% 99.2%

6 0.00 % 0.00 % 70.6 % 88.2 % 98.8%
/30

[SL] DY@ —1+Zd ol QQ)}

l [ dispersion relations + re—expan5|on + truncation |

[TL] RU). (s —1+Zr][as |\}

A V.Nesterenko

Tj:dj
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iy

al"(Q%) = o <Q2>

g
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A
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Continuation of the two—loop strong °°
running coupling squared into the

timelike domain:
[SL] | (@?)]
Its re—expansion for \/E/A>6Xp(7'('/2>3 Y g T PO VR PR T

2 2 The functions are scaled by the factor of 10
2
AL o(s) = |a(Js])

2
— i Bl(4lnlnw—7/3)+(9(ln_6w)
However, at two—loop level all T’—terms are truncated, that

—> AEFQL), 2(5> [TL]

o

_|_
n*w  In°w

gives a rather large error even at high energies. For example,

[a§,2)(|5])}2 ~ 1.21A&2372(5) at \/s/\ = 20, and to securely achieve

10 % accuracy one needs to include the m°—terms up to In—" w.

Similarly, at /s = M, the relative difference between 7 (s)
and ') (s) is 26 %, 28%, 14%, 2%, and 7% for £ =1...5.

pert
B Nesterenko (2016, 2017)
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Moreover, the ignorance of the higher—order m°—terms may

produce a considerable effect even at high energies:

200 - ROX(s)
_ (=4
150:— /=2
...................................... R(g) s) — R(@ S
100: __________ = R((fil)q@): (;)Deft( ) (€+§)) < 100%
of Rpert<5> B Rpeft <S>
s
e R I i Tev

Specifically, in the energy range planned for the CLIC ex-
periment the effect of inclusion of the m°—terms discarded

in R

set(5) s either comparable to or prevailing over the ef-

fect of inclusion of the next—order perturbative correction.

B Nesterenko (2017)
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SUMMARY

© The integral representations for I1(¢*), R(s), and D(Q?) are

derived in the framework of dispersive approach to QCD

© These representations merge the corresponding perturba-

tive input with physical nonperturbative constraints
© Dispersive approach properly embodies SL —» TL effects

© Explicit expression for the perturbative spectral function

valid at an arbitrary loop level is obtained

© The obtained results are in a good agreement with relevant

lattice data and low—energy experimental predictions

© The developed approach yields reasonable assessments of

the hadronic contributions to electroweak observables
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