

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Standard Model Precision Measurements and Theory Limitations Matthias Schott

Prof. Dr. Matthias Schott

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Where do we stand

Where do we stand?

- Disclaimer: I will focus on ATLAS measurements and will only talk about (ATLAS) SM physics (due to by personal bias).
 - General conclusions hold also for the Higgs-sector as well as CMS
 - Nearly all LHC Run-1 measurements are published and first Run-2 precision measurements become available.

 Many differential/inclusive cross-section measurements are known at sub-percent precision, i.e. are better than the theory predictions

Theory limitations on measurements

- We measure cross-sections in fiducial volumes, defined on MC truth level close to the detector level selection
 - E.g.: W boson selection: 1 isolated lepton (p_T>20 GeV, eta<2.5), E_T^{Miss}>25 GeV, m_T>40 GeV
- Cross-Section typically evaluated by a counting experiment
- If the bin width is sufficiently small, then the C-factor is nearly independent from the underlying MC prediction
 - Most SM cross-section measurements are therefore not limited by theory

Where are we limited?

- Theory limitations play a role in precision measurements of SM parameters:
 - m_{Top}, m_W, Sin²theta
- We are limited when interpreting our measurements in terms of new physics
 - EFTs: We assume SM (i.e. the predictions) and the derive limits on EFTs by comparing prediction with data
 - If the predictions are wrong, our limits are wrong

- We are limited when interpreting our measurements in terms of SM (e.g. PDF Fits)
 - Examples: Interpretation of Jet cross-sections, PDF-Fits of high precision measurements
- Myth: we need high precision predictions of SM processes since they are backgrounds for searches
 - In general this is not the case, since we always use control- and validation regions for nearly all backgrounds which might have problems in the modelling

What will I discuss today?

- Results on the jets and photons and their problems when comparing to theory predictions
- Some thoughts on scale choices
- The latest results of multi-boson measurements and discrepancies between predictions (and measurements)
- Limitations of electroweak precision measurements

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Vector Bosons, Photons and Jets

Detector Jets

- Jets formed from calorimeter energy deposits using anti-kt algorithm
- Jet energy scale and resolution calibrated with MCbased methods and in situ data-to-MC corrections
- JES/JER are dominant experimental uncertainties
- Unfold data to hadron-level, correcting for detector effects
- Pythia-based transfer matrix

Theory predictions

- Theoretical prediction of Matrix Element from NLOJET++ interfaced with various PDFs
 - Non-perturbative corrections
 - (hadronization, underlying event)
 - from Pythia & Herwig tunes
 - Large spread between Pythia8 & Herwig++ taken as uncertainty

Uncertainties

- PDF Propagated using variations for each PDF set
- αs Tunable parameter in PDFs varied according to PDF4LHC recommendations
- Factorization / renormalization scales 0.5
 < µ_{R,F} < 2.0:
 - Dominant theory uncertainty!

Inclusive & Dijet Cross-Section

- 8 TeV Inclusive: JHEP
 09 (2017) 020
 - CT14, HERAPDF20, NNPDF30, MMHT14
 - Significant slopes at low-medium and medium-high pT
 - Good fit agreement within |y| bins, but poor inclusively (Pobs «10⁻³)

	Pobs						
Rapidity ranges	CT14	MMHT2014	NNPDF3.0	HERAPDF2.0			
Anti- \mathbf{k}_t jets $R = 0.4$							
y < 0.5	44%	28%	25%	16%			
$0.5 \le y < 1.0$	43%	29%	18%	18%			
$1.0 \le y < 1.5$	44%	47%	46%	69%			
$1.5 \le y < 2.0$	3.7%	4.6%	7.7%	7.0%			
$2.0 \le y < 2.5$	92%	89%	89%	35%			
$2.5 \le y < 3.0$	4.5%	6.2%	16%	9.6%			

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

From Jeff Dandoy, UPenn at ICHEP Page 10

Inclusive & Dijet Cross-Section

CT14

67%

5.8%

MMHT 2014

65%

6.3%

 $P_{\rm obs}$

62%

6.0%

NNPDF 3.0

- 13 TeV Inclusive &
 Dijet: JHEP 05 (2018)
 195
 - CT14, MMHT2014, NNPDF3.0
 - 100 GeV to 3.5 TeV
 - Conclusions unchanged from 8 TeV

Rapidity ranges

 $p_{\rm T}^{\rm max}$

|y| < 0.5

 $0.5 \le |y| < 1.0$

Alternative correlation schemes

- Data-theory tension in inclusive measurements at 8 & 13 TeV
 - Not localized in |y|, no central-forward tension

	χ^2/dof all $ y $ bins	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
	$p_{\rm T}^{\rm max}$	419/177	431/177	404/177	432/177	475/177
i K, F <	$\sim p_{\rm T}^{\rm jet}$	399/177	405/177	384/177	428/177	455/177

- Potential culprit: 2-point systematics have unknown correlations
 - Comparison of 2 MC generators (non-perturbative corrections) or variations for uncertainties (theory scale uncertainty) - several for JES
- Explored 18 alternative correlation scenarios to split 2-point systematics
 smoothly by pT and |y|
 - Can improve χ^2 substantially 58 units for 13 TeV CT14 result
 - But all justifiable de-correlation scenarios still give small p-values
 - Potential breakdown in 2-point systematic assumptions (phase-space dependence) or incomplete theoretical descriptions

DiJet Cross-Section Measurements

- 2-jet system as a function of mjj and y* (centrality)
- 300 GeV to 9 TeV
- Good data-theory agreement for most PDFs

			$P_{\rm obs}$		
y^* ranges	CT14	$\rm MMHT\ 2014$	NNPDF 3.0	HERAPDF 2.0	ABMP16
$y^* < 0.5$	79%	59%	50%	71%	71%
$0.5 \le y^* < 1.0$	27%	23%	19%	32%	31%
$1.0 \le y^* < 1.5$	66%	55%	48%	66%	69%
$1.5 \leq y^* < 2.0$	26%	26%	28%	9.9%	25%
$2.0 \leq y^* < 2.5$	43%	35%	31%	4.2%	21%
$2.5 \leq y^* < 3.0$	45%	46%	40%	25%	38%
all y^* bins	8.1%	5.5%	9.8%	0.1%	4.4%

Some personal remarks

- The CMS Jet data does not show this tension, however, CMS adjusted the correlation scenario so that a good compatibility with the predictions are achieved.
- The scale choice in an inclusive jet measurement is not well defined (since also N-jet final states are considered)
 - Once there is a good scale-choice available (e.g. di-jet events), the tension to theory disappears
 - Maybe inclusive jet observables are not the ideal choice and some theory input on what to measure might be useful

Photon Measurements (1/2)

- Only one example (arXiv:1712.07291) since we are missing here predictions: $pp \rightarrow \gamma\gamma\gamma + X$
 - Rare process: At LO contribution is order α^3_{EM} .
 - Complementary phase space to inclusive and di-photon production.

- Study topology and kinematics of individual photons, pairs of photons and three-photon system (13 kinematic variables).
 - Main background: electron and jet mis-identification.
 - Electron mis-identified as a photon
 - Estimated from eeγ, eeγγ, evγγ MC events (LO Sherpa).
 - Mis-ID rate corrected to match measurement in $Z \rightarrow ee$ data.
 - Jet mis-identified as a photon
 - 2D sideband applied to account for all combinations of photons meeting or failing to meet the tight identification or isolation criteria.

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

From Brigitte Vachon, McGill at ICHEP Page 15

Photon Measurements (2/2)

- NLO predictions underestimate measured cross- section by ~ x1.5-2.
 - NLO fails to describe regions of low ET.
 - Addition of PS to NLO improves agreement.

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

 $\sigma_{\text{meas}} = 72.6 \pm 6.5 \,(\text{stat.}) \pm 9.2 \,(\text{syst.}) \,\,\text{fb}$

 $\sigma_{\rm NLO} = 31.5 {}^{+3.2}_{-2.5} \text{ fb} (\text{MCFM})$

 $\sigma_{\text{NLO+PS}} = 46.6^{+5.7}_{-3.6} \text{ fb} (\text{MadGraph5}_{a}\text{MC} @ \text{NLO})$

From Brigitte Vachon, McGill at ICHEP Page 16

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Some thoughts on Scale Choices

NLO vs. NNLO for photons and jets

- We observe a quite good agreement to NLO predictions for the inclusive jet/photon cross-sections
 - Moreover, the NNLO predictions seems to be within the scale-variated NLO predictions

Electroweak processes

VBF, VBS, and Triboson Cross Section Measurements Status: July 2018

- Depending on the processes, we observe significant tensions between the prediction and theory
 - sometime presumably due to missing higher order
- We observe large changes when going from NLO to NNLO

Some general thoughts and questions

- We see (sometimes) very large differences between NLO and NNLO predictions, which are not covered by the usual scale variations (also for cases we no new channels open up)
 - To which extend can we trust NLO/NNLO predictions in the first place
 - Do we need a new paradigm how to evaluate missing higher order corrections,
 - E.g.: taking the full difference between (n-1)NLO to nNLO to estimate the uncertainty for missing (n+1)NLO
 - Similar to electroweak corrections?
 - The answer might be processes related, so a "handbook" of missing higher order corrections would be noce

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Testing the Electroweak Sector

Example of a typical DiBoson Measurement: WZ

- W±Z cross section and gauge boson polarisation (ATLAS-CONF-2018-034)
 - Probe gauge structure of SM
 - Sensitive to aTGCs / EFTs
 - Precise measurements of differential and total cross sections
 - Polarisation of W and Z bosons

Signal Selection and Modelling (WZ)

- Trilepton fiducial region
 - Select Z leptonic decay
 - p_T>15, 80<mll<100
 - Select W leptonic decay
 - p_T>15, mT>30
- Signal modelling
 - Model W[±]Z with PowhegBox at NLO in QCD
 - Shower with Pythia 8.210 and CTEQ6L1PDF
 - Shower with Herwig to estimate uncertainty

Theory predictions

 NNLO QCD W[±]Z cross sections with MATRIX Apply particle-to-parton level corrections

Results (WZ)

- Measured inclusive cross-section
 - σ_{WZ}=63.7±1.0(stat)±2.3(stat) ±0.3(mod)±1.5(lumi)
 - In good agreement with prediction (Matrix): σ_{WZ}=61.5±1.4fb
 - Precision on Ratio measurement similar to theory prediction
- Unfolded single differential cross sections for p_T(Z), M_{WZ}, N_{iets}
 - Can be used to constain aTGCs and EFTs (also by people outside of ATLAS)
 - Crucial to get differential predictions correct in order to derive correct limits!

From Rustem Ospanov, USCTC at ICHEP Page 24

Polarization (WZ)

- Measure W /Z polarisation using lepton angular distributions
 - f₀, f_L and f_R define the longitudinal, transverse-left handed and transverse-right handed helicity fractions at Born
 - Template fit of q_I·cos θ_{I,W} and of cosθ_{I,Z} distributions
 - m_w constraint to solve for missing p_z(v)
- Same story: Crucial to get all differential distributions (includir polarizations) correct
 - Soon we will have much more differential distributions available with high statistics

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

From Rustem Ospanov, USCTC at ICHEP Page 25

Electroweak Poduction of WZ (1/3)

VV → VV provides insight into EWSB mechanism, access to quartic couplings:

Experimental Signature of VBS processes

 Side remark: QCD background processes (e.g. Z+jets) for VBS/VBF typically do not describe data

Electroweak Poduction of WZ (2/3)

- Signal Selection
 - 3 isolated leptons (e or µ), MET (via mT) as WZ incl.
 - VBS signal region (SR): ≥ 2 jets, $p_T > 40$ GeV , $m_{ii} > 500$ GeV, b-jet veto
 - BDT discriminant based on 15 variables reflecting VBS kinematics
 - Cross-Section extracted as "signalstrength" parameter in a combined fit of signal and background processes
- Post-fit background normalisations
 - $\mu_{WZ-QCD} = 0.60 \pm 0.25$
 - $\mu_{ttV} = 1.18 \pm 0.19$
 - $\mu_{ZZ} = 1.34 \pm 0.29$
 - $\mu_{EW} = 1.77 \pm 0.45$
 - Observed sign.: 5.6σ (3.3σ expected)

Electroweak Poduction of WZ (3/3)

- Extracted Fiducial cross section
 - $\sigma_{meas.}^{\text{fid., EW}} = 0.57 \stackrel{+0.15}{_{-0.14}} \text{fb} \\ = 0.57 \stackrel{+0.14}{_{-0.13}} (\text{stat.}) \stackrel{+0.05}{_{-0.04}} (\text{syst.}) \stackrel{+0.04}{_{-0.03}} (\text{th.}) \text{ fb} .$
- Compared to two theory predictions (LO)

 $\sigma_{\text{Sherpa}}^{\text{fid., EW th.}} = 0.321 \pm 0.002 \text{ (stat.)} \pm 0.005 \text{ (PDF)}_{-0.023}^{+0.027} \text{ (scale) fb} \quad \sigma_{\text{MadGraph}}^{\text{fid., EW th.}} = 0.366 \pm 0.004 \text{ (stat.) fb}$

- Significant discrepancies + HO missing
- Differential cross-sections extracted in SR (mjj > 500 GeV), i.e. include QCD induced production
 - Compared to normalized Sherpa predictions for WZjj (QCD + EW)

Electroweak Poduction of same sign WW (1/2)

Experimental selection

- Isolated well reconstructed same-sign dilepton events (e or µ)
- Veto third lepton to suppress
 WZ and veto b-jets to suppress tf
- Require Emiss > 30 GeV and VBS jet selections

- Backgrounds and exp. uncertainty:
 - WZ background is normalised from trilepton control region with 8% uncertainty
 - Fake lepton background measured from control regions with 50-90% uncertainty
 - Dominant experimental uncertainty
 - Other irreducible backgrounds are from Monte-Carlo simulation

			-				
	e^+e^+	e^-e^-	$e^+\mu^+$	$e^-\mu^-$	$\mu^+\mu^+$	$\mu^-\mu^-$	combined
WZ	$1.7~\pm~0.6$	$1.2~\pm~0.4$	13 ± 4	$8.1~\pm~2.5$	$5.0~\pm~1.6$	$3.3~\pm~1.1$	32 ± 9
Non-prompt	$4.1~\pm~2.4$	$2.3~\pm~1.8$	9 ± 6	6 ± 4	$0.57\pm~0.16$	0.67 ± 0.26	23 ± 12
e/γ conversions	$1.74\pm~0.31$	$1.8~\pm~0.4$	$6.1~\pm~2.4$	$3.7~\pm~1.0$	-	-	$13.4~\pm~3.5$
Other prompt	0.17 ± 0.06	0.14 ± 0.05	$0.90\pm~0.24$	0.60 ± 0.25	$0.36\pm~0.12$	$0.19\pm~0.07$	$2.4~\pm~0.5$
$W^{\pm}W^{\pm}$ jj strong	0.38 ± 0.13	$0.16\pm~0.06$	$3.0~\pm~1.0$	$1.2~\pm~0.4$	$1.8~\pm~0.6$	$0.76\pm~0.26$	$7.3~\pm~2.5$
Expected background	$8.1~\pm~2.4$	$5.6~\pm~1.9$	32 ± 7	20 ± 5	$7.7~\pm~1.7$	$4.9~\pm~1.1$	78 ± 15
$W^\pm W^\pm jj$ electroweak	3.80 ± 0.30	1.49 ± 0.13	$16.5~\pm~1.2$	$6.5~\pm~0.5$	$9.1~\pm~0.7$	3.50 ± 0.29	$40.9~\pm~2.9$
Data	10	4	44	28	25	11	122

Electroweak Poduction of same sign WW (2/2)

- Observed (expected with Sherpa) significance is 6.9σ (4.6σ)
 - Measured fiducial cross section
 - σ_{fid} = 2.95 ± 0.49 (stat.) ± 0.23 (sys.)fb
 - σ_{fid} includes W[±]W[±]jj electroweak plus interference with W[±]W[±]jj strong
 - W[±]W[±]jj strong production with exactly four EW vertices subtracted as background
- Predicted fiducial cross sections:
 - PowhegBox: $\sigma fid = 3.08 \pm 0.45$
 - Sherpa: ofid = 2.01±0.28
 - Large difference due to scale choice? Under investigation
 - NLO electroweak corrections (-16% for Sherpa) and interference (+6%) are not include

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

From Rustem Ospanov, USCTC at ICHEP Page 30

General thoughts on Electroweak Production

- Is there a way to test, if we are really seeing quadratic gauge couplings of the SM
 - The impact of a few diagrams (e.g. Higgs) can be estimated in a gauge invariant way
 - Clearly we cannot separate some the diagrams due to gauge invariance
 - Any ideas for a way forward (to get a plot similar to the famous LEP plots)?
- Electroweak corrections become sizeable for many VBS, VBF and triboson processes
 - But we are missing an estimation for many processes

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Electroweak Precision Measurements

Measurement of the W Boson Mass (1/4)

- Last round of measurements of m_w already published in 2012
 - CDF+D0: Δm_w=15 MeV
 - Latest update by ATLAS in 2016: Δm_w=19 MeV
- Basic measurement approach: Template fit method
- Requires perfect modelling of detector response and physics modelling
 - p_T(W)
 - Angular coefficients
 - EWK corrections
 - PDFs

Measurement of the W Boson Mass (2/4)

Experiment	DZ	lero	CDF		ATLAS	
Observable	p_T^{lep} [MeV]	m_T [MeV]	p_T^{lep} [MeV]	m_T [MeV]	p_T^{lep} [MeV]	m_T [MeV]
m_W	80367		80390	80366	80376	80370
Stat. Unc.	13	14	12	14	10	7
Sys. Unc.	18	20	12	11	20	11
Model Unc.	13	14	11	13	14	13
Total Unc.	26	28	20	22	25	19
Lepton Calib. Unc.	17	18	7	7	10	9
Had. Calib. Unc.	5	6	9	8	15	3
Other Exp. Unc.	1	2	3	3	8	5
PDF	11	11	10	9	10	8
QED Effects	7	7	4	4	3	6
$p_T(W)$ modelling	2	5	3	9	10	9
Reference	[41]		[40]		[42]	
Final Result of Collaboration	80375 ± 23		80387 ± 19		80370 ± 19	
(Stat., Exp. Sys., Model Unc.)	80375 ± 12	$1\pm15\pm13$	80387 ± 12	$2\pm10\pm12$	$80370 \pm 7 \pm 11 \pm 14$	

- Most sensitive measurement from the m_T distributions at Tevatron, but from the p_T distribution at ATLAS (pile-up!)
 - Much larger dependence on p_T(W) modelling for ATLAS
- Largest uncertainties due to PDFs but different origin
 - acceptance effects for Tevatron, but polarization effects at LHC

Measurement of the W Boson Mass $(3/4) - p_T(W)$

- Uncertainties from exp. p_T(Z) unc. and theory unc. on the W/Z p_T ratio
- Heavy-flavour-initiated (HFI) production introduce decorrelation
 - bb/cc→Z accounts for 3-6%
 - cs→W is ~20% of W production
 - HFI addressed with
 - charm mass variations
 - decorrelating the PS between light and HFI processes
- Central prediction and uncertainty validated with the recoil distribution
 - end up with compatible central value and similar uncertainties compared to "model approach"

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Page 35

Measurement of the W Boson Mass $(4/4) - p_T(W)$

- Theoretically more advanced calculations were also attempted
 - DYRES (and other resummation codes : ResBos, CuTe)
 - Powheg MiNLO + Pythia8
- All predict a harder p_T(W) spectrum for given p_T(Z) distribution
 - Behaviour is disfavoured by data (comparison of u_{II} distribution)

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Measurement of $\sin^2\theta_W(1/2)$

 Latest ATLAS result based on the measurement of the A4 angular coefficient

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}} \left\{ (1+\cos^{2}\theta) + \sum_{i=0}^{7} \mathbf{A}_{i}(\mathbf{p}_{\mathrm{T}}^{Z},\mathbf{y}^{Z},\mathbf{m}^{Z}) \cdot \mathbf{P}_{i}(\cos\theta,\varphi) \right\}$$

- Using three analysis channels
 - Muons ($y_Z < 2.4$)
 - Central electrons (y_Z<2.4)
 - 1-forward, 1-central electron (y_Z<3.6)
- Profiling PDFs during fit of sin2theta

Measurement of $\sin^2\theta_W(2/2)$

- Contributions of the different channels to the measurement of $sin^2\theta_{eff}$

Channel	eecc	$\mu\mu_{CC}$	eecF	$ee_{CC} + \mu\mu_{CC}$	$ee_{CC} + \mu\mu_{CC} + ee_{CF}$		
Central value	0.23148	0.23123	0.23166	0.23119	0.23140		
			-	Uncertainties			
Total	68	59	(43)	49	36	_	
Stat.	48	40	29	31	21 🗙	10-5	
Syst.	48	44	32	38	29	10	
	Uncertainties in measurements						
PDF (meas.)	8	9	7	6	4	_	
$p_{\rm T}^Z$ modelling	0	0	7	0	5		
Lepton scale	4	4	4	4	3		
Lepton resolution	6	1	2	2	1		
Lepton efficiency	11	3	3	2	4		
Electron charge misidentification	2	0	1	1	< 1		
Muon sagitta bias	0	5	0	1	2		
Background	1	2	1	1	2		
MC. stat.	25	22	18	16	12		
	Uncertainties in predictions						
MMUT) PDF (predictions)	37	35	22	33	24	_	
QCD scales	6	8	9	5	6		
EW corrections	3	3	3	3	3		

- eeCF is most precise though it has only 1.5M events
 - compared to 13.5M eeCC + µµCC
- Measurement uncertainty 36 x 10-5
- data stat and PDF uncertainty roughly equal. MC stats next largest uncertainty

Prof. Dr. M. Schott (Johannes Gutenberg University, Mainz)

 Competitive measurement from a hadron collider

- adds consistency to the landscape!
- Still expect significant improvements for the final results, since we can add the A_{FB} based measurement

From Manuella Vincter, Carlton at ICHEP Page 38

Some remarks on PDFs profilling and fitting

- When fitting / profiling PDFs, we use fiducial cross-section measurements and NNLO prediction
 - NNLO predictions do not describe the resummation/PS part of the vector boson spectra, i.e. this leads to a bias towards the lepton pT and thus the fiducial definition
 - Would need to have a resummed / NNLO+PS PDF Fit

Top Pole-Mass Measurements

- Absolute and normalised differential cross-section measurements, in the di-leptonic eµ pair channel with one or two b-tagged jets at 8 TeV
 - Constrain gluon PDFs
 - normalised lepton p_{l} and dilepton p_{eu} , $m_{eu},\,p_e{+}p_{_{\rm I\! I}}$ and $E_e{+}E_{_{\rm I\! I}}$ distributions are sensitive to pole-mass of the top-quark
- Compare with fixed order prediction at NLO (MCFM) and extract
 - $m_{top} = 173.2 \pm 0.9 \text{ (stat)} \pm 0.8 \text{ (sys)} \pm$ 1.2 (model) GeV
 - much higher statistics for full run-2 and comparison to NNLO predictions might lead to uncertainty below 1 GeV

Dilepton ly^{eµ}l Page 40

250

Dilepton p^{eµ} [GeV]

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Some Further Thoughts

Some Further Thoughts on SM measurements with Theory Limitations

- Also thanks to Dr. Ulla Blumenschein (Queen Mary, London)
- Missing higher orders are limiting the alpha_s measurement via jet measurements
 - https://arxiv.org/abs/1707.02562
 - Totally dominated by scale variations
- Vector boson fusion W/Z production is limited by modelling the QCD Z+2jets production even after exploiting a control region
 - see page 14 in <u>https://arxiv.org/pdf/1709.10264.pdf</u>
- Several examples in the Higgs-production: e.g. VH(->bb)
 - SM backgrounds are co-dominating with b-tagging efficiencies, see Table8:
 - https://cds.cern.ch/record/2630338/files/ATLAS-CONF-2018-036.pdf
 - Also ttH has a dominating component from tt+HF:
 - https://arxiv.org/pdf/1806.00425.pdf

UNIVERSITÄT MAINZ

JOHANNES GUTENBERG

Summary

- While most SM measurements are not limited by missing higher orders, we need higher order corrections to interpret our data in the context of BSM
- Measurement of precision observables (mW, mTop) require indeed a better theoretical understanding of differential distributions
- A guidelines on scale-choices, adequat observables and uncertainties due to missing higher orders is highly welcome

Prof. Dr. Matthias Schott