NNLO soft function for top pair production at small q_{T}

Sebastian Sapeta

IFJ PAN Kraków

In collaboration with René Ángeles-Martinez and Michał Czakon Commission

Top pair production: the status of QCD calculations

- A single complete NNLO result for total and differential cross section obtained with STRIPPER methodology [Czakon, Fiedler, Mitov '13; Czakon, Heymes, Mitov '16]

- Flavour off-diagonal channels at NNLO from q_{T} subtraction [Bonciani, Catani, Grazzini, Sargsyan, Torre '15]
- Approximate NNLO [Broggio, Papanastasiou, Signer '14] and $\mathrm{N}^{3} \mathrm{LO}$ [Kidonakis '14]
- Soft and small-mass resummation at NNLL [Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, Yang '18]
- Small- q_{T} resummation at NNLL [Li, Li, Shao, Yang, Zhu '13; Catani, Grazzini, Torre '14]

The q_{T} slicing method

[Catani, Grazzini ‘07, '15]

$$
p+p \rightarrow F\left(q_{T}\right)+X
$$

$$
\sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}=\int_{0}^{q_{T, \mathrm{cut}}} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}+\int_{q_{T, \mathrm{cut}}}^{\infty} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}
$$

The q_{T} slicing method

[Catani, Grazzini ‘07, '15]

$$
\begin{gathered}
p+p \rightarrow F\left(q_{T}\right)+X \\
\sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}=\int_{0}^{q_{T, \text { cut }}} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}+\int_{q_{T, \text { cut }}}^{\infty} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}} \\
=\int_{0}^{q_{T, \mathrm{cut}}} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}+\int_{q_{T, \text { cut }}}^{\infty} d q_{T} \frac{d \sigma_{\mathrm{N}^{m-1} \mathrm{LO}}^{F+\mathrm{jet}}}{d q_{T}}
\end{gathered}
$$

The q_{T} slicing method

[Catani, Grazzini ‘07, '15]

$$
\begin{gathered}
p+p \rightarrow F\left(q_{T}\right)+X \\
\sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}=\int_{0}^{q_{T, \mathrm{cut}}} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}+\int_{q_{T, \mathrm{cut}}}^{\infty} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}} \\
=\int_{0}^{q_{T, \text { cut }}} d q_{T} \frac{d \sigma_{\mathrm{N}^{m} \mathrm{LO}}^{F}}{d q_{T}}+\int_{q_{T, \text { cut }}}^{\infty} d q_{T} \frac{d \sigma_{\mathrm{N}^{m-1} \mathrm{LO}}^{F+\mathrm{jet}}}{d q_{T}} \\
\text { enough to know in } \\
\text { small- } q_{T} \text { approximation }
\end{gathered}
$$

Soft Collinear Effective Theory (SCET)

$$
S C E T \simeq Q C D
$$

- Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

Soft Collinear Effective Theory (SCET)

$$
S C E T \simeq Q C D
$$

- Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft components:

$$
\phi(x)=\phi_{c}(x)+\phi_{\bar{c}}(x)+\phi_{s}(x)
$$

Soft Collinear Effective Theory (SCET)

$$
\left.\mathrm{SCET} \simeq Q C D\right|_{\mathrm{IR} \text { limit }}
$$

- Hard degrees of freedom are integrated out into Wilson coefficients, which are then used to adjust new couplings of the (effective) theory.

QCD fields written as sums of collinear, anti-collinear and soft components:

$$
\phi(x)=\phi_{c}(x)+\phi_{\bar{c}}(x)+\phi_{s}(x)
$$

The new fields decouple in the Lagrangian

$$
\mathcal{L}_{\mathrm{SCET}}=\mathcal{L}_{c}+\mathcal{L}_{\bar{c}}+\mathcal{L}_{s}
$$

- The separation of fields in the Lagrangian into collinear, anti-collinear and soft sectors, facilitates proofs of factorization theorems

Small- q_{T} factorization in SCET

where $F=H, Z, W, Z Z, W W, t \bar{t}, \ldots$

Small- q_{T} factorization in SCET

where $F=H, Z, W, Z Z, W W, t \bar{t}, \ldots$

$$
\frac{d \sigma^{F}}{d \Phi}=\mathcal{B}_{1} \otimes \mathcal{B}_{2} \otimes \mathcal{H} \otimes \mathcal{S}+\mathcal{O}\left(\frac{q_{T}^{2}}{q^{2}}\right)
$$

Small- q_{T} factorization in SCET

Gluons' momenta in light-cone coordinates

$$
k_{i}^{\mu}=\left(k_{i}^{+}, k_{i}^{-}, \boldsymbol{k}_{i}^{\perp}\right) \quad \text { where } \quad k^{ \pm}=k^{0} \pm k^{3}
$$

Expansion parameter

$$
\lambda=\frac{q_{T}^{2}}{q^{2}} \ll 1
$$

Small- q_{T} factorization in SCET

Gluons' momenta in light-cone coordinates

$$
k_{i}^{\mu}=\left(k_{i}^{+}, k_{i}^{-}, k_{i}^{\perp}\right) \quad \text { where } \quad k^{ \pm}=k^{0} \pm k^{3}
$$

Expansion parameter

$$
\lambda=\frac{q_{T}^{2}}{q^{2}} \ll 1
$$

Regions

collinear

$$
k_{i}^{\mu} \sim\left(1, \lambda^{2}, \lambda\right) Q^{2} \quad \mathcal{B}_{1}
$$

$$
\text { anti-collinear } \quad k_{i}^{\mu} \sim\left(\lambda^{2}, 1, \lambda\right) Q^{2} \quad \mathcal{B}_{2}
$$

hard

$$
k_{i}^{\mu} \sim(1,1,1) Q^{2} \quad \mathcal{H}
$$

soft

$$
k_{i}^{\mu} \sim(\lambda, \lambda, \lambda) Q^{2}
$$

\mathcal{S}

Top pair production at small- q_{T} through NNLO

$$
\frac{d \sigma^{\mathrm{NNLO}}}{d q_{T} d y d M d \cos \theta}=\sum_{i, \bar{i}} \mathcal{B}_{i / h_{1}} \otimes \mathcal{B}_{\bar{i} / h_{2}} \otimes \operatorname{Tr}\left[\mathcal{H}_{i \bar{i}} \otimes \mathcal{S}_{i \bar{i}]}\right.
$$

where
q_{T}, y, M : transverse momentum, rapidity, mass of top quark pair $\theta \quad: \quad$ scattering angle of the top quark in $t \bar{t}$ rest frame

Top pair production at small- q_{T} through NNLO

$$
\frac{d \sigma^{\mathrm{NNLO}}}{d q_{T} d y d M d \cos \theta}=\sum_{i, \bar{i}} \mathcal{B}_{i / h_{1}} \otimes \mathcal{B}_{\bar{i} / h_{2}} \otimes \operatorname{Tr}\left[\mathcal{H}_{i \bar{i}} \otimes \mathcal{S}_{i \bar{i}}\right]
$$

where
q_{T}, y, M : transverse momentum, rapidity, mass of top quark pair $\theta \quad: \quad$ scattering angle of the top quark in $t \bar{t}$ rest frame
\mathcal{B} - known up to NNLO [Gehrmann, Lübbert, Yang '12, '14]
\mathcal{H} - known up to NNLO [Czakon '08; Baernreuther, Czakon, Fiedler '13]
$\mathcal{S} \quad$ - known up to NLO in small- q_{T} limit [Li, Li, Shao, Yan, Zhu '13; Catani, Grazzini, Torre '14] (and up to NNLO in the threshold limit [Ferroglia, Pecjak, Yang '12; Wang, Xu, Yang and Zhu '18])

Top pair production at small- q_{T} through NNLO

$$
\frac{d \sigma^{\mathrm{NNLO}}}{d q_{T} d y d M d \cos \theta}=\sum_{i, \bar{i}} \mathcal{B}_{i / h_{1}} \otimes \mathcal{B}_{\bar{i} / h_{2}} \otimes \operatorname{Tr}\left[\mathcal{H}_{i \bar{i}} \otimes \mathcal{S}_{\bar{i} \bar{i}}\right]
$$

where
q_{T}, y, M : transverse momentum, rapidity, mass of top quark pair
$\theta \quad: \quad$ scattering angle of the top quark in $t \bar{t}$ rest frame
\mathcal{B} - known up to NNLO [Gehrmann, Lübbert, Yang '12, '14]
\mathcal{H} - known up to NNLO [Czakon '08; Baernreuther, Czakon, Fiedler '13]
\mathcal{S} - known up to NLO in small- q_{T} limit [Li, Li, Shao, Yan, Zhu '13; Catani, Grazzini, Torre '14] (and up to NNLO in the threshold limit [Ferroglia, Pecjak, Yang '12; Wang, Xu, Yang and Zhu '18])

Calculating the missing NNLO correction to the soft function in the small- q_{T} limit, \mathcal{S}, is the aim of this phase of our work.

Rapidity divergences and analytic regulator

Rapidity divergences and analytic regulator

QCD

SCET

Modification of the measure [Becher, Bell '12]

$$
\int d^{d} k \delta^{+}\left(k^{2}\right) \rightarrow \int d^{d} k\left(\frac{\nu}{k_{+}}\right)^{\alpha} \delta^{+}\left(k^{2}\right)
$$

- The regulator is necessary at intermediate steps of the calculation.
- Rapidity divergences do not appear in QCD, hence, the complete SCET result has to stay finite in the limit $\alpha \rightarrow 0$.

Kinematics and notation

$$
\begin{array}{r}
q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow t\left(p_{3}\right)+\bar{t}\left(p_{4}\right)+\sum_{i} g\left(k_{i}\right) \\
g\left(p_{1}\right)+\bar{g}\left(p_{2}\right) \rightarrow t\left(p_{3}\right)+\bar{t}\left(p_{4}\right)+\sum_{i} g\left(k_{i}\right)
\end{array}
$$

Kinematics and notation

$$
\begin{array}{r}
q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow t\left(p_{3}\right)+\bar{t}\left(p_{4}\right)+\sum_{i} g\left(k_{i}\right) \\
g\left(p_{1}\right)+\bar{g}\left(p_{2}\right) \rightarrow t\left(p_{3}\right)+\bar{t}\left(p_{4}\right)+\sum_{i} g\left(k_{i}\right)
\end{array}
$$

- Invariants

$$
\begin{array}{cc}
\hat{s}=\left(p_{1}+p_{2}\right)^{2} & M^{2}=\left(p_{3}+p_{4}\right)^{2} \\
t_{1}=\left(p_{1}-p_{3}\right)^{2}-m_{t}^{2} & u_{1}=\left(p_{1}-p_{4}\right)-m_{t}^{2}
\end{array}
$$

Kinematics and notation

$$
\begin{array}{r}
q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) \rightarrow t\left(p_{3}\right)+\bar{t}\left(p_{4}\right)+\sum_{i} g\left(k_{i}\right) \\
g\left(p_{1}\right)+\bar{g}\left(p_{2}\right) \rightarrow t\left(p_{3}\right)+\bar{t}\left(p_{4}\right)+\sum_{i} g\left(k_{i}\right)
\end{array}
$$

- Invariants

$$
\begin{array}{cc}
\hat{s}=\left(p_{1}+p_{2}\right)^{2} & M^{2}=\left(p_{3}+p_{4}\right)^{2} \\
t_{1}=\left(p_{1}-p_{3}\right)^{2}-m_{t}^{2} & u_{1}=\left(p_{1}-p_{4}\right)-m_{t}^{2}
\end{array}
$$

- Small- q_{T} limit

$$
\hat{s}, M^{2},\left|t_{1}\right|,\left|u_{1}\right|, m_{t}^{2} \gg q_{T}^{2}=\left(p_{3}+p_{4}\right)_{T}^{2} \gg \Lambda_{\mathrm{QCD}}^{2}
$$

Kinematics and notation

$$
\begin{aligned}
q\left(p_{1}\right)+\bar{q}\left(p_{2}\right) & \rightarrow t\left(p_{3}\right)+\bar{t}\left(p_{4}\right)+\sum_{i} g\left(k_{i}\right) \\
g\left(p_{1}\right)+\bar{g}\left(p_{2}\right) & \rightarrow t\left(p_{3}\right)+\bar{t}\left(p_{4}\right)+\sum_{i} g\left(k_{i}\right)
\end{aligned}
$$

- Invariants

$$
\begin{array}{cc}
\hat{s}=\left(p_{1}+p_{2}\right)^{2} & M^{2}=\left(p_{3}+p_{4}\right)^{2} \\
t_{1}=\left(p_{1}-p_{3}\right)^{2}-m_{t}^{2} & u_{1}=\left(p_{1}-p_{4}\right)-m_{t}^{2}
\end{array}
$$

- Small- q_{T} limit

$$
\hat{s}, M^{2},\left|t_{1}\right|,\left|u_{1}\right|, m_{t}^{2} \gg q_{T}^{2}=\left(p_{3}+p_{4}\right)_{T}^{2} \gg \Lambda_{\mathrm{QCD}}^{2}
$$

- Momenta

$$
\begin{gathered}
n=(1,0,0,1), \quad \bar{n}=(1,0,0,-1) \\
k_{i}^{\mu}=\left(n \cdot k_{i}\right) \frac{\bar{n}^{\mu}}{2}+\left(\bar{n} \cdot k_{i}\right) \frac{n^{\mu}}{2}+k_{i \perp}^{\mu} \\
p_{1}^{\mu}=m_{t} n, \quad p_{2}^{\mu}=m_{t} \bar{n}, \quad p_{3,4}^{\mu}=m_{t} v_{3,4}^{\mu}+\lambda_{3,4}^{\mu}
\end{gathered}
$$

Soft function

- Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_{T}.

Soft function

- Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_{T}.

- external momenta \rightarrow Wilson Lines (Born kinematics)
- eikonal Feynman rules

Soft function

- Represents corrections coming from exchanges of real, soft gluons, whose transverse momenta sum up to a fixed value q_{T}.

- external momenta \rightarrow Wilson Lines (Born kinematics)
- eikonal Feynman rules

$$
\boldsymbol{S}_{i \bar{i}}=\sum_{n=0}^{\infty} \boldsymbol{S}_{\bar{i}}^{(n)}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n} \quad \boldsymbol{S}_{i \bar{i}}^{(n)}=\sum_{\{j\}} \boldsymbol{w}_{\{j\}}^{i \bar{i}} I_{\{j\}}
$$

$$
\text { colour matrices } \uparrow \quad \uparrow \begin{aligned}
& \text { phase space } \\
& \text { integrals }
\end{aligned}
$$

Renormalization

$$
\begin{aligned}
& \qquad \downarrow \downarrow \downarrow \text { separately divergent } \\
& \qquad{ }^{\downarrow} \frac{d \sigma}{d \Phi}=\mathcal{B}_{1}^{\text {(bare) }} \otimes \mathcal{B}_{2}^{\text {(bare) }} \otimes \operatorname{Tr}\left[\mathcal{H}^{\text {(bare) }} \otimes \mathcal{S}^{\text {(bare) }}\right] \\
& \text { finite }
\end{aligned}
$$

Renormalization

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \text { separately divergent } \\
& \longrightarrow \frac{d \sigma}{d \Phi}=\mathcal{B}_{1}^{(\text {bare })} \otimes \mathcal{B}_{2}^{\text {(bare) }} \otimes \operatorname{Tr}\left[\mathcal{H}^{(\text {bare })} \otimes \mathcal{S}^{\text {(bare) }}\right] \\
& \text { finite } \quad=Z_{B} \mathcal{B}_{1}^{(\text {bare })} \otimes Z_{B} \mathcal{B}_{2}^{\text {(bare })} \otimes \operatorname{Tr}\left[\boldsymbol{Z}_{H}^{\dagger} \mathcal{H}^{(\text {bare })} \boldsymbol{Z}_{H} \otimes \boldsymbol{Z}_{S}^{\dagger} \mathcal{S}^{\text {(bare) }} \boldsymbol{Z}_{S}\right]
\end{aligned}
$$

Renormalization

$$
\begin{aligned}
& \downarrow \downarrow \downarrow \text { separately divergent } \\
& \longrightarrow \frac{d \sigma}{d \Phi}=\mathcal{B}_{1}^{(\text {bare })} \otimes \mathcal{B}_{2}^{(\text {bare })} \otimes \operatorname{Tr}\left[\mathcal{H}^{(\text {bare })} \otimes \mathcal{S}^{\text {(bare) })}\right] \\
& \text { finite } \quad=Z_{B} \mathcal{B}_{1}^{(\text {bare })} \otimes Z_{B} \mathcal{B}_{2}^{(\text {bare })} \otimes \operatorname{Tr}\left[\boldsymbol{Z}_{H}^{\dagger} \mathcal{H}^{(\text {bare })} \boldsymbol{Z}_{H} \otimes \boldsymbol{Z}_{S}^{\dagger} \mathcal{S}^{\text {(bare) }} \boldsymbol{Z}_{S}\right] \\
& =\mathcal{B}_{1}(\mu) \otimes \mathcal{B}_{2}(\mu) \otimes \operatorname{Tr}[\mathcal{H}(\mu) \otimes \mathcal{S}(\mu)]
\end{aligned}
$$

Renormalization

$$
\begin{aligned}
& \downarrow \downarrow \text { separately divergent } \\
& \longrightarrow \frac{d \sigma}{d \Phi}=\mathcal{B}_{1}^{(\text {bare })} \otimes \mathcal{B}_{2}^{\text {(bare) }} \otimes \operatorname{Tr}\left[\mathcal{H}^{(\text {bare })} \otimes \mathcal{S}^{\text {(bare) }}\right] \\
& \text { finite } \quad=Z_{B} \mathcal{B}_{1}^{\text {(bare) }} \otimes \boldsymbol{Z}_{B} \mathcal{B}_{2}^{(\text {bare })} \otimes \operatorname{Tr}\left[\boldsymbol{Z}_{H}^{\dagger} \mathcal{H}^{(\text {bare })} \boldsymbol{Z}_{H} \otimes \boldsymbol{Z}_{S}^{\dagger} \mathcal{S}^{(\text {bare })} \boldsymbol{Z}_{S}\right] \\
& =\mathcal{B}_{1}(\mu) \otimes \mathcal{B}_{2}(\mu) \otimes \operatorname{Tr}[\mathcal{H}(\mu) \otimes \mathcal{S}(\mu)] \\
& \text { separately finite }
\end{aligned}
$$

Renormalization

$$
\begin{aligned}
& \downarrow \downarrow \text { separately divergent } \\
& \longrightarrow \frac{d \sigma}{d \Phi}=\mathcal{B}_{1}^{(\text {bare })} \otimes \mathcal{B}_{2}^{(\text {bare })} \otimes \operatorname{Tr}\left[\mathcal{H}^{(\text {bare })} \otimes \mathcal{S}^{\text {(bare) })}\right] \\
& \text { finite } \quad=Z_{B} \mathcal{B}_{1}^{(\text {bare })} \otimes Z_{B} \mathcal{B}_{2}^{(\text {bare })} \otimes \operatorname{Tr}\left[\boldsymbol{Z}_{H}^{\dagger} \mathcal{H}^{(\text {bare })} \boldsymbol{Z}_{H} \otimes \boldsymbol{Z}_{S}^{\dagger} \mathcal{S}^{\text {(bare) }} \boldsymbol{Z}_{S}\right] \\
& =\mathcal{B}_{1}(\mu) \otimes \mathcal{B}_{2}(\mu) \otimes \operatorname{Tr}[\mathcal{H}(\mu) \otimes \mathcal{S}(\mu)] \\
& \text { separately finite } \\
& \frac{d}{d \mu} \frac{d \sigma}{d \Phi}=0 \quad \rightarrow \quad \text { Renormalization Group Equations for } \mathcal{B}, \mathcal{H} \text { and } \mathcal{S}
\end{aligned}
$$

Renormalization

- RG equation

$$
\frac{d}{d \ln \mu} \boldsymbol{S}_{i \bar{i}}(\mu)=-\gamma_{i \bar{i}}^{s \dagger} \boldsymbol{S}_{i \bar{i}}(\mu)-\boldsymbol{S}_{i \bar{i}}(\mu) \gamma_{i \bar{i}}^{s}
$$

- Soft anomalous dimension

$$
\gamma^{s}=-Z_{s}^{-1} \frac{d Z_{s}}{d \ln \mu}
$$

Renormalization

- RG equation

$$
\frac{d}{d \ln \mu} \boldsymbol{S}_{i \bar{i}}(\mu)=-\gamma_{i \bar{i}}^{s \dagger} \boldsymbol{S}_{i \bar{i}}(\mu)-\boldsymbol{S}_{i \bar{i}}(\mu) \boldsymbol{\gamma}_{\bar{i}}^{s}
$$

- Soft anomalous dimension

$$
\gamma^{s}=-\boldsymbol{Z}_{s}^{-1} \frac{d \boldsymbol{Z}_{s}}{d \ln \mu}
$$

Specifically, at the order α_{s}^{2}, we get

$$
\underbrace{\boldsymbol{S}^{(2)}}=\overbrace{\boldsymbol{Z}_{s}^{\dagger(2)} \boldsymbol{S}_{\text {bare }}^{(0)}+\boldsymbol{S}_{\text {bare }}^{(0)} \boldsymbol{Z}_{s}^{(2)}+\boldsymbol{Z}_{s}^{\dagger(1)} \boldsymbol{S}_{\text {bare }}^{(0)} \boldsymbol{Z}_{s}^{(1)}}^{\text {pole part only }}
$$

finite part only

$$
+\underbrace{\boldsymbol{Z}_{s}^{\dagger(1)} \boldsymbol{S}_{\text {bare }}^{(1)}+\boldsymbol{S}_{\text {bare }}^{(1)} \boldsymbol{Z}_{s}^{(1)}+\boldsymbol{S}_{\text {bare }}^{(2)}-\frac{\beta_{0}}{\epsilon} \boldsymbol{S}_{\text {bare }}^{(1)}}_{\text {finite }+ \text { pole part }}
$$

Soft function at NLO

Soft function at NLO

- Known in analytic form
[Li, Li, Shao, Yan, Zhu '13; Catani, Grazzini, Torre '13]
$\boldsymbol{S}_{i \bar{i}}^{(1)}=4 L_{\perp}\left(2 \boldsymbol{w}_{i \bar{i}}^{13} \ln \frac{-t_{1}}{m_{t} M}+2 \boldsymbol{w}_{i \bar{i}}^{23} \ln \frac{-u_{1}}{m_{t} M}+\boldsymbol{w}_{\bar{i}}^{33}\right)$
$-4\left(\boldsymbol{w}_{i \bar{i}}^{13}+\boldsymbol{w}_{i \bar{i}}^{23}\right) \operatorname{Li}_{2}\left(1-\frac{t_{1} u_{1}}{m_{t}^{2} M^{2}}\right)+4 \boldsymbol{w}_{i \bar{i}}^{33} \ln \frac{t_{1} u_{1}}{m_{t}^{2} M^{2}}$
$-2 \boldsymbol{w}_{i \bar{i}}^{34} \frac{1+\beta_{t}^{2}}{\beta_{t}}\left[L_{\perp} \ln x_{s}-\operatorname{Li}_{2}\left(-x_{s} \operatorname{tg}^{2} \frac{\theta}{2}\right)+\operatorname{Li}_{2}\left(-\frac{1}{x_{s}} \operatorname{tg}^{2} \frac{\theta}{2}\right)\right.$
$\left.+4 \ln x_{s} \ln \cos \frac{\theta}{2}\right], \quad$ where $\quad L_{\perp}=\ln \frac{x_{T}^{2} \mu^{2}}{4 e^{-2 \gamma_{E}}}$

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble

- Single-cut

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble

- Single-cut
- Double-cut

$+\quad .$.

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble
- Single-cut

DIFFERENTIAL EQUATIONS

- Double-cut

+ ...

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble
- Single-cut

DIFFERENTIAL EQUATIONS

DIRECT
 INTEGRATION

- Double-cut

Soft function at NNLO

Three distinct groups of diagrams:

- Bubble
- Single-cut

DIFFERENTIAL EQUATIONS

DIRECT
 INTEGRATION

- Double-cut

SECTOR DECOMPOSITION

Double-cut part

$$
\begin{aligned}
& \left|\mathcal{M}_{g, g, a_{1}, \ldots}^{(0)}\left(k, l, p_{1}, \ldots\right)\right|^{2} \simeq \\
& \quad \frac{1}{2} \sum_{i j k l} \mathcal{S}_{i j}(k) \mathcal{S}_{k l}(I)\left\langle\mathcal{M}_{a_{1}, \ldots}^{(0)}\left(p_{1}, \ldots\right)\right|\left\{\mathbf{T}_{i} \cdot \mathbf{T}_{j}, \mathbf{T}_{k} \cdot \mathbf{T}_{l}\right\}\left|\mathcal{M}_{a_{1}, \ldots}^{(0)}\left(p_{1}, \ldots\right)\right\rangle \\
& \quad-C_{A} \sum_{i j} \mathcal{S}_{i j}(k, I)\left\langle\mathcal{M}_{a_{1}, \ldots .}^{(0)}\left(p_{1}, \ldots\right)\right| \mathbf{T}_{i} \cdot \mathbf{T}_{j}\left|\mathcal{M}_{a_{1}, \ldots}^{(0)}\left(p_{1}, \ldots\right)\right\rangle
\end{aligned}
$$

Double-cut part

$$
\begin{aligned}
& \left|\mathcal{M}_{g, g, a_{1}, \ldots}^{(0)}\left(k, I, p_{1}, \ldots\right)\right|^{2} \simeq \\
& \frac{1}{2} \sum_{i j k l} \mathcal{S}_{i j}(k) \mathcal{S}_{k l}(I)\left\langle\mathcal{M}_{a_{1}, \ldots}^{(0)}\left(p_{1}, \ldots\right)\right|\left\{\mathbf{T}_{i} \cdot \mathbf{T}_{j}, \mathbf{T}_{k} \cdot \mathbf{T}_{l}\right\}\left|\mathcal{M}_{a_{1}, \ldots}^{(0)}\left(p_{1}, \ldots\right)\right\rangle \\
& -C_{A} \sum_{i j} \mathcal{S}_{i j}(k, I)\left\langle\mathcal{M}_{\mathrm{a}_{1}, \ldots}^{(0)}\left(p_{1}, \ldots\right)\right| \mathbf{T}_{i} \cdot \mathbf{T}_{j}\left|\mathcal{M}_{\mathrm{a}_{1}, \ldots}^{(0)}\left(p_{1}, \ldots\right)\right\rangle \\
& \boldsymbol{S}_{i \bar{i}}^{(2), f \bar{f}}\left(q_{\perp}\right)=\frac{1}{S_{d-3}} \int d \Omega_{d-3} d^{d} k d^{d} / \delta_{+}\left(k^{2}\right) \delta_{+}\left(I^{2}\right) \delta^{(d-2)}\left(q_{\perp}-k_{\perp}-I_{\perp}\right) \\
& \times\left\langle c_{I}^{i \bar{i}}\right| \mathcal{M}_{f, \bar{f}, a_{1}, \ldots}^{*(0)}\left(k, l, p_{1}, \ldots\right) \mathcal{M}_{f, \bar{f}, a_{1}, \ldots}^{(0)}\left(k, I, p_{1}, \ldots\right)\left|c_{j}^{i \bar{j}}\right\rangle
\end{aligned}
$$

Double-cut NNLO integrals

Example:

$$
\tilde{I}_{3 g v, i j}=\int \frac{d^{d} k_{1} d^{d} k_{2} \delta^{+}\left(k_{1}^{2}\right) \delta^{+}\left(k_{2}^{2}\right) \delta\left(\left(k_{1}+k_{2}\right)_{T}^{2}-q_{T}^{2}\right)}{\left(n \cdot k_{1}\right)^{\alpha}\left(n \cdot k_{2}\right)^{\alpha}\left(n_{i} \cdot k_{1}\right)\left(n_{j} \cdot\left(k_{1}+k_{2}\right)\right)\left(k_{1}+k_{2}\right)^{2}}
$$

Double-cut NNLO integrals

Example:

$$
\tilde{I}_{3 g v, i j}=\int \frac{d^{d} k_{1} d^{d} k_{2} \delta^{+}\left(k_{1}^{2}\right) \delta^{+}\left(k_{2}^{2}\right) \delta\left(\left(k_{1}+k_{2}\right)_{T}^{2}-q_{T}^{2}\right)}{\left(n \cdot k_{1}\right)^{\alpha}\left(n \cdot k_{2}\right)^{\alpha}\left(n_{i} \cdot k_{1}\right)\left(n_{j} \cdot\left(k_{1}+k_{2}\right)\right)\left(k_{1}+k_{2}\right)^{2}}
$$

- divergent in the limits $\epsilon \rightarrow 0$ and $\alpha \rightarrow 0$
- a range of overlapping singularities
- complication introduced by $\delta\left(\left(k_{1}+k_{2}\right)_{T}^{2}-q_{T}^{2}\right)$ which additionally couples gluon's momenta

Double-cut NNLO integrals

Example:

$$
\tilde{I}_{3 g v, i j}=\int \frac{d^{d} k_{1} d^{d} k_{2} \delta^{+}\left(k_{1}^{2}\right) \delta^{+}\left(k_{2}^{2}\right) \delta\left(\left(k_{1}+k_{2}\right)_{T}^{2}-q_{T}^{2}\right)}{\left(n \cdot k_{1}\right)^{\alpha}\left(n \cdot k_{2}\right)^{\alpha}\left(n_{i} \cdot k_{1}\right)\left(n_{j} \cdot\left(k_{1}+k_{2}\right)\right)\left(k_{1}+k_{2}\right)^{2}}
$$

- divergent in the limits $\epsilon \rightarrow 0$ and $\alpha \rightarrow 0$
- a range of overlapping singularities
- complication introduced by $\delta\left(\left(k_{1}+k_{2}\right)_{T}^{2}-q_{T}^{2}\right)$ which additionally couples gluon's momenta

To disentangle overlapping singularities and calculate regularized integrals we use the method of sector decomposition [Binoth, Heinrich, '00; Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke '17].

Sector decomposition

Two types of singularities

- Endpoint, e.g. soft:

$$
\left(k_{1}^{+}, k_{1}^{-}, k_{1}^{\perp}\right) \rightarrow 0
$$

Sector decomposition

Two types of singularities

- Endpoint, e.g. soft:

$$
\left(k_{1}^{+}, k_{1}^{-}, k_{1}^{\perp}\right) \rightarrow 0
$$

- Manifold, e.g. collinear

$$
k_{1} \cdot k_{2} \rightarrow 0
$$

The strategy

Given the integral:

$$
I_{G}=\int d^{d} k_{1} d^{d} k_{2} \mathcal{I}_{G} \times \mathcal{W}_{G}
$$

The strategy

Given the integral:
boundary integral encodes all $\alpha, \epsilon \rightarrow 0$ singularities

$$
I_{G}=\int d^{d} k_{1} d^{d} k_{2} \mathcal{I}_{G} \times \mathcal{W}_{G}
$$

finite weight

Given the integral:

$$
I_{G}=\int d^{d} k_{1} d^{d} k_{2} \mathcal{I}_{G} \times \mathcal{W}_{G}
$$

- Analytically integrate 3 out of finite weight $2 d$ dimensions
- Map the remaining variables to a unit hypercube (split the original

$$
=\sum_{j} \int_{0}^{1} \prod_{i=1}^{2 d-3} d x_{i}\left(\mathcal{I}_{G} \times \mathcal{W}_{G}\right)_{j}
$$ integral into a sum if necessary)

The strategy

Given the integral:
boundary integral encodes all $\alpha, \epsilon \rightarrow 0$ singularities

$$
I_{G}=\int d^{d} k_{1} d^{d} k_{2} \mathcal{I}_{G} \times \mathcal{W}_{G}
$$

- Analytically integrate 3 out of finite weight 2d dimensions
- Map the remaining variables to a unit hypercube (split the original integral into a sum if necessary)
- Apply sector decomposition to disentangle overlapping singularities

$$
=\sum_{j} \sum_{k \in \text { sectors }} \int_{0}^{1} \prod_{i=1}^{2 d-3} d x_{i}\left(\mathcal{I}_{G} \times \mathcal{W}_{G}\right)_{j k}
$$

The strategy

Given the integral:
boundary integral encodes all $\alpha, \epsilon \rightarrow 0$ singularities

$$
I_{G}=\int d^{d} k_{1} d^{d} k_{2} \mathcal{I}_{G} \times \mathcal{W}_{G}
$$

- Analytically integrate 3 out of $2 d$ dimensions
- Map the remaining variables to a unit hypercube (split the original integral into a sum if necessary)
- Apply sector decomposition to disentangle overlapping singularities
- Expand the result in Laurent series in ϵ and α

$$
=\sum_{j} \sum_{k \in \text { sectors }} \int_{0}^{1} \prod_{i=1}^{2 d-3} d x_{i}\left(\mathcal{I}_{G} \times \mathcal{W}_{G}\right)_{j k}
$$

$$
=\sum_{j, m, n} \sum_{k \in \text { sectors }}\left(\int_{0}^{1} a_{m n} \times \mathcal{W}_{G}\right) \alpha^{m} \epsilon^{n}
$$

Given the integral:

$$
I_{G}=\int d^{d} k_{1} d^{d} k_{2} \mathcal{I}_{G} \times \mathcal{W}_{G}
$$

- Analytically integrate 3 out of $2 d$ dimensions
- Map the remaining variables to a unit hypercube (split the original integral into a sum if necessary)
- Apply sector decomposition to disentangle overlapping singularities
- Expand the result in Laurent series in ϵ and α

$$
=\sum_{j, m, n} \sum_{k \in \text { sectors }}\left(\int_{0}^{1} a_{m n} \times \mathcal{W}_{G}\right) \alpha^{m} \epsilon^{n}
$$

- Numerically integrate series coefficients

$$
=\sum_{j} \sum_{k \in \text { sectors }} \int_{0}^{1} \prod_{i=1}^{2 d-3} d x_{i}\left(\mathcal{I}_{G} \times \mathcal{W}_{G}\right)_{j k}
$$

$$
=\sum_{j} \int_{0}^{1} \prod_{i=1}^{2 d-3} d x_{i}\left(\mathcal{I}_{G} \times \mathcal{W}_{G}\right)_{j}
$$

Single-cut (real-virtual)

Single-cut (real-virtual)

$$
S_{1-\mathrm{cut}}^{(2)}=\sum_{i j k} \int d^{d} I \frac{\delta^{+}\left(I^{2}\right) \delta\left(I_{T}-q_{T}\right)}{I_{+}^{\alpha} n_{k} \cdot I} n_{k}^{\mu} T_{k}^{a} J_{i j, a}^{\mu}(I)
$$

Single-cut (real-virtual)

$$
S_{1-\mathrm{cut}}^{(2)}=\sum_{i j k} \int d^{d} I \frac{\delta^{+}\left(I^{2}\right) \delta\left(I_{T}-q_{T}\right)}{I_{+}^{\alpha} n_{k} \cdot I} n_{k}^{\mu} T_{k}^{a} J_{i j, a}^{\mu}(I)
$$

- The soft current $J_{i j, a}^{\mu}(I)$ is known up to NLO [Catani, Grazzini '00; Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].

Single-cut (real-virtual)

$$
S_{1-\mathrm{cut}}^{(2)}=\sum_{i j k} \int d^{d} I \frac{\delta^{+}\left(I^{2}\right) \delta\left(I_{T}-q_{T}\right)}{I_{+}^{\alpha} n_{k} \cdot I} n_{k}^{\mu} T_{k}^{a} J_{i j, a}^{\mu}(I)
$$

- The soft current $J_{i j, a}^{\mu}(I)$ is known up to NLO [Catani, Grazzini '00; Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].
- $S_{1 \text {-cut }}^{(2)}$ can be obtained by a relatively simple integration over I^{μ}.

Single-cut (real-virtual)

$$
S_{1-\mathrm{cut}}^{(2)}=\sum_{i j k} \int d^{d} I \frac{\delta^{+}\left(I^{2}\right) \delta\left(I_{T}-q_{T}\right)}{I_{+}^{\alpha} n_{k} \cdot I} n_{k}^{\mu} T_{k}^{a} J_{i j, a}^{\mu}(I)
$$

- The soft current $J_{i j, a}^{\mu}(I)$ is known up to NLO [Catani, Grazzini '00; Bierenbaum, Czakon, Mitov '12; Czakon, Mitov '18].
- $S_{1 \text {-cut }}^{(2)}$ can be obtained by a relatively simple integration over I^{μ}.
- Single-cut piece of the soft function exhibits both real and imaginary part. The latter when $i \neq j \neq k$, the former, otherwise.

Bubble

Bubble

- Solvable analytically: direct cross check of our sector decompositionbased implementation
- Non-trivial tensor structure \rightarrow challenging numerators
- Laboratory to stress-test sector decomposition-based methodology
- Comparable with n_{f} part of Renormalization Group prediction

Bubble part of the soft function from differential equations

Bubble part of the soft function from differential equations

where

$$
\begin{aligned}
\left.(\underset{k}{q})^{q-k}\right)_{\mu \nu} & =\int \frac{d^{d} k N_{\mu \nu} \delta^{+}\left(k^{2}\right) \delta^{+}\left((q-k)^{2}\right)}{(n \cdot k)^{\alpha}(n \cdot(q-k))^{\alpha} k^{2}(q-k)^{2}} \\
& =T_{00} g^{\mu, \nu}+T_{q q} q^{\mu} q^{\nu}+T_{n n} n^{\mu} n^{\nu}+T_{q n}\left(n^{\mu} q^{\nu}+q^{\mu} n^{\nu}\right)
\end{aligned}
$$

Bubble part of the soft function from differential equations

- Topology:

$$
\int \frac{d^{d} k \delta\left(k_{T}-1\right) \theta\left(k^{2}\right) \delta\left(k^{0}\right)}{(n \cdot k)^{a_{1}+2 \alpha}(\bar{n} \cdot k)^{a_{2}}\left(v_{3} \cdot k\right)^{a_{3}}\left(v_{4} \cdot k\right)^{a_{4}}\left(k^{2}\right)^{a_{0}+\epsilon}}
$$

Bubble part of the soft function from differential equations

- Topology:

$$
\int \frac{d^{d} k \delta\left(k_{T}-1\right) \theta\left(k^{2}\right) \delta\left(k^{0}\right)}{(n \cdot k)^{a_{1}+2 \alpha}(\bar{n} \cdot k)^{a_{2}}\left(v_{3} \cdot k\right)^{a_{3}}\left(v_{4} \cdot k\right)^{a_{4}}\left(k^{2}\right)^{a_{0}+\epsilon}}
$$

bubble part of NNLO

Bubble part of the soft function from differential equations

$$
1=\int_{0}^{\infty} d m^{2} \delta\left(k^{2}-m^{2}\right)
$$

Bubble part of the soft function from differential equations

$$
1=\int_{0}^{\infty} d m^{2} \delta\left(k^{2}-m^{2}\right)
$$

which leads to

$$
\begin{aligned}
I & =\int_{0}^{\infty} d m^{2} \delta\left(k^{2}-m^{2}\right) \int \frac{d^{d} k \delta\left(k_{T}^{2}-1\right) \theta\left(k^{2}\right) \theta\left(k_{0}\right)}{(n \cdot k)^{a_{1}+2 \alpha}(\bar{n} \cdot k)^{a_{2}}\left(v_{3} \cdot k\right)^{a_{3}}\left(v_{4} \cdot k\right)^{a_{4}}\left(k^{2}\right)^{a_{0}+\epsilon}} \\
& =\int_{0}^{\infty} \frac{d m^{2}}{\left(m^{2}\right)^{a_{0}+\epsilon}} \int \frac{d^{d} k \delta\left(k_{T}^{2}-1\right) \delta\left(k^{2}-m^{2}\right) \theta\left(k_{0}\right)}{(n \cdot k)^{a_{1}+2 \alpha}(\bar{n} \cdot k)^{a_{2}}\left(v_{3} \cdot k\right)^{a_{3}}\left(v_{4} \cdot k\right)^{a_{4}}} .
\end{aligned}
$$

Bubble part of the soft function from differential equations

$$
1=\int_{0}^{\infty} d m^{2} \delta\left(k^{2}-m^{2}\right)
$$

which leads to

$$
\begin{aligned}
I & =\int_{0}^{\infty} d m^{2} \delta\left(k^{2}-m^{2}\right) \int \frac{d^{d} k \delta\left(k_{T}^{2}-1\right) \theta\left(k^{2}\right) \theta\left(k_{0}\right)}{(n \cdot k)^{a_{1}+2 \alpha}(\bar{n} \cdot k)^{a_{2}}\left(v_{3} \cdot k\right)^{a_{3}}\left(v_{4} \cdot k\right)^{a_{4}}\left(k^{2}\right)^{a_{0}+\epsilon}} \\
& =\int_{0}^{\infty} \frac{d m^{2}}{\left(m^{2}\right)^{a_{0}+\epsilon}} \int \frac{d^{d} k \delta\left(k_{T}^{2}-1\right) \delta\left(k^{2}-m^{2}\right) \theta\left(k_{0}\right)}{(n \cdot k)^{a_{1}+2 \alpha}(\bar{n} \cdot k)^{a_{2}}\left(v_{3} \cdot k\right)^{a_{3}}\left(v_{4} \cdot k\right)^{a_{4}}} .
\end{aligned}
$$

Finally, the topology reads:

$$
\int \frac{d^{d} k}{(n \cdot k)^{a_{1}+2 \alpha}(\bar{n} \cdot k)^{a_{2}}\left(v_{3} \cdot k\right)^{a_{3}}\left(v_{4} \cdot k\right)^{a_{4}}\left(k^{2}-m^{2}\right)^{a_{5}}\left((n \cdot k)(\bar{n} \cdot k)-m^{2}-1\right)^{a_{6}}}
$$

Bubble part of the soft function from differential equations

$$
1=\int_{0}^{\infty} d m^{2} \delta\left(k^{2}-m^{2}\right)
$$

which leads to

$$
\begin{aligned}
I & =\int_{0}^{\infty} d m^{2} \delta\left(k^{2}-m^{2}\right) \int \frac{d^{d} k \delta\left(k_{T}^{2}-1\right) \theta\left(k^{2}\right) \theta\left(k_{0}\right)}{(n \cdot k)^{a_{1}+2 \alpha}(\bar{n} \cdot k)^{a_{2}}\left(v_{3} \cdot k\right)^{a_{3}}\left(v_{4} \cdot k\right)^{a_{4}}\left(k^{2}\right)^{a_{0}+\epsilon}} \\
& =\int_{0}^{\infty} \frac{d m^{2}}{\left(m^{2}\right)^{a_{0}+\epsilon}} \int \frac{d^{d} k \delta\left(k_{T}^{2}-1\right) \delta\left(k^{2}-m^{2}\right) \theta\left(k_{0}\right)}{(n \cdot k)^{a_{1}+2 \alpha}(\bar{n} \cdot k)^{a_{2}}\left(v_{3} \cdot k\right)^{a_{3}}\left(v_{4} \cdot k\right)^{a_{4}}} .
\end{aligned}
$$

Finally, the topology reads:

$$
\int \frac{d^{d} k}{(n \cdot k)^{a_{1}+2 \alpha}(\bar{n} \cdot k)^{a_{2}}\left(v_{3} \cdot k\right)^{a_{3}}\left(v_{4} \cdot k\right)^{a_{4}}\left(k^{2}-m^{2}\right)^{a_{5}}\left((n \cdot k)(\bar{n} \cdot k)-m^{2}-1\right)^{a_{6}}}
$$

- Identities \rightarrow reduction $\rightarrow \mathrm{DE} \rightarrow$ solutions $\rightarrow \int d m^{2} \rightarrow I_{j k}(\beta, \theta)$

Complete Soft Function at NNLO: structure of the result

- In momentum space

$$
S^{(2, \text { bare })}\left(q_{T}, \beta, \theta\right)=\frac{1}{q_{T}^{p}}\left[S_{\text {bubble }}^{(2)}(\beta, \theta, \epsilon)+S_{1 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)+S_{2 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)\right]
$$

Complete Soft Function at NNLO: structure of the result

- In momentum space
$S^{(2, \text { bare })}\left(q_{T}, \beta, \theta\right)=\frac{1}{q_{T}^{p}}\left[S_{\text {bubble }}^{(2)}(\beta, \theta, \epsilon)+S_{1 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)+S_{2 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)\right]$

Fourier Transform

- In position space

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}(\beta, \theta, \epsilon)+S_{1-\text { cut }}^{(2)}(\beta, \theta, \epsilon)+S_{2 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)\right]
\end{aligned}
$$

Complete Soft Function at NNLO: structure of the result

- In momentum space

$$
S^{(2, \text { bare })}\left(q_{T}, \beta, \theta\right)=\frac{1}{q_{T}^{p}}\left[S_{\text {bubble }}^{(2)}(\beta, \theta, \epsilon)+S_{1 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)+S_{2 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)\right]
$$

- In position space \downarrow Fourier Transform

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}(\beta, \theta, \epsilon)+S_{1 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)+S_{2 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)\right]
\end{aligned}
$$

\hookrightarrow Momentum-space soft function has to be calculated up to order ϵ.

Complete Soft Function at NNLO: structure of the result

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}(\beta, \theta, \epsilon)+S_{1-\text { cut }}^{(2)}(\beta, \theta, \epsilon)+S_{2 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)\right]
\end{aligned}
$$

Complete Soft Function at NNLO: structure of the result

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}(\beta, \theta, \epsilon)+S_{1 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)+S_{2 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)\right] \\
= & \frac{1}{\epsilon^{2}} S^{(2,-2)}\left(L_{\perp}\right)+\frac{1}{\epsilon} S^{(2,-1)}\left(L_{\perp}\right)+S^{(2,0)}\left(L_{\perp}\right)
\end{aligned}
$$

Complete Soft Function at NNLO: structure of the result

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}(\beta, \theta, \epsilon)+S_{1 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)+S_{2 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)\right] \\
= & \frac{1}{\epsilon^{2}} S^{(2,-2)}\left(L_{\perp}\right)+\frac{1}{\epsilon} S^{(2,-1)}\left(L_{\perp}\right)+S^{(2,0)}\left(L_{\perp}\right)
\end{aligned}
$$

can be cross-checked against RG; fixes all L_{\perp}-dependent terms in $S^{(2,0)}\left(L_{\perp}\right)$

Complete Soft Function at NNLO: structure of the result

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}(\beta, \theta, \epsilon)+S_{1 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)+S_{2 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)\right] \\
= & \frac{1}{\epsilon^{2}} S^{(2,-2)}\left(L_{\perp}\right)+\frac{1}{\epsilon} S^{(2,-1)}\left(L_{\perp}\right)+S^{(2,0)}\left(L_{\perp}\right)
\end{aligned}
$$

can be cross-checked against RG; fixes all L_{\perp}-dependent terms in $S^{(2,0)}\left(L_{\perp}\right)$

- The only term that has to be obtained through direct calculation is the L_{\perp}-independent part of $S^{(2,0)}\left(L_{\perp}\right)$.

Complete Soft Function at NNLO: structure of the result

$$
\begin{aligned}
S^{(2, \text { bare })}\left(L_{\perp}, \beta, \theta\right)= & {\left[\frac{1}{\epsilon}+L_{\perp}+L_{\perp}^{2}+\ldots\right] } \\
& \times\left[S_{\text {bubble }}^{(2)}(\beta, \theta, \epsilon)+S_{1 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)+S_{2 \text {-cut }}^{(2)}(\beta, \theta, \epsilon)\right] \\
= & \frac{1}{\epsilon^{2}} S^{(2,-2)}\left(L_{\perp}\right)+\frac{1}{\epsilon} S^{(2,-1)}\left(L_{\perp}\right)+S^{(2,0)}\left(L_{\perp}\right)
\end{aligned}
$$

can be cross-checked against RG; fixes all L_{\perp}-dependent terms in $S^{(2,0)}\left(L_{\perp}\right)$

- The only term that has to be obtained through direct calculation is the L_{\perp}-independent part of $S^{(2,0)}\left(L_{\perp}\right)$.
- However, we calculate all terms and use the redundant ones for cross checks against Renormalization Group prediction.

Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^{2}}$ singularity, higher order poles appear in individual contributions.

Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^{2}}$ singularity, higher order poles appear in individual contributions.

- All α poles, including $\frac{\epsilon}{\alpha}$, as well as $\frac{1}{\epsilon^{4}}$ pole cancel within each colour structure, for example

$$
\frac{1}{\epsilon^{4}}\left(\begin{array}{cc}
0.00009 N_{c}^{-1}-0.00009 N_{c} & -0.00002 N_{c}^{2}-0.00009 N_{c}^{-2}+0.0001 \\
-0.00002 N_{c}^{2}-0.00009 N_{c}^{-2}+0.0001 & 0.00008 N_{c}^{3}-0.00006 N_{c}+0.00007 N_{c}^{-3}-0.00009 N_{c}^{-1}
\end{array}\right)
$$

Vanishing of higher order poles

Even though the NNLO Soft Function exhibits at most $\frac{1}{\epsilon^{2}}$ singularity, higher order poles appear in individual contributions.

- All α poles, including $\frac{\epsilon}{\alpha}$, as well as $\frac{1}{\epsilon^{4}}$ pole cancel within each colour structure, for example

$$
\frac{1}{\epsilon^{4}}\left(\begin{array}{cc}
0.00009 N_{c}^{-1}-0.00009 N_{c} & -0.00002 N_{c}^{2}-0.00009 N_{c}^{-2}+0.0001 \\
-0.00002 N_{c}^{2}-0.00009 N_{c}^{-2}+0.0001 & 0.00008 N_{c}^{3}-0.00006 N_{c}+0.00007 N_{c}^{-3}-0.00009 N_{c}^{-1}
\end{array}\right)
$$

- $\frac{1}{\epsilon^{3}}$ pole cancels between 1 -cut and 2-cut contributions

$$
\frac{1}{\epsilon^{3}}\left(\begin{array}{cc}
0.0004 N_{c}^{3}-0.0007 N_{c}+0.0004 N_{c}^{-1} & 0.0004 N_{c}^{2}-0.0004 N_{c}^{-2}-7 . \times 10^{-6} \\
0.0004 N_{c}^{2}-0.0004 N_{c}^{-2}-7 . \times 10^{-6} & -0.0004 N_{c}^{3}-0.00001 N_{c}+0.0003 N_{c}^{-3}+0.0002 N_{c}^{-1}
\end{array}\right)
$$

[^0]
NNLO, small- q_{T} soft function for top pair production

Quark bubble contribution

Validation of the framework

- Perfect agreement of quark bubble results obtained from differential equations and sector decomposition for all terms in ϵ expansion
- Reproduction of the n_{f} part of Renormalization Group result

Imaginary part

($q \bar{q}$ channel)

(gg channel)

Real part

Real part

s_{22}

S_{23}

S_{13}

Conclusions

- Our goal: Use small- q_{T} factorization and q_{T} slicing to perform independent calculation of top pair production at NNLO

Conclusions

- Our goal: Use small- q_{T} factorization and q_{T} slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function

Conclusions

- Our goal: Use small- q_{T} factorization and q_{T} slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function
- We have constructed a framework based on sector decomposition and differential equations and used it to complete the calculation of the the small- q_{T} soft function for top pair production at NNLO

Conclusions

- Our goal: Use small- q_{T} factorization and q_{T} slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function
- We have constructed a framework based on sector decomposition and differential equations and used it to complete the calculation of the the small- q_{T} soft function for top pair production at NNLO
- The framework has been extensively validated and cross-checked:

1. Cancellation of α poles, including ϵ / α, and ϵ poles beyond $1 / \epsilon^{2}$
2. Perfect agreement with analytic calculation for bubble graphs
3. RG result for the complete NNLO soft function recovered: real and imaginary part

Conclusions

- Our goal: Use small- q_{T} factorization and q_{T} slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function
- We have constructed a framework based on sector decomposition and differential equations and used it to complete the calculation of the the small- q_{T} soft function for top pair production at NNLO
- The framework has been extensively validated and cross-checked:

1. Cancellation of α poles, including ϵ / α, and ϵ poles beyond $1 / \epsilon^{2}$
2. Perfect agreement with analytic calculation for bubble graphs
3. RG result for the complete NNLO soft function recovered: real and imaginary part \rightarrow direct demonstration of validity of the small- q_{T} factorization for top pair production at NNLO

Conclusions

- Our goal: Use small- q_{T} factorization and q_{T} slicing to perform independent calculation of top pair production at NNLO
- The only missing component: the NNLO soft function
- We have constructed a framework based on sector decomposition and differential equations and used it to complete the calculation of the the small-q q_{T} soft function for top pair production at NNLO
- The framework has been extensively validated and cross-checked:

1. Cancellation of α poles, including ϵ / α, and ϵ poles beyond $1 / \epsilon^{2}$
2. Perfect agreement with analytic calculation for bubble graphs
3. RG result for the complete NNLO soft function recovered: real and imaginary part \rightarrow direct demonstration of validity of the small- q_{T} factorization for top pair production at NNLO

- The soft function can now be used to obtain full $t \bar{t}$ cross section at NNLO as well for resummation up to NNLL'

Acknowledgements

This work has been supported by the National Science Centre, Poland grant POLONEZ No. 2015/19/P/ST2/03007. The project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement NO. 665778.

[^0]: ${ }^{\dagger}$ We used $\beta=0.4, \theta=0.5$.

