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From Pheno to Amplitudes

4+ Not a typical search talk (but | could give one!)

i + Rather than iImpressing you with a shopping list of all
the searches we do, I'll focus on a very few, which I'll
use as the examples of where theoretical progress
either already made difference, or would be very helpful

+ The examples | picked are mainly related to the topics
of this workshop, albeit there are many other interesting
theoretical issues related to searches (jet substructure
and Sudakov logs, inclusive b quark production and
FONLL, quarkonia polarization puzzle, etc.), which ['ll
skip

+ Mainly use CMS examples; in most cases similar
conclusions apply to ATLAS data as well
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Monojets:
the Classics



Monojet Searches

+ Monojet analysis is a classical search for a number of
new physics phenomena

@ Smoking gun signature for supersymmetry, large extra
dimensions, dark matter production, ...

e Was pursued since early 1980s

+ The signature is deceptively simple, yet it's not
e Backgrounds from instrumental effects
o lrreducible Z(vv)+jet background

® Reducible backgrounds from jet mismeasurements and
W+jets with a lost lepton

+ Number of technigues have been developed since the
first search by UA1; will show the state-of-the-art results
from CMS



EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY

ACCOMPANIED BY A JET OR A PHOTON(S) IN p; COLLISIONS
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UAl Collaboration, CERN, Geneva, Switzerland
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Monojet Searches

+ We've come a long way since Carlo Rubbia's first
attempt!

EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY
ACCCMPANIED BY A JET OR A PHOTON(S) IN p; COLLISIONS

AT /5™ = 540 Gev

[PL, 139B, 115 (1984)]

UAl Collaboration, CERN, Geneva, Switzerland

Abstract

We report the observation of five events in which a missing transverse
energy larger than 40 GeV is associated with a narrow hadronic jet and of two
similar events with a neutral electromagnetic cluster (either one or more

closely spaced photons). We cannot find an explanation for such events in

terms of backgrounds or within the expectations of the Standard Model.
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attempt!

EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY
ACCOMPANIED BY A JET OR A PHOTON(S) IN pp COLLISIONS

AT /s = 540 GeV

[PL, 139B, 115 (1984)]

UAl Collaboration, CERN, Geneva, Switzerland

Abstract Power, Deceit and the Ultimate Experiment

“...one of thase rare science books that tell about science
in the course of telling about the uaman comeddy.”
Los Angeles limes

We report the observation of five events in which a missing transverse
energy larger than 40 GeV is associated with a narrow hadronic jet and of two

similar events with a neutral electromagnetic cluster (either one or more N

. . . -'mj“
closely spaced photons). We cannot find an explanation for such events in 2 ii.""" .
terms of backgrounds or within the expectations of the Standard Model.
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BROWN
4+ The latest Run 2 analysis is built on the Run 1 techniques
® Increased number of control regions (added e+jets, ee+jets)

® Theoretically consistent treatment of EW/QCD corrections to SM
V+jets processes, after Lindert et al., arXiv:1705.04464
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4+ Also sets limits on Dirac fermion [Bai/Berger, arXiv:
1308.0612] and non-thermal [Dutta/Gao/Kamon,
arXiv:1401.1825] DM models, as well as new limits
on models with large extra dimensions
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Anatomy of the Analysis

4+ In order to estimate the dominant Z(vv)+jets background with best precision, CMS
employs 5 control regions (CRs) for each signal region (SR), "monojet" or "mono-V":

o e/u+jets CRs
o ee/uutjets CRs
o y+jets CR
4+ The signal is extracted via simultaneous fit to the ME+ distribution in a given SR and to
the hadronic recoil (proxy for MET) distribution in all the corresponding CRs
+ The interplay between the CRs and SR is parameterized via transfer factors,

determined from simulation :
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+ The reason data and simulation agree so well is the state-of-the art EW
and QCD NLO corrections used for V+jets simulations, as well as
improved analysis of related AONLO QCD for Vet @ 1 Tov
uncertainties = -

4+ Based on the following recommendations:
® Lindert et al, arXiv:1705.04664 — iy
e == NLOQCD .,y w(ev + jet
o See Refs. therein for individual calculations = NnLogep XY

4+ NLO QCD corrections:

© Renormalization/factorization scale
uncertainty [underestimate shape
uncertainties]

® Supplemented by altered boson pr
spectrum as an additional shape
uncertainty to connect low- and high-pr
ranges

o Additional uncertainty for the difference i3 - |
between y+jets and W/Z+jets spectra e

arXiv:1705.04664

do/donto ocp
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The Role of Theory (cont'd)

BROWN

+ Next, EW corrections are included at NLO + two-loop
Sudakov logs [Denner et al., arXiv:0906.1656, 1103.0914,
1211.5078; and Kallweit et al., S e
arXiv:1511.08692]

+ Again three uncertainties are
considered:

e EW from Sudakov logs beyond two
loops (Sudakov exponentiation)

e A 5% uncertainty in EW NLO
K-factor to cover missing
higher-order corrections

e Third uncertainty to cover the
difference between full NLL Sudakov
log effects and naive EW NLO
exponentiation
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The Role of Theory (cont'd)

BROWN

4+ Next, there are several

Vet @ 13 TeV

M approaches how to combine 2%
4 NLO QCD and EW |
§ corrections e,
L= 10:12%‘- NLO‘QCDQ‘sz‘LO‘ E\‘N‘ N
fl + Use a factorized approach, 3 e
@ which partially includes
B mixed QCD-EW corrections i
d « Covered by an extra
H uncertainty for the difference __ &%
= e il 5 10E
5 between the additive and 2 e
5 multiplicative approaches [ &z
] i = e
4+ Finally, include the PDF s e
uncertainties % i T |

prv [GeV]



Summary of Theory Uncertainties

BROWN
4+ Final theory uncertainties

e Significant improvement over previous versions of the
analysis, which was based on less precise calculations

Uncertainty source Process (magnitude) Correlation

Z—vw/W — v (01-0.5%) Correlated between processes;

Fact. & renorm. scales (QCD) 7 — vv/y-+ets (0.2 0.5%) and in pr

Z—vw/W — fv(04-0.1%) Correlated between processes;

pr shape dependence (QCD) Z — vv/y+jets (0.1-02%)  and in pr

Z—vw/W — lv(04-15%) Correlated between processes;

Process dependence (QCD) Z = vv/y+ets (15-3.0%)  and in pr

Z — v /W — Ly (0-0.5%) Correlated between processes;
Z — vv/y+jets (0.1 - 1.5%) and in pr

Z — vv (0.2 -3.0%)
Missing NNLO effects (EW) W — fv (0.4 - 4.5%)
Y-+ets (0.1 - 1.0%)

Z — vv (0.2 - 4.0%)
Effects of NLL Sudakov approx. (EW) W — lv (0-1.0%)
Y+iets (0.1 — 3.0%)

Effects of unknown Sudakov logs (EW)

Uncorrelated between processes;
correlated in pr

Uncorrelated between processes;
correlated in pr
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Unfactorized mixed QCD-EW corrections Z — v /W — fv (0.15-0.3%) Correlated between processes;

= Z — vv/y+jets (<0.1%) and in pr
3 PDF Z — vv/W — v (0-0.3%) Correlated between processes;
o Z — vv/y+jets (0 - 0.6%) and in pr




Ratio W(In)/y
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Data / Pred.

CMS arXiv

Ratio W(In)/y

g

Greg Landsberg - CMS Searches meet Theory - AMPHEP2018

Data / Pred.

Slide 15

LA L Y L B

CMS e Z(Il))W Data

— Z(Ilyw MC

Ratio Z(ll)/y

TTT T [T [T T[T IT [ TTT[TTTTT

$

TTT T[T 77T

Z
1))

<

c
[
10
17

3
1,
13
=
1N ¢»)
1o

!
!
+.
}
.

Data / Pred.

Data / Pred.

35.91b (13 TeV)
:I T I T T T I T T T | T T T | T T T | T T T ]
2 -
a CMS e W(In)/y Data E
16F 3
1aE — W(In)/y MC ]
1.2 E
08t —— g
0.6 E
0.4 =
0.2F E
c: 1 1 1 N 1 1 1 1 1 1 1 1 1 | 1 1 1 3
1.5 T T T ; T T T : T T T : T T T : T T T
| P e + —+—
_+_
0.5
600 800 1000 1200
Hadronic Recoil [GeV]
35.9fb™ (13 TeV)
2 T T | T T T T T T | T T T | T T T | T T T
s CMS e W(In)/y Data
16
14 — W(In)/y MC
1.2

0.8
0.6
0.4
0.2

—p—

400 600 800 1000 1200 1400
Hadronic Recoil [GeV]

35.9 fb™ (13 TeV)

T rr Tt T T T TT

CMS e Z(ll)/W Data

— Z(IlyW MC

TTT QU T[T [ TIT[TTT[TTT T

3

b b b et e b B b s B b

e
Old uncertai#?ies

e b e b e

T[T T[T [T

1.5

0.5

Data / Pred.

i
1200 1400
Hadronic Recoil [GeV]

SO O VU P A S OO B SO SO SO Y OSSO B SO SO O
t I T t

et

S A A M M W i i Wt Wt W | WA

-+
L+ [
s

o -+ 4

Data / Pred.

} 1 1 1
0 600 800 1000 1200 1400
Hadronic Recoil [GeV]

=}
S N
[N

TTIT [T T[T T[T ororprT

o
-
e

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

4+ The effect of reduced theoretical uncertainties:

35.9 b7 (13 TeV)

TIT T T[T T[T rTT

CMs

|

P T I A I Y O P e W

1.5

—

TTTTT[TT T[T T[T T[T TT 1T

TTT T[T T[T [T7T

4

P IS IS el ) A P PO A P T O

f
Y
+

35.9fb™ (13 TeV)

LIS L L N B L B B

o Z(ll)/y Data

——Z(Ily/y MC

e
TR

ke

Hadronic Recoil [GeV]

35.9 b (13 TeV)

« Z(ll)/y Data

— Z(lly/y MC

it
e

1703.01651-

T =T

i
400

CMS arXiv

Hadronic Recoil [GeV]




Experimenters’ Wishlist

4+ | know it's simpler to say than to do, nevertheless:

e We would like similar level of understanding for the V+b
and V+bb production

® This would benefit a lot bbo+MET searches (SUSY, DM),
such as mono-Higgs and generic mono-bb

@ We would also like to have similar connection well
understood theoretically between Wy, Zy, and vyy

® This would benefit monophoton analysis the same way the
monojets benefit from V+jets understanding
e Finally, we would also like the understanding of EW
V+jets production in the VBF phase space (including
interference with QCD V+jets)

® This would benefit measurement of EW production and
gTGC, as well as H(inv.) searches (next slide)
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Invisible Higgs Decay

4+ New H(inv.) search based on VBF topology

4+ Similar approach to the monojet search, except requiring two forward
jets and the lack of y+jets CR; also no V+jets SR

+ Use dijet mass as the sensitive variable

+ Significantly larger transfer factor uncertainties than in monomers due
to lack of theoretical calculations (EW V+jets only includes NLO QCD)
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4+ Associated production of Z with one or two b jets have been measured to a high
precision
+ 5FS LO+PS and NLO+PS predictions generally reproduce inclusive data, although

differential distributions exhibit certain shape difference
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4+ Here the data are inconclusive, as only an inclusive
measurement exists, with ~20% precision

What about W+b(b)

CMS 19.8 fb" (8 TeV)
1 | 1 1 1 1 1 1 1 1
Total uncertainty
. PDF uncertainty CMS

. 0.64 + 0.03 (stat) = 0.10 (syst)

DPI uncertainty + 0.06 (theo) = 0.02 (lumi) pb

MCFM (x Hadronization) W
0.51+ 0.02,,. = 0.06, pb

MadGraph5 + Pythia6 5F W
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MadGraph5 + Pythia6 4F W
0.49 + 0.02,,. + 0.06

PDF ~ pr PP

MadGraph5 + Pythia8 4F H o
0.50 = 0.03 .= 0.06 , pb

| L L L L | L L L L
0 0.5 1

CMS arXiv:1608.07561 o(W(lv)+bb) [pb]
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V+b(b) as VH(bb) Background

BROWN

4+ However, in certain regions of the phase space, in particularly at
high boson boost, typical for VH(bb) searches, the agreement is
not good

e It's clearly getting worse with increasing pt(V)
+ W+b(b) seems to follow the same trend

4+ Better theoretical understanding of this regime would be very
useful

Process  O-lepton 1-lepton  2-lepton low-pr(V) 2-lepton high-p(V)
WO0Ob 1.14+£0.07 1.14+0.07 — —
Wi1b 1.66 £0.12 1.66 +0.12 — —
W2b 1.49+0.12 1.49+0.12 — —

CMS arXiv:1709.07497

Greg Landsberg - CMS Searches meet Theory - AMPHEP2018

Oyt T VPSS C VIS arXiv:1709.07497
Z1b 1.284+0.17 — 0.98 + 0.06 1.024+0.11
Z2b 1.61+£0.10 — 1.09 +£0.07 1.28 +0.09
tt 0.784+0.05 0.9140.03 1.00 £0.03 1.04 +0.05
Process Normalisation factor
tt 0- and 1-lepton 0.90 + 0.08
1t 2-lepton 2-jet 0.97 £ 0.09
tt 2-lepton 3-jet 1.04 + 0.06 .
W+I$F 2_jetJ 122 +0.14 ATLAS arXiv:1708.03299
W + HF 3-jet 1.27 £0.14
Z + HF 2-jet 1.30 £0.10
Z + HF 3-jet 1.22 £ 0.09




V+b(b) as VH(bb) Background

BROWN

4+ However, in certain regions of the phase space, in particularly at
high boson boost, typical for VH(bb) searches, the agreement is
not good

e It's clearly getting worse with increasing pr(V)
+ W+b(b) seems to follow the same trend

4+ Better theoretical understanding of this regime would be very
useful

Process  O-lepton 1-lepton  2-lepton low-pr(V) 2-lepton high-p(V)

1,01 +0.06 1,024 0.06 CMS arXiv:1709.07497

Greg Landsberg - CMS Searches meet Theory - AMPHEP2018

0.98 +0.06
1.09 +£0.07
1.00 +0.03
Process Normalisation factor
tt 0- and 1-lepton 0.90 + 0.08
1t 2-lepton 2-jet 0.97 £ 0.09
1t 2-lepton 3-jet g .
W + HF 2-jet . T ATLAS arXiv:1708.03299
W + HF 3-jet V' 127+0.14 Y

Z+HF2jet Kk 130£0.10
Z + HF 3-jet gy, 1.220.09
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Standard Model
of Ambulance

"He's in training for a career in law."
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WW Cross Section (2014)

+ Not a new subject, but illustrative as to the
Importance of precise theory predictions

44 In 2012-2014, a ~20 excess of WW production cross

section w.r.t. NLO predictions was consistently
observed by ATLAS and CMS at 7 and 8 TeV

LHC 8 TeV o(W'W) - MCFM6.3 PDFs+scales - a, = 0.118 T T ' '_ T+ 1 11 T T [ T T T 1 LI —
80 ATLAS Preliminary
- —e— NNPDF2.3 ~ ;
[NwDRD YA 8 TeV | SN [ran-z0am
- —< CMS : /s =8 TeV
3 s oo | MSTW2008 WG
E - E + +
- ( * w ] — 71.4=1.2 "2 pb
55t ] ] | ATLAS-epWZ12 W ¢ W — Stat
] ] Stat+syst
50 C ] 1 1 1 | 1 1 1 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1
50 60 70 80 90 100

Oy [PP]



Ambulance Chasing

+ Not much of an excess, but it triggered a round of ambulance
chasing with proposals to explain it via light top squarks,
charginos, sleptons, etc.

o Curtin, Meade, Tien, arXiv:1406.0848
o Kim, Rolbiecki, Sakurrai, Tattersall, arXiv:1406.0858
e Luo, Luo, Xu, Zhu, arXiv:1407.4912

BROWN
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More Sober Approaches

+ To their credit, not everyone left after the ambulance
+ More sober proposed explanations for the observed

excess included:

e Jaiswall, Okui, arXiv:1407.4537 - large
logs due to the effects of b-jet veto used
to suppress the dominant tt background

m Related work by Becher et al.,
arXiv:1412.8408

© Monni, Zanderighi, arXiv:1410.4745 -
noticed that fiducial cross section agrees
well with theory; suggested that the
discrepancy originates from extrapolation
to the full phase space, where K-factors
could be large (cf. amplitude zero in WW)

ot [pb]

60t/s =8 TeV

55} {
2. 50} *
45} { ¢

35 R=04 R=0.5

Theory
@ (W only)® ATLASA CMS

45_\/52 7 TeV

T

351

30fpyeto =25 GeV pieto = 30 GeV{

R=04 R=0.5

arXiv:1407.4537

Theor
® (111 only) @ ATLASA CMS

D} = 25 GeV' pjF® = 30 GeV |
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4+ Soon, the puzzle

was resolved via full 7

NNLO calculations
by Gehrmann et al.,
arXiv:1408.5243

+ They showed that
NNLO effects are
significant (O(10%))
and largely cure the
discrepancy with the
experimental data

80
60
40

20

1.15

1.1 F
1.05 F
1.00 F
0.95 E

NNLO To Rescue

[pb] [

gg >H—> WW* oo NLO

arXiv:1408.5243




Differential Cross Sections

BROWN

4+ A follow-up paper by largely the same group of authors [Grazzini
et al., arXiv:1605.02716] showed that NNLO corrections could
lead to substantial changes in the shape of WW kinematic
variables
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After the Dust Settled

BROWN

+ Recent measurements are in excellent agreement

(e 0]
(@]
S .
i with the NNLO predlctlons
% July 2018 | . | | | | . | QMS IPreIirninarly
i CMS measurements 7 TeV CMS measurement (stat,stat+sys)  +—+o——
g vs. NNLO (nLo) theory 8 TeV CMS measurement (stat,stat+sys)  +—+o—
,'E 13 TeV CMS measurement (stat,stat+sys) ++eo—+
© Y 1.06 £ 0.01=0.12 5.0fb"
= Wy, (NLO th.) 1.16 £ 0.03 +0.13 5.0fb
2 Zy, (NLO th.) 0.98 £+0.01+0.05 5.0fb
S Zy, (NLO th.) 0.98 £+0.01+0.05 19.5fb"
& WW+W2Z 1.01+0.13£0.14 4.9fb
= WW 1.07 +0.04 +0.09 4.91b"
3 WW 1.00 + 0.02 + 0.08 19.4 fb
o WWwW 0.96 +0.05 +0.08 2.3fb™
z Wz 1.05+0.07 +0.06 4.9fb™"
g W2Z 1.02 +0.04 + 0.07 19.6 fb™
> W2Z 0.96 +0.02 + 0.05 35.9fb"
S 77 0.97 +0.13+0.07 4.9fb™
ZZ e 0.97 +0.06 +0.08 19.6fb™
@ Y4 1.14 +0.04 £+ 0.05 35.9 fb"
35 All rgésults at: 1 ' O i 2
= http:/lcarmoh/goloNi7 Production Cross Section Ratio: Oy, / Oy



BN Lessons Learned

4+ Insufficient precision of theoretical predictions is a
fruitful ground for ambulance chasers

44 The community has long became "trigger-happy" to
explain any 2o-ish deviation with new physics

+ Extrapolation to full phase space is often a
dangerous step with the uncertainties hard to control

® Fiducial cross sections should always be reported by
the experiments, in addition

4+ Higher-order calculations could come to rescue

4+ Differential distributions calculated at higher orders
are of particular importance - we would like to see
more of those available
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Top Quark pr Spectrum

4+ The discrepancy between the NLO predictions and
the data in top quark pr spectrum in tt production
have been a long-standing problem

3+ Observed with pretty much all the generator and
poses a problem for many searches for new physics
where one has to reweight the pt spectrum to match

i
i

.-

ne data, resulting in a ~10% additional uncertainty in
ne background prediction

'he agreement is a bit better with NNLO calculations

(still not perfect!), but we lack NNLO generators
capable of event generation
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RO Top Quark pr Spectrum

4+ The discrepancy between the NLO predictions and the data in top
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4+ Top quark pt spectrum at parton level vs. NLO+PS

and NNLO

CMS arXiv:1708.07638 21107 (13 TeV)
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® Top pr Summary

+ The jury is still out to as what's going on

4+ Given the importance of the tt as background for new
physics in vast majority of searches, full theoretical
understanding of the issue is very important

+ Home-grown reweighting method clearly won't
suffice for high-precision searches and
measurements in Run 3 and beyond

4 4+ A long standing problem, really in a desperate need
of a proper solution




ISR to Rescue
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Trijetsljjy as a Dijet Proxy

BROWN

| + A clever way to look for low-mass dijet CMS arXlv:1705.10532

] resonances is to use photon or jet ISR to aid o 1—— —

ml  triggering and utilize jet substructure Doo| — oenes ' SN

3 techniques to reconstruct boosted resonance  S05[ == s Ereses

< $) ", v

 + Allows to lower the dijet mass reach to 50 GeV, °3f

I as demonstrated with the W/Z peak 02r el wzpra

— . . -.-. CDF Run 1[18]

M observation in CMS - COFRun2ltel
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H(bb) in Boosted Channel

4+ Could use the same approach to look for H(bb) decays in b-tagged large-cone jet
+ Currently limited by the trigger; work on specialized triggers is ongoing
+ First results are very promising: achieved ~10 sensitivity w/ 2016 data

+ Ultimately would like to probe the H(gg) decay, which can't be seen otherwise at a
hadron collider
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Generalization: ¢(bb) Search

BROWN

4+ Generalize the gg — H(bb)+ISR N e
search to an arbitrary (pseudo)scalar 5 o
resonance produced via gluon fusion , Y

* USG bOth R=08 (AK) and 15 (CA) . 20 35.9 b (13 TeV)

o o CMS
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ISR Searches: Theory Issues

4+ For reliable signal extraction/limits, it's crucial to understand well the pr
spectrum of the (pseudo)scalar resonance produced via gluon fusion at
large pr typical of the ISR searches

+ Subject of active theoretical investigation now

4+ For the Higgs, the state-of-the-art ggF NLO calculations with resolved
top quark loop are now available [Kudashkin et al., arXiv:1801.08226;
Jones et al., arXiv:1802.00349]

4+ Ideally would like to combine NNLO EFT and full NLO with resolved loop

pp = H+j@13TeV | | = 10°

Greg Landsberg - CMS Searches meet Theory - AMPHEP2018
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ISR: Theory Issues (cont'd)

+ VBF production is a significant (30-50%) contribution at
large Higgs boson pT

e Recently calculated at NNLO fully differentially [Cacciari et
al., arXiv:1506.02660; Cruz-Martinez et al., arXiv:
1802.02445] and approximate N3LO [Dreyer/Karlberg, arXiv:
1606.00840]

e Cross section for pt(H) > 450 GeV is 4.7 b
4+ Open questions:

e Given the large K-factors, what are the appropriate scale
choices?

e What are reliable uncertainties and how to decrease them?
@ Are EW corrections important?

e How valid are the Higgs boson corrections for a general
(pseudo)scalar in the 100-300 GeV mass range?



Comparison with CMS

+ There is a lot of confusion in comparison of the latest results
with CMS

© NLO theory prediction for pt(H) > 450 GeV is 12.9+24% »4¢, fb
e CMS quotes a very different number: 31.7 £ 9.5 fb
4+ Confusion comes from the two aspects of the measurement:

e Use of smeared distributions (no unfolding), which increases
the cross section by a factor of ~2 due to JES/JEC

© CMS number corresponds to the leading jet pt > 450 GeV,
which is different from pt(H) > 450 GeV because in ~50% of
the case the ISR jet is a leading jet, which gives another factor
of ~2
+ With these caveats, the state-of-the-art theory calculation is
quite consistent with what CMS quotes and measures
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Search for Black Holes

BROWN

+ Traditionally used to probe semiclassical black holes, also provide strong limits
on high-multiplicity signatures often expected to come from RPV SUSY
decays, axigluons, and other strong dynamics objects, quantum gravity

4+ Based on the St invariance: St = 2p7 nearly independent of the multiplicity N
+ Predict background from N = 3 distribution; go up to N = 11! 555113 7o)
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Search for Black Holes

BROWN

+ Traditionally used to probe semiclassical black holes, also provide strong limits
on high-multiplicity signatures often expected to come from RPV SUSY
decays, axigluons, and other strong dynamics objects, quantum gravity

4+ Based on the St invariance: St = 2p7 nearly independent of the multiplicity N
+ Predict background from N = 3 distribution; go up to N > 11! 5513720
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First Search for EW Sphalerons

+ Can reinterpret this result as a limit on EW sphalerons

+ Sphalerons were proposed by 't Hooft as a non-perturbative solution of EW
Lagrangian, which results in B and L non-conservation, while conserving B-L

4+ The discovery of the Higgs boson allowed to calculate the sphaleron transition,
which, at LO is at Einr =9 TeV

+ Recent work of Tye/Wong [arXiv:1505.3690] boldly suggested that due to
periodicity of the potential there is no exponential suppression for the sphaleron
transition just below the threshold, and no suppression at all above the
threshold, i.e. observable at the LHC

+ Sphaleron transition at leading order results in 12 fermions in the final state (3 x
3 quarks, and 3 leptons, one per generation)
e Some of the f.s. quarks can "cancel" w/ the initial state, reducing the final-state
multiplicity
o Typical example: u +u — u + u + (e* u* v, thbecsuud) — e* ™ v tbbecsd
4+ Ellis/Sakurai [arXiv:1601.03654] reinterpreted 2015 ATLAS BH search [arXiv:
1512.02586] and set first [phenomenological] limits on EW sphaleron production
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Limits on EW Sphalerons

4+ Used BaryoGen generator [arXiv:1805.02786] developed in the course of
the analysis

4+ Limits are set on the pre-exponential factor (PEF), which is the fraction of
collisions with the c.0.m. energy above Er, which undergoes a sphaleron
transition

4+ The limit is PEF < 0.021 @95% CL for the nominal Enr =9 TeV
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The Tricks of PDFs

4+ In the process of optimizing the sphaleron search, a peculiar
feature was noticed in all modern NNPDF sets (2.3, 3.0, 3.1): a
fraction of sea quarks at very large Q2 and x exceeds that of
valence quarks

4+ Not seen in any of the other modern PDFs we looked at (CT14,
CTEQ6.1, MSTW, ...)

+ While huge uncertainties more or less cover the differences, the
central value looks pathological - basically it implies that at large
Q2 and x proton mainly consists of sea quarks

N ¢+ Beware of black boxes in the PDF fits!

Slide 46
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The Tricks of PDFs

4+ In the process of optimizing the sphaleron search, a peculiar
feature was noticed in all modern NNPDF sets (2.3, 3.0, 3.1): a
fraction of sea quarks at very large Q2 and x exceeds that of
valence quarks

4+ Not seen in any of the other modern PDFs we looked at (CT14,
CTEQ6.1, MSTW, ...)

+ While huge uncertainties more or less cover the differences, the
central value looks pathological - basically it implies that at large
Q2 and x proton mainly consists of sea quarks

4+ Beware of black boxes in the PDF fits!

Xu(x,Q), comparison xd(x,Q), comparison xV(x,Q), comparison

Q =9.00e+03 GeV
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More on PDF Behavior

BROWN

4+ At large Q2 and x NNPDF essentially turns into a
random number generator - not very useful for physics
predictions

1 + More LHC data would help, but it would be nice to build
In some external physics constraints, which other PDFs
seem to have

CT14NLO PDFs NNPDF3.0 PDFs

cl
© X XX XX
0L22200
o
S 4

Generated with APFEL 2.7.1 Web
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Effect on the Multiplicity

BROWN
W 4+ Transitions involving quarks are badly skewed with NNPDFs,
d as it gives unphysically high weight to sea antiquarks, resulting
d inlarge cancellations for Ncs = 1
i q+ q — sphaleron(Ngg = +1) +q + ¢
S q +q — sphaleron(Ncs :\+1 )+q+q
= (13 TeV) @ (13TeV)
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SUSY Kinematics

4+ Look for pair-produced particles that cascade-decade with invisible
particle emission

® Generally can cluster all visible products in each hemisphere to form
“pseudojets”, resulting in a dijet + MET topology

+ How to optimize the search to reduce backgrounds and at the same
time retain information about characteristic SUSY masses?

"\
y A

%
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The at Variable

4+ Alternative approach to requiring
large MET in the event; does not rely on MET reconstruction/tails

+ Combine visible decay products in the
event into two (pseudo)jets:

XT — ETjE/MT — Esz/\/HTz — HT2.| HT :| EJNjet

N
Hr =Y " Er

Randall, Tucker-Smith, arXiv:0806.1049

ar < 0.5
+ For signal, long tail of

Op = E%z I M. (j,],)

~ JE:IE}
201 - cos Ag)

i—1 PTl

MET from LSPs

SIGNAL topology

4+ For a perfectly balanced dijet event, ar = 0.5
+ For QCD events with mismeasured ME-,

CMS Collaboration
arXiv:1101.1628
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/ BACKGROUND
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e Data
W Standard Model
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— tt, W, Z + Jets




+ MT2: “stransverse mass” - a
generalization of the
transverse mass in case of a
pair of invisible particles

4+ For a simplified case of no
extra jets and zero masses for
visible and invisible systems:

o =iy [max ()
(Mr2)? == 2py*Vp*) (1 4 coserp) P+ =pr

© Mt2 ~ MEt for symmetric =
SUSY-like topologies

+ M2 kills QCD background
very efficiently:
© M2 ~ O for dijets

® Mt2 < ME~t in case of
mismeasured dijets

— Signal

Greg Landsberg - CMS Searches meet Theory - AMPHEP2018
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More M+> Variables

+ The main variable used in stop searches is a variation of M2 variable,
known as MWt variable, which is the minimum mother mass compatible
with all the decay products and on-shell constraints

+ It is designed to specifically kill tt — ll+jets+MET
background with a lost lepton

4+ This is a difficult background to deal with as it looks
similar to the signal in other distributions, particularly
In transverse mass Mt

4+ The trick of finding the right Mr2 variable is how to
partition the final state particle into visible and invisible states
Bai, Cheng, Gallicchio, Gu, arXiv:1203.4812

BROWN
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lost W (p2)

L,

MW+> Variable

MY, = min {my consistent with: [

4+ The tt events with lost lepton exhibit endpoint at my = m;,
while the signal has long talil

Fraction

— tidilep
===s 77 semi 1
wnnn ;=500 GeV

CMS

4+ Here is the definition of the MW+2 variable designed to

reconstruct tt events with a lost lepton:
B + 3 = EF™, p =0, (p1+pe)® = p5 = My, ]}
(1 + pe+ o, )? = (P2 + Ppy)* = m
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MW+> Variable
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4+ Here is the definition of the MW+2 variable designed to

reconstruct tt events with a lost lepton:

=] ~I' __ fmiss 2 _ 2 92 a9 :
My = miﬂ{my consistent with: [ Py +pp = B3, p1 =0, (Pé +pe)” = p3 N My , ]}
(p1 + pe + b, )2 = (P2 + Po, )2 =

4+ The tt events with lost lepton exhibit endpoint at my
while the signal has long talil

2
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More Mr2-like Variables

BROWN

+ Co-transverse mass Mct[Tovey, arXiv:0802.2879;
Polesello, Tovey, arXiv:0910.0174]
© Mér(v1,02) = [BEr(v) + Er(v2)]* = [pr(v1) — pr(v2)]?
where v1 and vz are visible decay products of the two
decay chains

e Has an endpoint related to the mass of the decaying pair-
produced states (X):
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e For the tt background with lost ik
leptons, using b-jets as visible w B FRe
PAICIES per — /271 i2(1 + cos(Auy) N o
and taking into account Mx = M
and Min, so the endpoint N
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Tophness
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+ Another designer variable to partially reconstruct
decays where kinematic information is not sufficient
for full reconstruction

e Example: top quark pair dilepton decay
e Construct: g

_ (miy —piy)?

pr7pWy7sz7pVZ) - 4
Ay

(m7 — (po, + pw)?)?

m2 — T pp 4 py)2)2
+( P — (ov, 4pe Pv)?) N i

Greg Landsberg - CMS Searches meet Theory - AMPHEP2018

t (4m7 — gZ;p )?)? "
| | A Y R R ST
where ai are typical resolutions F !==i
o Define topness [Graesser, sor 0
Shelton, arXiv:1212.4495]: RN
t = In(min S) T T

e Minimizes c.o.m. energy of the event within constraints
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+ Introduced as an alternative to M2 and Rogan, arXiv:1006.2727
other similar variables lab frame  dj-squark (CM) rest frame squark rest frame

+ R-frame: the frame in which momenta
of two (pseudo)jets are equal

© Applicable to a larger class of events

than jets+ME~r
: : : 5 2vom Mz = V3 ME - M2
+ Transforms signal into a peaking e di'_fqﬁlf,;; - squts ey | | V8=
distribution on top of exponentially o o b rame by one producednear | | | Chexacteristic scale
. “ » longitudinal boost threshold (7 = 1) (:‘elt?lz;t:eetsisi:
falling background a.k.a. “bump hunt = = momenta of quarks
BT =0 BCM —0 and LSP’s

_ (Bs'pf? — Ei2pl')2 I e

Mr — M, for ycm — 0: peaks for signal!
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Example of Designer Variable Use
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4+ Search for EW SUSY production in the dilepton channel,
using M2 to suppress dominant tt and WW background
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Example of Designer Variable Use

BROWN
4+ Search for EW SUSY production in the dilepton channel,

(e 0]
o . .
d using Mtz to suppress dominant tt and WW background
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Designer Variables: Summary

+ These variables have been a significant help in many
SUSY and non-SUSY searches

4+ Might help other channels, such as H(\WW)H(bb)

+ While multivariate analysis techniques could in
principle compete with the use of these variables,
having physics captured in a dedicated variable
makes the analysis more straightforward and also
helps resolving complicated correlations

e Could be used with the matrix element weighting
techniques

4+ Would like to see theoretical work in this direction
continuing



4+ High-precision era of LHC physics is upon us

4+ It's more and more likely that if new physics is to be found at
the LHC, it's not going to be via a smoking gun signature, but
rather via a subtle deviation from the SM predictions

4+ Precision theoretical understanding of various backgrounds to
these searches is therefore going to be more and more
important

4+ I've gave a few examples where the recent progress in theory
resulted in a significant improvement of experimental sensitivity

4+ | also pointed out a few places where further progress on the
theory side is very important for the experiment

+ With the theory and experiment cross-pollinating each other, we
are moving into the domain of precision searches, which
hopefully will soon result in a discovery!



