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Outline

I 10 recicled slides on top mass (quickly)

I 1 reminder slide on renormalons

I What we computed and why

I Some results

I Understanding results

I Some puzzles
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Top and precision physics

From PDG:

∆Gµ/Gµ = 5 · 10−7; ∆MZ/MZ = 2 · 10−5;

∆α(MZ )/α(MZ ) =

{
1 · 10−4(Davier et al.; PDG)
3.3 · 10−4(Burkhardt, Pietrzyk)

Now that MH is known, tight constraint on MW -mt ,
(depending on how aggressive is the error on α(MZ )).

But: precision on MW is more important now ...
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Top and vacuum stability

Degrassi et al. 2012
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With current value of Mt and MH the vacuum is metastable.
No indication of new physics up to the Plank scale from this.
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Top and vacuum stability

Degrassi et al. 2012
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Mt = 173.1 ± 0.6 GeV HgrayL
Α3HMZL = 0.1184 ± 0.0007HredL
Mh = 125.7 ± 0.3 GeV HblueL

Mt = 171.3 GeV

ΑsHMZL = 0.1163

ΑsHMZL = 0.1205

Mt = 174.9 GeV

The quartic coupling λH becomes tiny at very high field values,
and may turn negative, leading to vacuum instability.
Mt as low as 171 GeV leads to λH → 0 at the Plank scale.
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Top Mass Measurements

 [GeV]topm
165 170 175 180 185

ATLAS+CMS Preliminary  = 7-13 TeVs summary, topm
LHCtopWG

shown below the line
(*) Superseded by results

September 2017

World Comb. Mar 2014, [7]
stat
total uncertainty

total  stat

 syst)± total (stat ± topm        Ref.s

ATLAS, l+jets (*) 7 TeV  [1] 1.35)± 1.55 (0.75 ±172.31 
ATLAS, dilepton (*) 7 TeV  [2] 1.50)± 1.63 (0.64 ±173.09 

CMS, l+jets 7 TeV  [3] 0.97)± 1.06 (0.43 ±173.49 

CMS, dilepton 7 TeV  [4] 1.46)± 1.52 (0.43 ±172.50 

CMS, all jets 7 TeV  [5] 1.23)± 1.41 (0.69 ±173.49 
LHCtop WGLHC comb. (Sep 2013) 7 TeV  [6] 0.88)± 0.95 (0.35 ±173.29 

World comb. (Mar 2014) 1.96-7 TeV  [7] 0.67)± 0.76 (0.36 ±173.34 
ATLAS, l+jets 7 TeV  [8] 1.02)± 1.27 (0.75 ±172.33 

ATLAS, dilepton 7 TeV  [8] 1.30)± 1.41 (0.54 ±173.79 

ATLAS, all jets 7 TeV  [9] 1.2)± 1.8 (1.4 ±175.1 

ATLAS, single top 8 TeV  [10] 2.0)± 2.1 (0.7 ±172.2 

ATLAS, dilepton 8 TeV  [11] 0.74)± 0.85 (0.41 ±172.99 

ATLAS, all jets 8 TeV  [12] 1.01)± 1.15 (0.55 ±173.72 

ATLAS, l+jets 8 TeV  [13] 0.82)± 0.91 (0.38 ±172.08 
)

l+jets, dil.
Sep 2017(ATLAS comb.  7+8 TeV  [13] 0.42)± 0.50 (0.27 ±172.51 

CMS, l+jets 8 TeV  [14] 0.48)± 0.51 (0.16 ±172.35 

CMS, dilepton 8 TeV  [14] 1.22)± 1.23 (0.19 ±172.82 

CMS, all jets 8 TeV  [14] 0.59)± 0.64 (0.25 ±172.32 

CMS, single top 8 TeV  [15] 0.95)± 1.22 (0.77 ±172.95 

CMS comb. (Sep 2015) 7+8 TeV  [14] 0.47)± 0.48 (0.13 ±172.44 

CMS, l+jets 13 TeV  [16] 0.62)± 0.63 (0.08 ±172.25 
[1] ATLAS-CONF-2013-046
[2] ATLAS-CONF-2013-077
[3] JHEP 12 (2012) 105
[4] Eur.Phys.J.C72 (2012) 2202
[5] Eur.Phys.J.C74 (2014) 2758
[6] ATLAS-CONF-2013-102

[7] arXiv:1403.4427
[8] Eur.Phys.J.C75 (2015) 330
[9] Eur.Phys.J.C75 (2015) 158
[10] ATLAS-CONF-2014-055
[11] Phys.Lett.B761 (2016) 350
[12] arXiv:1702.07546

[13] ATLAS-CONF-2017-071
[14] Phys.Rev.D93 (2016) 072004
[15] EPJC 77 (2017) 354
[16] CMS-PAS-TOP-17-007

DIRECT
MEASUREMENTS

(roughly, from the
mass of the system
of decay products).
The most precise
method as of now.

Add: CMS 13 TeV, 172.25±0.08 (stat+JSF) ±0.62 (syst) GeV
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Theory issues

I The measurement is performed by reconstructing a top mass
peak out of a reconstructed W and a b-jet.

I The reconstructed mass is only loosely related to the top mass
(i.e. it cannot be identified with the top mass, for obvious
reasons, since it is a colourless system).

I The extracted mass is the mass parameter in the Monte Carlo
that yields the best fit to the reconstructed mass distribution.

So:

� in which renormalization scheme is the MC mass parameter?
Pole mass? MS mass?

� It has been argued that since MC are Leading-Order, they
can’t distinguish between Pole and MS mass
(the difference is around 10 GeV ...).
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Selected Th. results relevant to top mass measurements

I Narrow width tt̄ production and decay at NLO,
Bernreuther,Brandenbourg,Si,Uwer 2004, Melnikov,Schulze 2009.

I lνlνbb̄ final states with massive b, Frederix, 2013,
Cascioli,Kallweit,Maierhöfer,Pozzorini, 2013.

I NNLO differential top decay, Brucherseifer,Caola,Melnikof 2013.

I NLO+PS in production and decay, Campbell,Ellis,Re,PN

I NNLO production, Czakon,Heymes,Mitov,2015.

I lνlνbb̄ + jet Bevilacqua,Hartanto,Kraus,Worek 2016.

I Approx. NNLO in production and exact NNLO in decay for tt̄.
Gao,Papanastasiou 2017.

I Resonance aware formalism for NLO+PS: Ježo,PN 2015;

I Off shell + interference effects+PS, Single top,
Frederix,Frixione,Papanastasiou,Prestel,Torielli, 2016

I Off shell + interference effects+PS, lνlνbb̄,
Jeo,Lindert,Oleari,Pozzorini,PN, 2016.
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Alternative mass-sensitive observables

I Butenschoen,Dehnadi,Hoang,Mateu,Preisser,Stewart,2016 Use
boosted top jet mass + SCET.

I Agashe,Franceschini,Kim,Schulze,2016: peak of b-jet energy
insensitive to production dynamics.

I Kawabata,Shimizu,Sumino,Yokoya,2014: shape of lepton
spectrum. Insensitive to production dynamics and claimed to
have reduced sensitivity to strong interaction effects.

I Frixione, Mitov: Selected lepton observables.

I Alioli, Fernandez, Fuster, Irles, Moch, Uwer, Vos ,2013;
Bayu etal: Mt from tt̄j kinematics.

I tt̄ threshold in γγ spectrum (needs very high luminosity),
Kawabata,Yokoya,2015
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From total cross section and tt̄j kinematics
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 [GeV]tm
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 GeV-4.70 +5.20167.50 
), 1.96 TeVt(tσD0 

PLB 703 (2011) 422
MSTW08 approx. NNLO

 GeV-3.20 +3.40172.80 ), 1.96 TeVt(tσD0 
PRD 94, 092004 (2016)
MSTW08 NNLO

 GeV-2.50 +2.50169.10 )/dx, 1.96 TeVt(tσD0 d
D0 Note 6473-CONF (2016)
MSTW08 NNLO

 GeV-2.60 +2.50172.90 ), 7+8 TeVt(tσATLAS 
EPJC 74 (2014) 3109

 GeV-2.11 +2.28173.70 +j shape, 7 TeVtATLAS t
JHEP 10 (2015) 121

 GeV-1.80 +1.70173.80 ), 7+8 TeVt(tσCMS 
JHEP 08 (2016) 029
NNPDF3.0

 GeV-2.70 +2.70170.60 ) 13 TeVt(tσCMS 
arXiv:1701.06228 (2017)
CT14

 GeV-3.66 +4.52169.90 +j shape, 8 TeVtCMS t
TOP-13-006 (2016)

 GeV-0.76 +0.76173.34 
World combination
ATLAS, CDF, CMS, D0
arXiv:1403.4427, standard measurements

July 2017Top-quark pole mass measurements

It is claimed that since higher order cal-
culations (NNLO for total cross sec-
tion, NLO for tt̄j shape variables) are
used in this determination, one is enti-
tle to specify the scheme used for the
mass.

In the figure they are quoted as “pole
mass measurement”.
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I The “pole mass” attribute is not given to direct measurement.

I In some experimental papers and talks, direct measurements
are reported as “Monte Carlo Mass” measurements, often
stating that they need some theoretical interpretation.

I “Monte Carlo Mass” measurements are often interpreted as
pole mass measurements by theorists. See for example

I Degrassi etal, 2012 on the EW vacuum stability, adding a
further 250 MeV error to direct measurements.

I Ciuchini etal, 2017 in Global EW fits, adding a further 500
MeV error to direct measurements.

I Theorist have done work in proposing alternative methods to
avoid the issues on direct measurements; however, the
alternative methods are generally inferior in precision.

As a result, the most precise experimental results on mt are left in
a limbo, waiting for some illuminating theoretical interpretation
that is not in sight.
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High-school quiz on top mass measurement

Tick the correct statements:

� Direct top mass measurements measure the Pole Mass.

� Direct top mass measurements measure the Monte Carlo Mass.

� Direct top mass measurements measure the Monte Carlo Mass. but you
can pretend that it is the pole mass, just inflate the error a bit.

� The top is the only SM particle with more than one mass.

� You should use only leptons to avoid hadronization uncertainty.

� You should use at least NLO calculations to measure the pole mass.

� The top pole mass has renormalons, you should stay away from it.

• The MC mass differs from the pole mass by
� terms of order mαS ; � terms of order ΛQCD; � terms of order αSΓt .

• The Pole Mass renormalon ambiguity is
� ≈ 1GeV; � ≈ 250 MeV; � ≈ 200 MeV; � ≈ 110 MeV.
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ABC of I.R. Renormalons

All-orders contributions to QCD amplitude of the form

∫ m

0

dkp αS(k2) =

∫ m

0

dkp αS(m2)

1 + b0αS(m2) log k2

m2

= αS(m2)
∞∑
n=0

(2b0αS(m2))n
∫ m

0

dkp logn m

k︸ ︷︷ ︸
pnn!

.

Asymptotic expansion.
I Minimal term at nmin ≈ 1

2pb0αS (m2)
.

I Size of minimal term: mpαS(m2)
√

2πnmine
−nmin ≈ Λp

QCD.

I Typical scale dominating at order αn+1
S : m exp(−np).

I OPE connection; for a short distance process:∫
d4l(ph.sp) l2(gauge inv.)l−2(gluon prop.) ∝ Λ4(i.e. a G 2 VeV).
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Motivation

I Linear (i.e. p = 1) renormalons may affect top mass
measurements at order Λ (near the present experimental
accuracy). Until now, only the top pole mass renormalons has
received some attention.

I Several other sources of linear renormalons come into play in
top mass measurements (for example, from jet definition).
What is their structure, and what is their interplay with the
pole mass renormalon?

I There is a temptation to use resummation (typically within
SCET) to parametrize linear non perturbative effects in top
mass measurement. Is this sound?

14 / 39



Beneke and Braun, arXiv:hep-ph/9506452

Abstract:

Their calculation: leading Nf one gluon correction:
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Set up the computation of top mass sensitive observables
in leading Nf one gluon correction.

We consider a simplified production framework W ∗ →Wtb̄:

W ∗

W

b

b̄

(i.e. no incoming hadrons). However:

I We consider as our basic observable the mass of the system
comprising a b-jet and the W .

I The b is taken massless, the W is taken stable, but the top is
taken unstable, with a finite width.
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Diagrams up to leading Nf one gluon correction

W ∗

W

b

b̄
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W

b
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k
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W
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q
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All-order result

Introducing the notation

I Φb, phase space for Wbb̄;

I Φg , phase space for Wbb̄g∗, where g∗ is a massive gluon with
mass k2,

I Φqq̄, phase space for Wbb̄qq̄, with dΦqq̄ = dk2

2π dΦg∗dΦdec

the all-order result can be expressed in terms of

I σb(Φb), the differential cross section for the Born process;

I σv (k2,Φb), the virtual correction to the Born process due to
the exchange of a gluon of mass k ;

I The real cross section σg∗(k2,Φg∗), obtained by adding one
massive gluon to the Born final state;

I The real cross section σqq̄(Φqq̄), obtained by adding a qq̄
pair, produced by a massless gluon, to the Born final state;
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All-order result

Consider a (IR safe) final state observable O. Define:

N(0) =

[∫
dΦb σb

]−1

, 〈O〉b = N(0)

∫
dΦb σb(Φb)O(Φb) ,

Ṽ
(
k2
)

= N(0)

∫
dΦb σ

(1)
v (k2,Φb)

[
O(Φb)− 〈O〉b

]
,

R̃
(
k2
)

= N(0)

∫
dΦg∗ σ

(1)
g∗ (k2,Φg∗)

[
O(Φg∗)− 〈O〉b

]
,

∆̃
(
k2
)

=
1

2

3

αSTF

k2 N(0)

∫
dΦdec dΦg∗ σ

(2)
qq̄ (Φqq̄)× [O(Φqq̄)− O(Φg∗)]

〈O〉b + Ṽ
(
k2
)

+ R̃
(
k2
)

is the average value of O in a theory with
a massive gluon with mass k2, accurate to order αS .

Notice: Ṽ
(
k2
)

+ R̃
(
k2
)

has a finite limit for k2 → 0, while each
contribution is log divergent.
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defining T̃
(
k2
)

= Ṽ
(
k2
)

+ R̃
(
k2
)

+ ∆̃
(
k2
)

our final result is

〈O〉 = 〈O〉b−
3π

αSTF

∫ ∞
0

dk

π

d

dk

[
T̃
(
k2
)]

Im
{

log
[
1 + Π

(
k2, µ2

)
− Πct

]}
,

where

Π
(
k2, µ2

)
− Πct = αSb0

(
log

k2

µ2
=

5

3
− iπ

)
, b0 = −4NFTF

12π

So

Im
{

log
[
1 + Π

(
k2, µ̃2

)
− Πct

]}
= −atan

(
αSπb0

1 + αSb0log
k2

µ̃2

)

that essentially exhibits the same Landau pole discussed earlier.
If we thus have:

T̃
(
k2
)

= a + b k +O(k2) (1)

we have a linear renormalon in our result.
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Comments

I In order to get our results, we need lim
k2→∞

T̃ (k2) = 0 .

This happens if we use the Pole Mass Scheme for mt .
I The need to include the ∆ term has a long story:

I Seymour,P.N. 1995, I.R. renormalons in e+e− event shapes.
I Dokshitzer,Lucenti,Marchesini,Salam, 1997-1998 Milan factor

I We compute T (k2) numerically. The k2 → 0 limit implies the
cancellation of two large logs in V and R. However, the
precise value at k2 = 0 can also be computed directly by
standard means (which we do).
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Changing the mass scheme

The relation of the pole mass as a function of the MS mass in the
large NF approximation is well known (Beneke, 1999)

m = m̄[1 + Rf (αS , µ, m̄) + Rd(αS , µ, m̄)],

Rf = − 3π

αSTF

∫ ∞
0

dk

π

drf (k2)

dk
atan

−αSπb0

1 + αSb0 log k2

µ̃2

rf (k2) = −αS

CF

2

k

m
. (2)

We can easily convert our results to the MS scheme:

〈O〉b(m,m∗) = 〈O〉b(m,m∗) +

{
∂〈O〉b(m,m∗)

∂m
(m −m) + cc

}
For the leading renormalon this amounts to

T̃ (k2)→ T̃ (k2)− ∂〈O〉b(m,m∗)

∂Re(m)

CFαs

2
k +O(k2) .
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Selected Results,
some obvious,

some puzzling . . .
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Total cross section

8.4× 107

8.5× 107

8.6× 107

8.7× 107

8.8× 107

8.9× 107

9× 107

9.1× 107

0 1 2 3 4 5

W ∗ → tb̄→ Wbb̄, total cross section
T

(k
2
)/
α

S

k [GeV]

T (k2)
αS

T (0)
αS

+ dσb(m)
dRe(m)

CF

2
k
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No linear renormalon in MS scheme!
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Total cross section

I For k < Γ: no renormalon in the physics! The top finite width
screens the soft sensitivity of the cross section.
The renormalon is there only if it is present in the mass
counterterm; thus, it is not there in the MS scheme.

I What about k � Γ?
This is the narrow width limit: the cross section factorizes
into a production cross section and a partial width.
The former has no physical renormalons for obviour reasons.
The latter does not have them (not obvious at all?)

So, the mass from the total σ is free of linear power corrections?
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Total cross section with cuts
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Total cross section with cuts
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The requirement of a b jet spoils this conclusion!
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Reconstructed top mass
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Reconstructed top mass
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For large radii, mpole is better!
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Leptonic Observables

Choose as mass sensitive observable the average EW .
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Γt = 0.01 GeV

For k � Γ, the slope is roughly 0.45. The MS conversion would
add −0.067.
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Leptonic Observables

It seems that physical linear renormalons are present also in
leptonic observables.
But, for k � Γ, the slope of T (k) decreases, approaching 0.067!
So, the top finite width screens the linear renormalons!

Is this an exact statement?
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Back to the basics

Need better understanding of the theory of soft cancellation.

Back to Old Fashion Perturbation Theory!

(where the KLN theorem comes from!)
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Old Fashion Perturbation Theory

The propagator denominators in a Feynmann diagram can be split
into an advanced and a retarded part:

i

k2 −m2 + iε
=

i

2Ek,m

[
1

k0 − Ek,m + iε
+

1

−k0 − Ek,m + iε

]
.

The time Fourier transform of the first term vanishes for negative
time, while for the second term it vanishes for positive time∫

dk0

2π

i exp(−ik0t)

k0 − Ek,m + iε
= θ(t) exp(−iE 0

k,mt)∫
dk0

2π

i exp(−ik0t)

−k0 − Ek,m + iε
= θ(−t) exp(iE 0

k,mt)
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Old Fashion Perturbation Theory

also true for unstable particles:

i

k2 −m2 + imΓ
=

i

2Ek,m,Γ

[
1

k0 − Ek,m,Γ
+

1

−k0 − Ek,m,Γ

]
,

where

Ek,m,Γ =

√
k2 + m2 − imΓ,

so that Ek,m,Γ has a negative imaginary part. As a consequence,
we will also have∫

dk0

2π

i exp(−ik0t)

k0 − Ek,m,Γ + iε
= θ(t) exp(−iE 0

k,m,Γt)∫
dk0

2π

i exp(−ik0t)

−k0 − Ek,m,Γ + iε
= θ(−t) exp(iE 0

k,m,Γt)

and both functions will have exponential damping for large positive
(negative) time. But the θ functions are there as before.
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Old Fashion Perturbation Theory

A straightforard manipulation leads to the old fashion perturbation
theory rules. In time ordered graphs:
I Split propagators into an advanced and retarded part, and

split each Feynmann graph into a sum of time ordered graphs.
I Replace propagators with 1/(2Ek,m)
I Put all propagator energies in numerators equal to their

on-shell values.
I Include all 3-momentum integrals.
I For each external incoming momentum a line coming from
−∞ or going to +∞, carrying momentum and energy with
corresponding sign.

I For each intermediate state, include an energy denominator

i

e − ei + iε

where e is the sum of the incoming energy (from the lines to
−∞) and ei is the sum of the energies of the lines in the
intermediate state. 35 / 39



Old Fashion Perturbation Theory

1

q0 − Ek+l − Ek−q+l + iε

1

q0 − Ek − El − Ek−q+l + iε

1

q0 − Ek − Ek−q + iε

Singularities are present only if the momentum integration cannot
be displaced in the complex plane away from the poles.
This simply leads to the threshold singularities, and to the Landau
conditions for anomalous thresholds.
Away from those, the graph is an analytic function of q0.
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Old Fashion Perturbation Theory

This leads to KLN cancellation of soft singularities.
But it leads to more: the soft sensitivity is the same when q0 picks
up a finite imaginary part!
The energy denominators do not count any more for the soft
sensitivity. Only the d3l/El counts. Same sensitivity as in
Euclidean power counting: d4l/l2. Two more powers of l come
from gauge invariance, leading to 4th order power corrections.
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back to EW

Only 2,3,4 cuts should be con-
sidered. But:
1 and 5 denominators have op-
posite imaginary part of order Γ.

Im

[
1

E−EW−Eb,2−E
b̄,1

+iε
1

E−EW−Eb,3−E
b̄,1

−Eg,3+iε
1

E−EW−Eb,3−E
b̄,4

+iε

]

Analyticity is still there, but the imaginary part of q0 cannot
exceed Γ!.
So: soft sensitivity higher than linear below Γ!
Puzzle: why this does not work also above Γ?
(as is the case for the total cross section) cross section?
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Conclusions

Much more to come ...
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