strange electromagnetic form factors of the nucleon from lattice QCD

Konstantin Ottnad, Tim Harris, Harvey Meyer, Georg von Hippel, Jonas Wilhelm, Hartmut Wittig

April, 2018

table of contents

motivation

calculation

results

literature

experimental influence of the form factors

 \blacktriangleright measurements of the weak mixing angle Θ_W

- neutrino scattering: νN
 - neutrino oscillation
 - mass hierarchy

- measurements of CKM matrix elements
 - CP-violation in the quark sector of the SM

expectation values

Monte Carlo Methods

$$\langle O
angle pprox rac{1}{N_{
m cfg}} \sum_{i=1}^{N_{
m cfg}} O[D[U_i]^{-1}, U_i]$$

generation of ensembles

$$dP(U) = rac{1}{Z}e^{-S_{QCD}^{Lat.}[U]} \mathcal{D}[U]$$

- Coordinated Lattice Simulations (CLS)
 - $N_f = 2 + 1$ O(a)-improved Wilson fermions
 - open boundary conditions
 - ▶ $a \in \{0.049, 0.064, 0.076, 0.086\}$ fm, $m_{\pi} \in [200, 360]$ MeV

strange electromagnetic form factors of the nucleon from lattice QCD \cap{Lex} calculation

three-point functions

$$\langle O \rangle = \left\langle N(\vec{y}, y_0) J^q_\mu(\vec{z}, z_0) \bar{N}(\vec{x}, x_0) \right\rangle$$

current operator

$$J^{q}_{\mu}(\vec{z}, z_{0}) = \begin{cases} V^{q}_{\mu}(\vec{z}, z_{0}) = \bar{q}(\vec{z}, z_{0})\gamma_{\mu}q(\vec{z}, z_{0}) \\ A^{q}_{\mu}(\vec{z}, z_{0}) = \bar{q}(\vec{z}, z_{0})\gamma_{5}\gamma_{\mu}q(\vec{z}, z_{0}) \end{cases}$$

matrix elements

parameterized by form factors

$$\left\langle N, \vec{k}, s \left| V_{\mu}(x) \right| N, \vec{k}', s' \right\rangle = \bar{u}^{s}(\vec{k}) \left(\gamma_{\mu} F_{1}(Q^{2}) + \mathrm{i}\sigma_{\mu\nu} \frac{q^{\nu}}{2m} F_{2}(Q^{2}) \right) u^{s'}(\vec{k}') e^{\mathrm{i}q \cdot x}$$

$$\left\langle N, \vec{k}, s \left| A_{\mu}(x) \right| N, \vec{k}', s' \right\rangle = \bar{u}^{s}(\vec{k}) \left(\gamma_{\mu} \gamma_{5} G_{\mathsf{A}}(Q^{2}) + \gamma_{5} \frac{q_{\mu}}{2m} G_{\mathsf{P}}(Q^{2}) \right) u^{s'}(\vec{k}') e^{\mathrm{i}q \cdot x}$$

$$G_{\rm E}(Q^2) = F_1(Q^2) + \frac{Q^2}{4m^2}F_2(Q^2)$$
$$G_{\rm M}(Q^2) = F_1(Q^2) + F_2(Q^2)$$

isolated disconnected contributions

• quark loop \Rightarrow most challenging part

strange electromagnetic form factors of the nucleon from lattice QCD $\hfill \hfill \$

quark loop

$$L_{\Gamma}^{l/s}(\vec{q},z_0) = -\sum_{\vec{z}\in\Lambda} e^{i\vec{q}\cdot\vec{z}} \operatorname{tr} \left[S^{l/s}(\vec{z},z_0;\vec{z},z_0) \; \Gamma\right] \; ,$$

estimated stochastically with noise vectors

1.
$$\left\langle \eta^{(i)}(x)^{a}_{\alpha} \right\rangle_{\eta} = 0$$

2. $\left\langle \eta^{(i)}(x)^{a}_{\alpha}\eta^{(i)\dagger}(y)^{b}_{\beta} \right\rangle_{\eta} = \delta(x-y)\delta^{ab}\delta_{\alpha\beta}$

$$\operatorname{tr}\left[S^{l/s}(z,z)\;\Gamma\right] = \left\langle \eta^{(i)\dagger}(z)\cdot\Gamma s^{(i)}(z)\right\rangle_{\eta} \quad , \quad D(y,x)s^{(i)}(x) = \eta^{(i)}(y)$$

stochastic noise and gauge noise!

stochastic noise vs. gauge noise

- "hit" gauge noise with axial vector loops
- no saturation for vector loops!

hierarchical probing

 $\eta_n \rightarrow h_n \odot \eta$ [Stathopoulos et al., arXiv:1302.4018v1]

strange electromagnetic form factors of the nucleon from lattice QCD \calculation

vector loop

color complete points


```
G_E^{l/s} on H105 (a=0.086 fm, m_{\pi}=280 MeV)
```


G_M & more ensembles in progress...

 $G_A^{l/s}$ on H105 ($a=0.086 {
m fm},\ m_\pi=280 {
m MeV})$

renormalization & more ensembles in progress...

 $G_P^{l/s}$ on H105 ($a=0.086 {
m fm},\ m_{\pi}=280 {
m MeV}$)

renormalization & more ensembles in progress...

strange electromagnetic form factors of the nucleon from lattice QCD $\sqcup_{\sf literature}$

LHPC

 High-precision calculation of the strange nucleon electromagnetic form factors
 Green et al., Phys. Rev. D 92, 031501 (2015)
 time dilution > 2D biographical probing

- time-dilution \rightarrow 3D hierarchical probing
- periodic boundary conditions
- $a \approx 0.114$ fm, $m_\pi \approx 317$ MeV

strange electromagnetic form factors of the nucleon from lattice QCD $\hfill literature$

LHPC

 High-precision calculation of the strange nucleon electromagnetic form factors
 Green et al., Phys. Rev. D 92, 031501 (2015)
 time dilution > 2D biographical probing

- time-dilution \rightarrow 3D hierarchical probing
- periodic boundary conditions
- $a \approx 0.114$ fm, $m_\pi \approx 317$ MeV

 χ QCD

- Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point Sufian et al., Phys. Rev. D 96, 114504 (2017)
 - valence overlap fermions & domain-wall fermion gauge configurations
 - ▶ four ensembles: $a \in [0.08, 0.15]$ fm, $m_{\pi} \in [0.135, 0.403]$ MeV
 - time-dilution & low-mode averaging (deflation)

$$S(x,y) = S_{low}(x,y) + S_{\perp}(x,y) \ , \ P_{\perp}(x,y) = 1 - \sum_{k}^{N_{ev}} v_k(x) \otimes v_k(y)^{\dagger}$$

$$\mathcal{S}_{low}(x,y) = rac{1}{V}\sum_{k}^{N_{ev}}rac{v_k(x)\otimes v_k(y)^\dagger}{\lambda_k}$$

strange electromagnetic form factors of the nucleon from lattice QCD $\sqcup_{\sf literature}$

 χ QCD

- Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point Sufian et al., Phys. Rev. D 96, 114504 (2017)
 - valence overlap fermions & domain-wall fermion gauge configurations
 - ▶ four ensembles: $a \in [0.08, 0.15]$ fm, $m_{\pi} \in [0.135, 0.403]$ MeV
 - time-dilution & low-mode averaging (deflation)

strange electromagnetic form factors of the nucleon from lattice QCD $\sqcup_{\sf literature}$

ETMC

 Strange nucleon electromagnetic form factors from lattice QCD
 Alexandromatical as Xi 1001 00501 (2010)

Alexandrou et al., arXiv:1801.09581 (2018)

- $N_f = 2$ twisted mass fermions with O(a)-improvement
- Osterwalder-Seiler strange quarks
- $a \approx 0.0938$ fm, physical pion mass
- light: deflation, strange: truncated solver method

$$S'(x,y) = S'_{low}(x,y) + S'_{\perp}(x,y)$$

$$\operatorname{tr}\left[S^{s}(z,z) \; \Gamma\right] = \underbrace{\left\langle \eta^{(i)\dagger}(z) \cdot \Gamma s_{LP}^{(i)}(z) \right\rangle_{\eta}}_{\text{biased estimate}} + \underbrace{\left\langle \eta^{\prime(i)\dagger}(z) \cdot \Gamma \left(s_{HP}^{\prime(i)}(z) - s_{LP}^{\prime(i)}(z)\right) \right\rangle_{\eta^{\prime}}}_{\text{correction}}$$

ETMC

charge radius & magnetic moment

Thank you!