Hadronic contribution to the running of $\sin^2 \theta_W$ from lattice QCD

Konstantin Ottnad

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

Bridging the Standard Model to New Physics with the Parity Violation Program at MESA

Mainz, 2nd May 2017

Outline

- Theory and lattice setup
- Quark connected contribution
- Quark disconnected contribution
- Error budget on full hadronic contribution

Disclaimer: Results are still very preliminary!

Lattice calculation of the running of $\sin^2 \theta_W$

Master formula for the hadronic contribution to the running of $\sin^2 \theta_W$

$$\Delta_{\text{had}}^{\gamma Z} \sin^2 \theta_W(Q^2) = -\frac{e^2}{\sin^2 \theta_W} \int_0^\infty dt \, C_{2\text{pt}}^{\gamma Z}(t) \underbrace{\left[t^2 - \frac{4}{Q^2} \sin^2\left(\frac{Qt}{2}\right)\right]}_{\equiv K(t,Q)}, \qquad Q = Q_0. \tag{1}$$

The 2pt-function $C_{2\text{pt}}^{\gamma Z}(t) = -\frac{1}{3} \sum_{k} \sum_{\vec{x}} \langle 0 | J_{k}^{\gamma}(x) J_{k}^{Z}(0) | 0 \rangle$ is defined from vector currents:

- The el-mag. current $J_k^{\gamma}(x) = \frac{2}{3}\overline{u}(x)\gamma_k u(x) \frac{1}{3}\overline{d}(x)\gamma_k d(x) \frac{1}{3}\overline{s}(x)\gamma_k s(x) + \frac{2}{3}\overline{c}(x)\gamma_k s(c)$
- The vector coupling of the Z to quark fields $J^Z_{\mu}(x) = J^3_{\mu}(x) \sin^2 \theta_W J^{\gamma}_{\mu}(x)$, where $J^3_{\mu}(x) = \frac{1}{4} \bar{u} \gamma_{\mu} u(x) - \frac{1}{4} \bar{d} \gamma_{\mu} d(x) - \frac{1}{4} \bar{s} \gamma_{\mu} s(x) + \frac{1}{4} \bar{c}(x) \gamma_k s(c)$.

The kernel function K(t, Q) can be evaluated analytically at all t, Q.

 $C_{2pt}^{\gamma Z}(t) = C_{con}^{\gamma Z}(t) + C_{disc}^{\gamma Z}(t)$ involves quark-line connected and disconnected diagrams

which can be calculated non-perturbatively on the lattice:

- Can compute $C_{con}^{\gamma Z}(t)$ to high statistical precision
- Disconnected diagrams are noisy and very expensive
- $C_{\text{con}}^{\gamma Z}(t)$ can be integrated over the entire lattice volume; $C_{\text{disc}}^{\gamma Z}(t)$ requires a cutoff t_{cut} .

Strategy to estimate disconnected contribution:

- Integrate up to some cutoff t_{cut}
- Obtain upper bound on remainder using theory input ...

 \Rightarrow Statistical and systematic error can be "tuned" by appropriate choice of $t_{\rm cut}$.

Asymptotic behavior of $C_{\text{disc}}^{\gamma Z}(t)$

The isovector (isoscalar) channel opens at $2M_{\pi}$ ($3M\pi$), leading to the expectation

$$C^{\gamma Z}(t) \to \left(\frac{1}{2} - \sin^2 \theta_W\right) C^{\rho \rho}(t), \quad \text{for } t \to \infty,$$
 (2)

where $C^{\rho\rho}(t)$ is the (purely connected) isovector part. Neglecting charm quarks, we have:

$$\frac{C_{\rm disc}^{\gamma Z}(t)}{C^{\rho\rho}(t)} = \frac{C^{\gamma Z}(t) - \left(\frac{1}{2} - \sin^2\theta_W\right)C^{\rho\rho}(t)}{C^{\rho\rho}(t)} + \frac{1}{9}\sin^2\theta_W - \left(\frac{1}{6} - \frac{2}{9}\sin^2\theta_W\right)\frac{C_{\rm con}^s(t)}{C_{\rm con}^t(t)}, \quad (3)$$

where $C_{con}^{f}(t)$ denote **connected** correlation functions of individual quark flavors. Now:

- The first term vanishes for large t due to Eq. (2)
- The last term $\sim C_{
 m con}^s(t)/C_{
 m con}'(t)$ is exponentially suppressed.

Therefore,
$$C_{
m disc}^{\gamma Z}(t)
ightarrow rac{\sin^2 heta_W}{9} C^{
ho
ho}(t)$$
, for $t
ightarrow \infty$. (4)

 $\Rightarrow \text{Estimate remainder of } \Delta^{\gamma Z}_{\rm had,disc} \sin^2 \theta_W(Q^2) \text{ by replacing } C^{\gamma Z}_{\rm disc}(t) \rightarrow \frac{\sin^2 \theta_W}{9} C^{\rho\rho}(t).$

Lattice Setup

- Our lattice simulations use 2+1 dynamical flavors of (Wilson, Clover-improved) sea-quarks.
 - \rightarrow Degenerate light quarks; valence charm quarks
- Simulations are performed at finite lattice spacing a.
 - \rightarrow Need different values of $a = 0.050...0.086 \,\mathrm{fm}$ for continuum extrapolation
- Simulations mostly employ **unphysical quark masses** ($M_{\pi} = 200...340 \,\mathrm{MeV}$).
 - \rightarrow Need to perform chiral extrapolation.
 - \rightarrow Ensemble with physical quarks in production, no disconnected diagrams yet.
- Quark connected diagrams receive contributions from u, d, s and c quarks.
- For quark disconnected diagrams we neglect the charm contribution.
- Results shown in this talk are for a single, "average" ensemble:

 $M_{\pi} = 280 \,\mathrm{MeV}, \ a = 0.064 \,\mathrm{fm}, \ T \cdot L^3 = 128 \cdot 48^3.$

Connected contribution

Connected data and plots courtesy of A. Gerardin

- Integrand peaked at small distances.
- Individual connected contributions to $\Delta_{had}^{\gamma Z} \sin^2 \theta_W (Q^2 = 4 \, \text{GeV}^2)$:

 light
 strange
 charm

 -0.004001(44) (69.4%)
 -0.001581(20) (27.4%)
 -0.000

charm -0.000178(13) (3.1%)

- Final error dominated by scale setting (included in plot)
- Overall precision on $\Delta_{had,con}^{\gamma Z} \sin^2 \theta_W (Q^2 = 4 \, \text{GeV}^2) = -0.005760(53)$ better than 1%!

Disconnected contribution

• Two-point function crosses zero as expected \rightarrow integrand flips sign.

- Agreement between correlators built from local and point-split (CVC) operators.
- Signal seems to approach asymptotic value for t = 1...2 fm.

Disconnected contribution

For small distances the integrand is positive

- At distances $t\gtrsim 1.5\,{
 m fm}$ the signal of the two-point function is lost
- However, the noise is correlated...

 \Rightarrow Can integrate much further without losing the signal (even up to $t \approx 2.5 \,\mathrm{fm}$)

 Q^2 -dependence for different value of $t_{\rm cut}$

• Disconnected contribution seems to saturate between for $t_{\rm cut} \gtrsim 2 \, {\rm fm}$.

- Disconnected part $\gtrsim 0.0001$ contributes $\sim 2\%$ to overall signal at $Q^2 = 4 \, {\rm GeV}^2$.
- Connected contribution becomes negligible (< 0.1%) for t_{cut} > 3 fm.
- Upper bound for remainder of disc contribution is suppressed by $\frac{\sin^2 \theta_W}{9} \approx 0.027$:

$$\Delta_{\rm had,disc}^{\gamma Z} \sin^2 \theta_W(t > t_{\rm cut}) \leq \frac{\sin^2 \theta_W}{9} \Delta_{\rm had}^{\rho \rho} \sin^2 \theta_W(t > t_{\rm cut}).$$

 \Rightarrow Disc contribution becomes negligible for $t_{\rm cut} > 2 \, {\rm fm}$.

How to choose an "optimal" t_{cut} value?

Error budget

- "Sweet spot" around $t_{\rm cut} \approx 2 \, {\rm fm}$.
- Total error from disconnected part is of $\mathcal{O}(0.2\%)$.
- However, taking $\frac{\sin^2 \theta_W}{9} \Delta_{had}^{\rho \rho} \sin^2 \theta_W$ as an error may be too conservative...

 \Rightarrow Total error on given ensemble is $\sim 1\%$ (dominated by connected part!)

However, this estimate has to be taken with a grain of salt:

- Still need to perform chiral and continuum extrapolation.
- Calculations at smaller values of M_{π} , *a* are more expensive.
- If the ratio of conn. vs. disc. changes, also the error estimate will be affected.
- Conn. and disc. data are correlated; this might change the final error.

Possible strategy to further improve the error:

• Split up the full two-point function:

$$\begin{split} C_{\rm 2pt}^{\gamma Z}(t) &= \frac{1}{4} C^{\rm rest}(t) + \left(\frac{9}{20} - \sin^2 \theta_W\right) C^{\gamma \gamma}(t) \\ C^{\rm rest}(t) &= \frac{2}{15} \left(C_{\rm con}^s - C_{\rm con}^c \right) - \frac{1}{5} C_{\rm disc}^{l+\frac{2}{3}s, l-s}. \end{split}$$

- Estimate $C^{\gamma\gamma}(t)$ using e^+e^- data
- Compute $C^{rest}(t)$ on the lattice (no $C'_{con}(t)$ contribution!)

 \rightarrow Need careful error analysis, including correlations.

Summary and outlook

So far:

- Full, direct lattice calculation of $\Delta_{had}^{\gamma Z} \sin^2 \theta_W$ possible with error of ~ 1%.
- Error dominated by the quark-connected part (actually: scale setting)

<u>TODO</u>:

- Investigate hybrid approach using e^+e^- data for $C^{\gamma\gamma}(t)$.
- Add more pion masses and lattice spacings for disconnected part.
- Perform chiral and continuum extrapolation.
- Add the ensemble at the physical point (at least for connected part)